# HG changeset patch # User alpar # Date 1079818696 0 # Node ID 0c6bd3a98edfcd840a492bdbf6c433769dba7002 # Parent d8a67c5b26d110a787d9f201953cae32b6653115 Aprosagok... diff -r d8a67c5b26d1 -r 0c6bd3a98edf src/work/alpar/dijkstra/bin_heap.hh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/alpar/dijkstra/bin_heap.hh Sat Mar 20 21:38:16 2004 +0000 @@ -0,0 +1,235 @@ +/* FIXME: Copyright ... + * + * This implementation is heavily based on STL's heap functions and + * the similar class by Alpar Juttner in IKTA... + */ + +/****** + * + * BinHeap + * + * Ez az osztaly kulcs-ertek parok tarolasara alkalmas binaris kupacot + * valosit meg. + * A kupacban legfolul mindig az a par talalhato, amiben az _ertek_ a + * legkisebb. (Gondolj a Dijkstra pont-tavolsag kupacara; igazabol ahhoz + * lett keszitve...) + * + * Megjegyzes: egy kicsit gyanus nekem, hogy a kupacos temakorben nem + * azt hivjak kulcsnak, amit most en annak nevezek. :) En olyan + * property_map -os ertelemben hasznalom. + * + * A hasznalatahoz szukseg van egy irhato/olvashato property_map-re, ami + * a kulcsokhoz egy int-et tud tarolni (ezzel tudom megkeresni az illeto + * elemet a kupacban a csokkentes es hasonlo muveletekhez). + * A map-re csak referenciat tarol, ugy hogy a kupac elete folyan a map-nek + * is elnie kell. (???) + * + * Ketfele modon hasznalhato: + * Lusta mod: + * put(Key, Value) metodussal pakolunk a kupacba, + * aztan o majd eldonti, hogy ez az elem mar benne van-e es ha igen, akkor + * csokkentettunk-e rajta, vagy noveltunk. + * Ehhez nagyon fontos, hogy az atadott property map inicializalva legyen + * minden szobajovo kulcs ertekre, -1 -es ertekkel! + * Es ilyen esetben a kulcsokrol lekerdezheto az allapotuk a state metodussal: + * (nem jart meg a kupacban PRE_HEAP=-1, epp a kupacban van IN_HEAP=0, + * mar kikerult a kupacbol POST_HEAP=-2). + * Szoval ebben a modban a kupac nagyjabol hasznalhato property_map-kent, csak + * meg meg tudja mondani a "legkisebb" erteku elemet. De csak nagyjabol, + * hiszen a kupacbol kikerult elemeknek elvesz az ertekuk... + * + * Kozvetlen mod: + * push(Key, Value) metodussal belerakunk a kupacba (ha az illeto kulcs mar + * benn volt, akkor gaz). + * increase/decrease(Key k, Value new_value) metodusokkal lehet + * novelni/csokkenteni az illeto kulcshoz tartozo erteket. (Ha nem volt meg + * benne a kupacban az illeto kulcs, vagy nem abba az iranyba valtoztattad + * az erteket, amerre mondtad -- gaz). + * + * Termeszetesen a fenti ket modot ertelemszeruen lehet keverni. + * Ja es mindig nagyon gaz, ha belepiszkalsz a map-be, amit a kupac + * hasznal. :-)) + * + * + * Bocs, most faradt vagyok, majd egyszer leforditom. (Misi) + * + */ + + +#ifndef BIN_HEAP_HH +#define BIN_HEAP_HH + +#include +#include +#include + +namespace hugo { + + template > + class BinHeap { + + public: + typedef Key KeyType; + // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot... + typedef Val ValueType; + typedef std::pair PairType; + typedef KeyIntMap KeyIntMapType; + typedef Compare ValueCompare; + + /** + * Each Key element have a state associated to it. It may be "in heap", + * "pre heap" or "post heap". The later two are indifferent from the + * heap's point of view, but may be useful to the user. + * + * The KeyIntMap _should_ be initialized in such way, that it maps + * PRE_HEAP (-1) to any element to be put in the heap... + */ + ///\todo it is used nowhere + /// + enum state_enum { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + private: + std::vector data; + Compare comp; + // FIXME: jo ez igy??? + KeyIntMap &kim; + + public: + BinHeap(KeyIntMap &_kim) : kim(_kim) {} + BinHeap(KeyIntMap &_kim, const Compare &_comp) : comp(_comp), kim(_kim) {} + + + int size() const { return data.size(); } + bool empty() const { return data.empty(); } + + private: + static int parent(int i) { return (i-1)/2; } + static int second_child(int i) { return 2*i+2; } + bool less(const PairType &p1, const PairType &p2) { + return comp(p1.second, p2.second); + } + + int bubble_up(int hole, PairType p); + int bubble_down(int hole, PairType p, int length); + + void move(const PairType &p, int i) { + data[i] = p; + kim.set(p.first, i); + } + + void rmidx(int h) { + int n = data.size()-1; + if( h>=0 && h<=n ) { + kim.set(data[h].first, POST_HEAP); + if ( h0 ? + return data[0].first; + } + Val topValue() const { + // FIXME: test size>0 ? + return data[0].second; + } + + void pop() { + rmidx(0); + } + + void erase(const Key &k) { + rmidx(kim[k]); + } + + Val operator[](const Key &k) const { + int idx = kim[k]; + return data[idx].second; + } + + void put(const Key &k, const Val &v) { + int idx = kim[k]; + if( idx < 0 ) { + push(k,v); + } + else if( comp(v, data[idx].second) ) { + bubble_up(idx, PairType(k,v)); + } + else { + bubble_down(idx, PairType(k,v), data.size()); + } + } + + void decrease(const Key &k, const Val &v) { + int idx = kim[k]; + bubble_up(idx, PairType(k,v)); + } + void increase(const Key &k, const Val &v) { + int idx = kim[k]; + bubble_down(idx, PairType(k,v), data.size()); + } + + state_enum state(const Key &k) const { + int s = kim[k]; + if( s>=0 ) + s=0; + return state_enum(s); + } + + }; // class BinHeap + + + template + int BinHeap::bubble_up(int hole, PairType p) { + int par = parent(hole); + while( hole>0 && less(p,data[par]) ) { + move(data[par],hole); + hole = par; + par = parent(hole); + } + move(p, hole); + return hole; + } + + template + int BinHeap::bubble_down(int hole, PairType p, int length) { + int child = second_child(hole); + while(child < length) { + if( less(data[child-1], data[child]) ) { + --child; + } + if( !less(data[child], p) ) + goto ok; + move(data[child], hole); + hole = child; + child = second_child(hole); + } + child--; + if( child +#include + +#include +#include +#include +#include +#include + +#include +#include + +using namespace hugo; + +int main(int, char **) { + typedef SmartGraph::Node Node; + typedef SmartGraph::NodeIt NodeIt; + typedef SmartGraph::InEdgeIt InEdgeIt; + + SmartGraph G; + Node s, t; + SmartGraph::EdgeMap cap(G); + Timer tim; + std::cout << "DIMACS load ..." << std::endl; + readDimacsMaxFlow(std::cin, G, s, t, cap); + std::cout << " " << tim <, + FibHeap > + > dijkstra_test(G, cap); + + dijkstra_test.run(s); + //double post_time=currTime(); + + std::cout << "running time with fib_heap: " + // << post_time-pre_time << " sec" + << tim + << std::endl; + + //pre_time=currTime(); + tim.reset(); + Dijkstra < SmartGraph, + SmartGraph::EdgeMap, + BinHeap > > + dijkstra_test2(G, cap); + + dijkstra_test2.run(s); + //post_time=currTime(); + + std::cout << "running time with bin_heap: " + // << post_time-pre_time << " sec" + << tim + << std::endl; + + + int hiba_fib=0; + int hiba_bin=0; + NodeIt u; + for ( G.first(u) ; G.valid(u); G.next(u) ) { + InEdgeIt e; + for ( G.first(e,u); G.valid(e); G.next(e) ) { + Node v=G.tail(e); + if ( dijkstra_test.dist(u) - dijkstra_test.dist(v) > cap[e] ) + { + std::cout<<"Hibas el a fibonaccis Dijkstraban: " + << dijkstra_test.dist(u) - dijkstra_test.dist(v) - + cap[e]< cap[e] ) + { + std::cout<<"Hibas el a binarisos Dijkstraban: " + << dijkstra_test2.dist(u) - dijkstra_test2.dist(v) - + cap[e]< > + * + *Constructor: + * + *Dijkstra(Graph G, LengthMap length) + * + * + *Methods: + * + *void run(Node s) + * + *T dist(Node v) : After run(s) was run, it returns the distance from s to v. + * Returns T() if v is not reachable from s. + * + *Edge pred(Node v) : After run(s) was run, it returns the last + * edge of a shortest s-v path. It is INVALID for s and for + * the nodes not reachable from s. + * + *bool reached(Node v) : After run(s) was run, it is true iff v is + * reachable from s + * + */ + +#ifndef HUGO_DIJKSTRA_H +#define HUGO_DIJKSTRA_H + +#include +#include + +namespace hugo { + + //Alpar: Changed the order of the parameters + template , + typename Heap=FibHeap > > + class Dijkstra{ + public: + typedef typename LengthMap::ValueType ValueType; + + private: + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Edge Edge; + typedef typename Graph::OutEdgeIt OutEdgeIt; + + const Graph& G; + const LengthMap& length; + typedef typename Graph::NodeMap PredMap; + PredMap predecessor; + //In place of reach: + typedef typename Graph::NodeMap PredNodeMap; + PredNodeMap pred_node; + typedef typename Graph::NodeMap DistMap; + DistMap distance; + //I don't like this: + // //FIXME: + // typename Graph::NodeMap reach; + // //typename Graph::NodeMap reach; + + public : + + /* + The distance of the nodes is 0. + */ + Dijkstra(Graph& _G, LengthMap& _length) : + G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } + + + void run(Node s); + + ValueType dist(Node v) const { return distance[v]; } + Edge pred(Node v) const { return predecessor[v]; } + Node predNode(Node v) const { return pred_node[v]; } + + const DistMap &distMap() const { return distance;} + const PredMap &predMap() const { return predecessor;} + const PredNodeMap &predNodeMap() const { return pred_node;} + + // bool reached(Node v) { return reach[v]; } + ///\warning \c s is not reached! + /// + bool reached(Node v) { return G.valid(predecessor[v]); } + + }; + + + // IMPLEMENTATIONS + + template + void Dijkstra::run(Node s) { + + NodeIt u; + for ( G.first(u) ; G.valid(u) ; G.next(u) ) { + predecessor.set(u,INVALID); + // If a node is unreacheable, then why should be the dist=0? + // distance.set(u,0); + // reach.set(u,false); + } + + //We don't need it at all. + // //FIXME: + // typename Graph::NodeMap scanned(G,false); + // //typename Graph::NodeMap scanned(G,false); + typename Graph::NodeMap heap_map(G,-1); + + Heap heap(heap_map); + + heap.push(s,0); + // reach.set(s, true); + + while ( !heap.empty() ) { + + Node v=heap.top(); + ValueType oldvalue=heap[v]; + heap.pop(); + distance.set(v, oldvalue); + + for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) { + Node w=G.head(e); + + switch(heap.state(w)) { + case Heap::PRE_HEAP: + // reach.set(w,true); + heap.push(w,oldvalue+length[e]); + predecessor.set(w,e); + pred_node.set(w,v); + break; + case Heap::IN_HEAP: + if ( oldvalue+length[e] < heap[w] ) { + heap.decrease(w, oldvalue+length[e]); + predecessor.set(w,e); + pred_node.set(w,v); + } + break; + case Heap::POST_HEAP: + break; + } + } + } + } + +} //END OF NAMESPACE HUGO + +#endif + + diff -r d8a67c5b26d1 -r 0c6bd3a98edf src/work/alpar/dijkstra/fib_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/alpar/dijkstra/fib_heap.h Sat Mar 20 21:38:16 2004 +0000 @@ -0,0 +1,389 @@ +// -*- C++ -*- +/* + *template > + * + *constructors: + * + *FibHeap(ItemIntMap), FibHeap(ItemIntMap, Compare) + * + *Member functions: + * + *int size() : returns the number of elements in the heap + * + *bool empty() : true iff size()=0 + * + *void set(Item, Prio) : calls push(Item, Prio) if Item is not + * in the heap, and calls decrease/increase(Item, Prio) otherwise + * + *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item + * mustn't be in the heap. + * + *Item top() : returns the Item with least Prio. + * Must be called only if heap is nonempty. + * + *Prio prio() : returns the least Prio + * Must be called only if heap is nonempty. + * + *Prio get(Item) : returns Prio of Item + * Must be called only if Item is in heap. + * + *void pop() : deletes the Item with least Prio + * + *void erase(Item) : deletes Item from the heap if it was already there + * + *void decrease(Item, P) : decreases prio of Item to P. + * Item must be in the heap with prio at least P. + * + *void increase(Item, P) : sets prio of Item to P. + * + *state_enum state(Item) : returns PRE_HEAP if Item has not been in the + * heap until now, IN_HEAP if it is in the heap at the moment, and + * POST_HEAP otherwise. In the latter case it is possible that Item + * will get back to the heap again. + * + *In Fibonacci heaps, increase and erase are not efficient, in case of + *many calls to these operations, it is better to use bin_heap. + */ + +#ifndef FIB_HEAP_H +#define FIB_HEAP_H + +#include +#include +#include + +namespace hugo { + + template > + + class FibHeap { + + typedef Prio PrioType; + + class store; + + std::vector container; + int minimum; + ItemIntMap &iimap; + Compare comp; + int num_items; + + ///\todo It is use nowhere + ///\todo It doesn't conforms to the naming conventions. + public: + enum state_enum { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + public : + + FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} + FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), + iimap(_iimap), comp(_comp), num_items() {} + + + int size() const { + return num_items; + } + + + bool empty() const { return num_items==0; } + + + void set (Item const it, PrioType const value) { + int i=iimap[it]; + if ( i >= 0 && container[i].in ) { + if ( comp(value, container[i].prio) ) decrease(it, value); + if ( comp(container[i].prio, value) ) increase(it, value); + } else push(it, value); + } + + + void push (Item const it, PrioType const value) { + int i=iimap[it]; + if ( i < 0 ) { + int s=container.size(); + iimap.set( it, s ); + store st; + st.name=it; + container.push_back(st); + i=s; + } else { + container[i].parent=container[i].child=-1; + container[i].degree=0; + container[i].in=true; + container[i].marked=false; + } + + if ( num_items ) { + container[container[minimum].right_neighbor].left_neighbor=i; + container[i].right_neighbor=container[minimum].right_neighbor; + container[minimum].right_neighbor=i; + container[i].left_neighbor=minimum; + if ( comp( value, container[minimum].prio) ) minimum=i; + } else { + container[i].right_neighbor=container[i].left_neighbor=i; + minimum=i; + } + container[i].prio=value; + ++num_items; + } + + + Item top() const { + return container[minimum].name; + } + + + PrioType prio() const { + return container[minimum].prio; + } + + + + + PrioType& operator[](const Item& it) { + return container[iimap[it]].prio; + } + + const PrioType& operator[](const Item& it) const { + return container[iimap[it]].prio; + } + +// const PrioType get(const Item& it) const { +// return container[iimap[it]].prio; +// } + + void pop() { + /*The first case is that there are only one root.*/ + if ( container[minimum].left_neighbor==minimum ) { + container[minimum].in=false; + if ( container[minimum].degree!=0 ) { + makeroot(container[minimum].child); + minimum=container[minimum].child; + balance(); + } + } else { + int right=container[minimum].right_neighbor; + unlace(minimum); + container[minimum].in=false; + if ( container[minimum].degree > 0 ) { + int left=container[minimum].left_neighbor; + int child=container[minimum].child; + int last_child=container[child].left_neighbor; + + makeroot(child); + + container[left].right_neighbor=child; + container[child].left_neighbor=left; + container[right].left_neighbor=last_child; + container[last_child].right_neighbor=right; + } + minimum=right; + balance(); + } // the case where there are more roots + --num_items; + } + + + void erase (const Item& it) { + int i=iimap[it]; + + if ( i >= 0 && container[i].in ) { + if ( container[i].parent!=-1 ) { + int p=container[i].parent; + cut(i,p); + cascade(p); + } + minimum=i; //As if its prio would be -infinity + pop(); + } + } + + + void decrease (Item it, PrioType const value) { + int i=iimap[it]; + container[i].prio=value; + int p=container[i].parent; + + if ( p!=-1 && comp(value, container[p].prio) ) { + cut(i,p); + cascade(p); + } + if ( comp(value, container[minimum].prio) ) minimum=i; + } + + + void increase (Item it, PrioType const value) { + erase(it); + push(it, value); + } + + + state_enum state(const Item &it) const { + int i=iimap[it]; + if( i>=0 ) { + if ( container[i].in ) i=0; + else i=-2; + } + return state_enum(i); + } + + + private: + + void balance() { + + int maxdeg=int( floor( 2.08*log(double(container.size()))))+1; + + std::vector A(maxdeg,-1); + + /* + *Recall that now minimum does not point to the minimum prio element. + *We set minimum to this during balance(). + */ + int anchor=container[minimum].left_neighbor; + int next=minimum; + bool end=false; + + do { + int active=next; + if ( anchor==active ) end=true; + int d=container[active].degree; + next=container[active].right_neighbor; + + while (A[d]!=-1) { + if( comp(container[active].prio, container[A[d]].prio) ) { + fuse(active,A[d]); + } else { + fuse(A[d],active); + active=A[d]; + } + A[d]=-1; + ++d; + } + A[d]=active; + } while ( !end ); + + + while ( container[minimum].parent >=0 ) minimum=container[minimum].parent; + int s=minimum; + int m=minimum; + do { + if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; + s=container[s].right_neighbor; + } while ( s != m ); + } + + + void makeroot (int c) { + int s=c; + do { + container[s].parent=-1; + s=container[s].right_neighbor; + } while ( s != c ); + } + + + void cut (int a, int b) { + /* + *Replacing a from the children of b. + */ + --container[b].degree; + + if ( container[b].degree !=0 ) { + int child=container[b].child; + if ( child==a ) + container[b].child=container[child].right_neighbor; + unlace(a); + } + + + /*Lacing a to the roots.*/ + int right=container[minimum].right_neighbor; + container[minimum].right_neighbor=a; + container[a].left_neighbor=minimum; + container[a].right_neighbor=right; + container[right].left_neighbor=a; + + container[a].parent=-1; + container[a].marked=false; + } + + + void cascade (int a) + { + if ( container[a].parent!=-1 ) { + int p=container[a].parent; + + if ( container[a].marked==false ) container[a].marked=true; + else { + cut(a,p); + cascade(p); + } + } + } + + + void fuse (int a, int b) { + unlace(b); + + /*Lacing b under a.*/ + container[b].parent=a; + + if (container[a].degree==0) { + container[b].left_neighbor=b; + container[b].right_neighbor=b; + container[a].child=b; + } else { + int child=container[a].child; + int last_child=container[child].left_neighbor; + container[child].left_neighbor=b; + container[b].right_neighbor=child; + container[last_child].right_neighbor=b; + container[b].left_neighbor=last_child; + } + + ++container[a].degree; + + container[b].marked=false; + } + + + /* + *It is invoked only if a has siblings. + */ + void unlace (int a) { + int leftn=container[a].left_neighbor; + int rightn=container[a].right_neighbor; + container[leftn].right_neighbor=rightn; + container[rightn].left_neighbor=leftn; + } + + + class store { + friend class FibHeap; + + Item name; + int parent; + int left_neighbor; + int right_neighbor; + int child; + int degree; + bool marked; + bool in; + PrioType prio; + + store() : parent(-1), child(-1), degree(), marked(false), in(true) {} + }; + + }; + +} //namespace hugo +#endif diff -r d8a67c5b26d1 -r 0c6bd3a98edf src/work/alpar/dijkstra/makefile --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/alpar/dijkstra/makefile Sat Mar 20 21:38:16 2004 +0000 @@ -0,0 +1,19 @@ +CXX3 := $(shell type -p g++-3.3 || type -p g++-3.2 || type -p g++-3.0 || type -p g++-3 || echo g++) +CXX2 = g++-2.95 +CXXFLAGS = -W -Wall -ansi -pedantic +LEDAROOT ?= /ledasrc/LEDA-4.1 + +BINARIES = dijkstra prim preflow + +all: $(BINARIES) + +makefile: .depend +sinclude .depend + +dijkstra: + $(CXX3) $(CXXFLAGS) -O3 -I. -I../../jacint -I../.. -I../../marci -I../../alpar -o dijkstra dijkstra.cc + +clean: + $(RM) *.o $(BINARIES) .depend + +.PHONY: all clean dep depend