# HG changeset patch # User jacint # Date 1074634030 0 # Node ID 181b37336b2915aca8115b0456c66ebfcda3bcf6 # Parent bf088f14b87a35bbd293fc506b1757206d5548af A max flow algorithm counting only the max flow value diff -r bf088f14b87a -r 181b37336b29 src/work/preflow_push_max_flow.hh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/preflow_push_max_flow.hh Tue Jan 20 21:27:10 2004 +0000 @@ -0,0 +1,315 @@ +/* +preflow_push_max_flow_hh +by jacint. +Runs a preflow push algorithm with the modification, +that we do not push on nodes with level at least n. +Moreover, if a level gets empty, we put all nodes above that +level to level n. Hence, in the end, we arrive at a maximum preflow +with value of a max flow value. An empty level gives a minimum cut. + +Member functions: + +void run() : runs the algorithm + + The following functions should be used after run() was already run. + +T maxflow() : returns the value of a maximum flow + +node_property_vector mincut(): returns a + characteristic vector of a minimum cut. +*/ + +#ifndef PREFLOW_PUSH_MAX_FLOW_HH +#define PREFLOW_PUSH_MAX_FLOW_HH + +#include +#include +#include + +#include +#include +#include +#include + + +namespace marci { + + template + class preflow_push_max_flow { + + typedef typename graph_traits::node_iterator node_iterator; + typedef typename graph_traits::each_node_iterator each_node_iterator; + typedef typename graph_traits::out_edge_iterator out_edge_iterator; + typedef typename graph_traits::in_edge_iterator in_edge_iterator; + + graph_type& G; + node_iterator s; + node_iterator t; + edge_property_vector& capacity; + T value; + node_property_vector mincutvector; + + + + public: + + preflow_push_max_flow(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector& _capacity) : G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { } + + + /* + The run() function runs a modified version of the highest label preflow-push, which only + finds a maximum preflow, hence giving the value of a maximum flow. + */ + void run() { + + edge_property_vector flow(G, 0); //the flow value, 0 everywhere + node_property_vector level(G); //level of node + node_property_vector excess(G); //excess of node + + int n=number_of(G.first_node()); //number of nodes + int b=n-2; + /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/ + + std::vector numb(n); //The number of nodes on level i < n. + + std::vector > stack(2*n-1); //Stack of the active nodes in level i. + + + + /*Reverse_bfs from t, to find the starting level.*/ + + reverse_bfs bfs(G, t); + bfs.run(); + for(each_node_iterator v=G.first_node(); v.is_valid(); ++v) + { + int dist=bfs.dist(v); + level.put(v, dist); + ++numb[dist]; + } + + /*The level of s is fixed to n*/ + level.put(s,n); + + + /* Starting flow. It is everywhere 0 at the moment. */ + + for(out_edge_iterator i=G.first_out_edge(s); i.is_valid(); ++i) + { + node_iterator w=G.head(i); + flow.put(i, capacity.get(i)); + stack[bfs.dist(w)].push(w); + excess.put(w, capacity.get(i)); + } + + + /* + End of preprocessing + */ + + + + + /* + Push/relabel on the highest level active nodes. + */ + + /*While there exists an active node.*/ + while (b) { + + /*We decrease the bound if there is no active node of level b.*/ + if (stack[b].empty()) { + --b; + } else { + + node_iterator w=stack[b].top(); //w is the highest label active node. + stack[b].pop(); //We delete w from the stack. + + int newlevel=2*n-2; //In newlevel we maintain the next level of w. + + for(out_edge_iterator e=G.first_out_edge(w); e.is_valid(); ++e) { + node_iterator v=G.head(e); + /*e is the edge wv.*/ + + if (flow.get(e) excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.put(e, flow.get(e)+excess.get(w)); + excess.put(v, excess.get(v)+excess.get(w)); + excess.put(w,0); + //std::cout << w << " " << v <<" elore elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e)); + excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e)); + flow.put(e, capacity.get(e)); + //std::cout << w <<" " << v <<" elore elen sat pump " << std::endl; + if (excess.get(w)==0) break; + /*If w is not active any more, then we go on to the next node.*/ + + } // if (capacity.get(e)-flow.get(e) > excess.get(w)) + } // if (level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + + } //if (flow.get(e)0) { + /*e is an edge of the residual graph */ + + if(level.get(w)==level.get(v)+1) { + /*Push is allowed now*/ + + if (flow.get(e) > excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.put(e, flow.get(e)-excess.get(w)); + excess.put(v, excess.get(v)+excess.get(w)); + excess.put(w,0); + //std::cout << v << " " << w << " vissza elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.put(e,0); + excess.put(v, excess.get(v)+flow.get(e)); + excess.put(w, excess.get(w)-flow.get(e)); + //std::cout << v <<" " << w << " vissza elen sat pump " << std::endl; + if (excess.get(w)==0) { break;} + } //if (flow.get(e) > excess.get(v)) + } //if(level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + //std::cout << "Leveldecrease of node " << w << " to " << newlevel << std::endl; + + } //if (flow.get(e)>0) + + } //for in-edge + + + + + /* + Relabel + */ + if (excess.get(w)>0) { + /*Now newlevel <= n*/ + + int l=level.get(w); //l is the old level of w. + --numb[l]; + + if (newlevel == n) { + level.put(w,n); + + } else { + + if (numb[l]) { + /*If the level of w remains nonempty.*/ + + level.put(w,++newlevel); + ++numb[newlevel]; + stack[newlevel].push(w); + b=newlevel; + } else { + /*If the level of w gets empty.*/ + + for (each_node_iterator v=G.first_node() ; v.is_valid() ; ++v) { + if (level.get(v) >= l ) { + level.put(v,n); + } + } + + for (int i=l+1 ; i!=n ; ++i) numb[i]=0; + } //if (numb[l]) + + } // if (newlevel = n) + + } // if (excess.get(w)>0) + + + } //else + + } //while(b) + + value=excess.get(t); + /*Max flow value.*/ + + + + /* + We find an empty level, e. The nodes above this level give + a minimum cut. + */ + + int e=1; + + while(e) { + if(numb[e]) ++e; + else break; + } + for (each_node_iterator v=G.first_node(); v.is_valid(); ++v) { + if (level.get(v) > e) mincutvector.put(v, true); + } + + + } // void run() + + + + /* + Returns the maximum value of a flow. + */ + + T maxflow() { + return value; + } + + + + /* + Returns a minimum cut. + */ + + node_property_vector mincut() { + return mincutvector; + } + + + }; +}//namespace marci +#endif + + + + +