diff -r d8863141824d -r fb261e3a9a0f src/include/xy.h --- a/src/include/xy.h Thu May 06 09:26:23 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,227 +0,0 @@ -// -*- c++ -*- -#ifndef HUGO_XY_H -#define HUGO_XY_H - -#include - -///\ingroup misc -///\file -///\brief A simple two dimensional vector and a bounding box implementation -/// -/// The class \ref hugo::xy "xy" implements -///a two dimensional vector with the usual -/// operations. -/// -/// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine -/// the rectangular bounding box a set of \ref hugo::xy "xy"'s. -/// -///\author Attila Bernath - - -namespace hugo { - - /// \addtogroup misc - /// @{ - - /// A two dimensional vector (plainvector) implementation - - /// A two dimensional vector (plainvector) implementation - ///with the usual vector - /// operators. - /// - ///\author Attila Bernath - template - class xy { - - public: - - T x,y; - - ///Default constructor: both coordinates become 0 - xy() : x(0), y(0) {} - - ///Constructing the instance from coordinates - xy(T a, T b) : x(a), y(b) { } - - - ///Gives back the square of the norm of the vector - T normSquare(){ - return x*x+y*y; - }; - - ///Increments the left hand side by u - xy& operator +=(const xy& u){ - x += u.x; - y += u.y; - return *this; - }; - - ///Decrements the left hand side by u - xy& operator -=(const xy& u){ - x -= u.x; - y -= u.y; - return *this; - }; - - ///Multiplying the left hand side with a scalar - xy& operator *=(const T &u){ - x *= u; - y *= u; - return *this; - }; - - ///Dividing the left hand side by a scalar - xy& operator /=(const T &u){ - x /= u; - y /= u; - return *this; - }; - - ///Returns the scalar product of two vectors - T operator *(const xy& u){ - return x*u.x+y*u.y; - }; - - ///Returns the sum of two vectors - xy operator+(const xy &u) const { - xy b=*this; - return b+=u; - }; - - ///Returns the difference of two vectors - xy operator-(const xy &u) const { - xy b=*this; - return b-=u; - }; - - ///Returns a vector multiplied by a scalar - xy operator*(const T &u) const { - xy b=*this; - return b*=u; - }; - - ///Returns a vector divided by a scalar - xy operator/(const T &u) const { - xy b=*this; - return b/=u; - }; - - ///Testing equality - bool operator==(const xy &u){ - return (x==u.x) && (y==u.y); - }; - - ///Testing inequality - bool operator!=(xy u){ - return (x!=u.x) || (y!=u.y); - }; - - }; - - ///Reading a plainvector from a stream - template - inline - std::istream& operator>>(std::istream &is, xy &z) - { - - is >> z.x >> z.y; - return is; - } - - ///Outputting a plainvector to a stream - template - inline - std::ostream& operator<<(std::ostream &os, xy z) - { - os << "(" << z.x << ", " << z.y << ")"; - return os; - } - - - /// A class to calculate or store the bounding box of plainvectors. - - /// A class to calculate or store the bounding box of plainvectors. - /// - ///\author Attila Bernath - template - class BoundingBox { - xy bottom_left, top_right; - bool _empty; - public: - - ///Default constructor: an empty bounding box - BoundingBox() { _empty = true; } - - ///Constructing the instance from one point - BoundingBox(xy a) { bottom_left=top_right=a; _empty = false; } - - ///Is there any point added - bool empty() const { - return _empty; - } - - ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) - xy bottomLeft() const { - return bottom_left; - }; - - ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) - xy topRight() const { - return top_right; - }; - - ///Checks whether a point is inside a bounding box - bool inside(const xy& u){ - if (_empty) - return false; - else{ - return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 && - (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 ); - } - } - - ///Increments a bounding box with a point - BoundingBox& operator +=(const xy& u){ - if (_empty){ - bottom_left=top_right=u; - _empty = false; - } - else{ - if (bottom_left.x > u.x) bottom_left.x = u.x; - if (bottom_left.y > u.y) bottom_left.y = u.y; - if (top_right.x < u.x) top_right.x = u.x; - if (top_right.y < u.y) top_right.y = u.y; - } - return *this; - }; - - ///Sums a bounding box and a point - BoundingBox operator +(const xy& u){ - BoundingBox b = *this; - return b += u; - }; - - ///Increments a bounding box with an other bounding box - BoundingBox& operator +=(const BoundingBox &u){ - if ( !u.empty() ){ - *this += u.bottomLeft(); - *this += u.topRight(); - } - return *this; - }; - - ///Sums two bounding boxes - BoundingBox operator +(const BoundingBox& u){ - BoundingBox b = *this; - return b += u; - }; - - };//class Boundingbox - - - /// @} - - -} //namespace hugo - -#endif //HUGO_XY_H