# HG changeset patch # User kpeter # Date 1243870671 0 # Node ID 1f99c95ddd2d2607053cbb28f63bcdf021da7026 # Parent 23570e368afab1a47d4c98ccf9a5e34351511b82 Add the Cancel and Tighten min cost flow algorithm diff -r 23570e368afa -r 1f99c95ddd2d lemon/cancel_and_tighten.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/cancel_and_tighten.h Mon Jun 01 15:37:51 2009 +0000 @@ -0,0 +1,795 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_CANCEL_AND_TIGHTEN_H +#define LEMON_CANCEL_AND_TIGHTEN_H + +/// \ingroup min_cost_flow +/// +/// \file +/// \brief Cancel and Tighten algorithm for finding a minimum cost flow. + +#include + +#include +#include +#include +#include +#include +#include + +#include + +namespace lemon { + + /// \addtogroup min_cost_flow + /// @{ + + /// \brief Implementation of the Cancel and Tighten algorithm for + /// finding a minimum cost flow. + /// + /// \ref CancelAndTighten implements the Cancel and Tighten algorithm for + /// finding a minimum cost flow. + /// + /// \tparam Graph The directed graph type the algorithm runs on. + /// \tparam LowerMap The type of the lower bound map. + /// \tparam CapacityMap The type of the capacity (upper bound) map. + /// \tparam CostMap The type of the cost (length) map. + /// \tparam SupplyMap The type of the supply map. + /// + /// \warning + /// - Edge capacities and costs should be \e non-negative \e integers. + /// - Supply values should be \e signed \e integers. + /// - The value types of the maps should be convertible to each other. + /// - \c CostMap::Value must be signed type. + /// + /// \author Peter Kovacs + template < typename Graph, + typename LowerMap = typename Graph::template EdgeMap, + typename CapacityMap = typename Graph::template EdgeMap, + typename CostMap = typename Graph::template EdgeMap, + typename SupplyMap = typename Graph::template NodeMap > + class CancelAndTighten + { + GRAPH_TYPEDEFS(typename Graph); + + typedef typename CapacityMap::Value Capacity; + typedef typename CostMap::Value Cost; + typedef typename SupplyMap::Value Supply; + typedef typename Graph::template EdgeMap CapacityEdgeMap; + typedef typename Graph::template NodeMap SupplyNodeMap; + + typedef ResGraphAdaptor< const Graph, Capacity, + CapacityEdgeMap, CapacityEdgeMap > ResGraph; + + public: + + /// The type of the flow map. + typedef typename Graph::template EdgeMap FlowMap; + /// The type of the potential map. + typedef typename Graph::template NodeMap PotentialMap; + + private: + + /// \brief Map adaptor class for handling residual edge costs. + /// + /// Map adaptor class for handling residual edge costs. + class ResidualCostMap : public MapBase + { + typedef typename ResGraph::Edge Edge; + + private: + + const CostMap &_cost_map; + + public: + + ///\e + ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {} + + ///\e + Cost operator[](const Edge &e) const { + return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e]; + } + + }; //class ResidualCostMap + + /// \brief Map adaptor class for handling reduced edge costs. + /// + /// Map adaptor class for handling reduced edge costs. + class ReducedCostMap : public MapBase + { + private: + + const Graph &_gr; + const CostMap &_cost_map; + const PotentialMap &_pot_map; + + public: + + ///\e + ReducedCostMap( const Graph &gr, + const CostMap &cost_map, + const PotentialMap &pot_map ) : + _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} + + ///\e + inline Cost operator[](const Edge &e) const { + return _cost_map[e] + _pot_map[_gr.source(e)] + - _pot_map[_gr.target(e)]; + } + + }; //class ReducedCostMap + + struct BFOperationTraits { + static double zero() { return 0; } + + static double infinity() { + return std::numeric_limits::infinity(); + } + + static double plus(const double& left, const double& right) { + return left + right; + } + + static bool less(const double& left, const double& right) { + return left + 1e-6 < right; + } + }; // class BFOperationTraits + + private: + + // The directed graph the algorithm runs on + const Graph &_graph; + // The original lower bound map + const LowerMap *_lower; + // The modified capacity map + CapacityEdgeMap _capacity; + // The original cost map + const CostMap &_cost; + // The modified supply map + SupplyNodeMap _supply; + bool _valid_supply; + + // Edge map of the current flow + FlowMap *_flow; + bool _local_flow; + // Node map of the current potentials + PotentialMap *_potential; + bool _local_potential; + + // The residual graph + ResGraph *_res_graph; + // The residual cost map + ResidualCostMap _res_cost; + + public: + + /// \brief General constructor (with lower bounds). + /// + /// General constructor (with lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param lower The lower bounds of the edges. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param supply The supply values of the nodes (signed). + CancelAndTighten( const Graph &graph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost), + _supply(supply), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), + _res_graph(NULL), _res_cost(_cost) + { + // Check the sum of supply values + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; + _valid_supply = sum == 0; + + // Remove non-zero lower bounds + for (EdgeIt e(_graph); e != INVALID; ++e) { + if (lower[e] != 0) { + _capacity[e] -= lower[e]; + _supply[_graph.source(e)] -= lower[e]; + _supply[_graph.target(e)] += lower[e]; + } + } + } + + /// \brief General constructor (without lower bounds). + /// + /// General constructor (without lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param supply The supply values of the nodes (signed). + CancelAndTighten( const Graph &graph, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), + _supply(supply), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), + _res_graph(NULL), _res_cost(_cost) + { + // Check the sum of supply values + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; + _valid_supply = sum == 0; + } + + /// \brief Simple constructor (with lower bounds). + /// + /// Simple constructor (with lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param lower The lower bounds of the edges. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CancelAndTighten( const Graph &graph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(graph), _lower(&lower), _capacity(capacity), _cost(cost), + _supply(graph, 0), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), + _res_graph(NULL), _res_cost(_cost) + { + // Remove non-zero lower bounds + _supply[s] = flow_value; + _supply[t] = -flow_value; + for (EdgeIt e(_graph); e != INVALID; ++e) { + if (lower[e] != 0) { + _capacity[e] -= lower[e]; + _supply[_graph.source(e)] -= lower[e]; + _supply[_graph.target(e)] += lower[e]; + } + } + _valid_supply = true; + } + + /// \brief Simple constructor (without lower bounds). + /// + /// Simple constructor (without lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CancelAndTighten( const Graph &graph, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), + _supply(graph, 0), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), + _res_graph(NULL), _res_cost(_cost) + { + _supply[s] = flow_value; + _supply[t] = -flow_value; + _valid_supply = true; + } + + /// Destructor. + ~CancelAndTighten() { + if (_local_flow) delete _flow; + if (_local_potential) delete _potential; + delete _res_graph; + } + + /// \brief Set the flow map. + /// + /// Set the flow map. + /// + /// \return \c (*this) + CancelAndTighten& flowMap(FlowMap &map) { + if (_local_flow) { + delete _flow; + _local_flow = false; + } + _flow = ↦ + return *this; + } + + /// \brief Set the potential map. + /// + /// Set the potential map. + /// + /// \return \c (*this) + CancelAndTighten& potentialMap(PotentialMap &map) { + if (_local_potential) { + delete _potential; + _local_potential = false; + } + _potential = ↦ + return *this; + } + + /// \name Execution control + + /// @{ + + /// \brief Run the algorithm. + /// + /// Run the algorithm. + /// + /// \return \c true if a feasible flow can be found. + bool run() { + return init() && start(); + } + + /// @} + + /// \name Query Functions + /// The result of the algorithm can be obtained using these + /// functions.\n + /// \ref lemon::CancelAndTighten::run() "run()" must be called before + /// using them. + + /// @{ + + /// \brief Return a const reference to the edge map storing the + /// found flow. + /// + /// Return a const reference to the edge map storing the found flow. + /// + /// \pre \ref run() must be called before using this function. + const FlowMap& flowMap() const { + return *_flow; + } + + /// \brief Return a const reference to the node map storing the + /// found potentials (the dual solution). + /// + /// Return a const reference to the node map storing the found + /// potentials (the dual solution). + /// + /// \pre \ref run() must be called before using this function. + const PotentialMap& potentialMap() const { + return *_potential; + } + + /// \brief Return the flow on the given edge. + /// + /// Return the flow on the given edge. + /// + /// \pre \ref run() must be called before using this function. + Capacity flow(const Edge& edge) const { + return (*_flow)[edge]; + } + + /// \brief Return the potential of the given node. + /// + /// Return the potential of the given node. + /// + /// \pre \ref run() must be called before using this function. + Cost potential(const Node& node) const { + return (*_potential)[node]; + } + + /// \brief Return the total cost of the found flow. + /// + /// Return the total cost of the found flow. The complexity of the + /// function is \f$ O(e) \f$. + /// + /// \pre \ref run() must be called before using this function. + Cost totalCost() const { + Cost c = 0; + for (EdgeIt e(_graph); e != INVALID; ++e) + c += (*_flow)[e] * _cost[e]; + return c; + } + + /// @} + + private: + + /// Initialize the algorithm. + bool init() { + if (!_valid_supply) return false; + + // Initialize flow and potential maps + if (!_flow) { + _flow = new FlowMap(_graph); + _local_flow = true; + } + if (!_potential) { + _potential = new PotentialMap(_graph); + _local_potential = true; + } + + _res_graph = new ResGraph(_graph, _capacity, *_flow); + + // Find a feasible flow using Circulation + Circulation< Graph, ConstMap, + CapacityEdgeMap, SupplyMap > + circulation( _graph, constMap(Capacity(0)), + _capacity, _supply ); + return circulation.flowMap(*_flow).run(); + } + + bool start() { + const double LIMIT_FACTOR = 0.01; + const int MIN_LIMIT = 3; + + typedef typename Graph::template NodeMap FloatPotentialMap; + typedef typename Graph::template NodeMap LevelMap; + typedef typename Graph::template NodeMap BoolNodeMap; + typedef typename Graph::template NodeMap PredNodeMap; + typedef typename Graph::template NodeMap PredEdgeMap; + typedef typename ResGraph::template EdgeMap ResShiftCostMap; + FloatPotentialMap pi(_graph); + LevelMap level(_graph); + BoolNodeMap reached(_graph); + BoolNodeMap processed(_graph); + PredNodeMap pred_node(_graph); + PredEdgeMap pred_edge(_graph); + int node_num = countNodes(_graph); + typedef std::pair pair; + std::vector stack(node_num); + std::vector proc_vector(node_num); + ResShiftCostMap shift_cost(*_res_graph); + + Tolerance tol; + tol.epsilon(1e-6); + + Timer t1, t2, t3; + t1.reset(); + t2.reset(); + t3.reset(); + + // Initialize epsilon and the node potentials + double epsilon = 0; + for (EdgeIt e(_graph); e != INVALID; ++e) { + if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon) + epsilon = -_cost[e]; + else if ((*_flow)[e] > 0 && _cost[e] > epsilon) + epsilon = _cost[e]; + } + for (NodeIt v(_graph); v != INVALID; ++v) { + pi[v] = 0; + } + + // Start phases + int limit = int(LIMIT_FACTOR * node_num); + if (limit < MIN_LIMIT) limit = MIN_LIMIT; + int iter = limit; + while (epsilon * node_num >= 1) { + t1.start(); + // Find and cancel cycles in the admissible graph using DFS + for (NodeIt n(_graph); n != INVALID; ++n) { + reached[n] = false; + processed[n] = false; + } + int stack_head = -1; + int proc_head = -1; + + for (NodeIt start(_graph); start != INVALID; ++start) { + if (reached[start]) continue; + + // New start node + reached[start] = true; + pred_edge[start] = INVALID; + pred_node[start] = INVALID; + + // Find the first admissible residual outgoing edge + double p = pi[start]; + Edge e; + _graph.firstOut(e, start); + while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || + !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) + _graph.nextOut(e); + if (e != INVALID) { + stack[++stack_head] = pair(e, true); + goto next_step_1; + } + _graph.firstIn(e, start); + while ( e != INVALID && ((*_flow)[e] == 0 || + !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) + _graph.nextIn(e); + if (e != INVALID) { + stack[++stack_head] = pair(e, false); + goto next_step_1; + } + processed[start] = true; + proc_vector[++proc_head] = start; + continue; + next_step_1: + + while (stack_head >= 0) { + Edge se = stack[stack_head].first; + bool sf = stack[stack_head].second; + Node u, v; + if (sf) { + u = _graph.source(se); + v = _graph.target(se); + } else { + u = _graph.target(se); + v = _graph.source(se); + } + + if (!reached[v]) { + // A new node is reached + reached[v] = true; + pred_node[v] = u; + pred_edge[v] = se; + // Find the first admissible residual outgoing edge + double p = pi[v]; + Edge e; + _graph.firstOut(e, v); + while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || + !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) + _graph.nextOut(e); + if (e != INVALID) { + stack[++stack_head] = pair(e, true); + goto next_step_2; + } + _graph.firstIn(e, v); + while ( e != INVALID && ((*_flow)[e] == 0 || + !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) + _graph.nextIn(e); + stack[++stack_head] = pair(e, false); + next_step_2: ; + } else { + if (!processed[v]) { + // A cycle is found + Node n, w = u; + Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] : + (*_flow)[se]; + for (n = u; n != v; n = pred_node[n]) { + d = _graph.target(pred_edge[n]) == n ? + _capacity[pred_edge[n]] - (*_flow)[pred_edge[n]] : + (*_flow)[pred_edge[n]]; + if (d <= delta) { + delta = d; + w = pred_node[n]; + } + } + +/* + std::cout << "CYCLE FOUND: "; + if (sf) + std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]; + else + std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]); + for (n = u; n != v; n = pred_node[n]) { + if (_graph.target(pred_edge[n]) == n) + std::cout << " " << _cost[pred_edge[n]] + pi[_graph.source(pred_edge[n])] - pi[_graph.target(pred_edge[n])]; + else + std::cout << " " << -(_cost[pred_edge[n]] + pi[_graph.source(pred_edge[n])] - pi[_graph.target(pred_edge[n])]); + } + std::cout << "\n"; +*/ + // Augment along the cycle + (*_flow)[se] = sf ? (*_flow)[se] + delta : + (*_flow)[se] - delta; + for (n = u; n != v; n = pred_node[n]) { + if (_graph.target(pred_edge[n]) == n) + (*_flow)[pred_edge[n]] += delta; + else + (*_flow)[pred_edge[n]] -= delta; + } + for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { + --stack_head; + reached[n] = false; + } + u = w; + } + v = u; + + // Find the next admissible residual outgoing edge + double p = pi[v]; + Edge e = stack[stack_head].first; + if (!stack[stack_head].second) { + _graph.nextIn(e); + goto in_edge_3; + } + _graph.nextOut(e); + while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || + !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) + _graph.nextOut(e); + if (e != INVALID) { + stack[stack_head] = pair(e, true); + goto next_step_3; + } + _graph.firstIn(e, v); + in_edge_3: + while ( e != INVALID && ((*_flow)[e] == 0 || + !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) + _graph.nextIn(e); + stack[stack_head] = pair(e, false); + next_step_3: ; + } + + while (stack_head >= 0 && stack[stack_head].first == INVALID) { + processed[v] = true; + proc_vector[++proc_head] = v; + if (--stack_head >= 0) { + v = stack[stack_head].second ? + _graph.source(stack[stack_head].first) : + _graph.target(stack[stack_head].first); + // Find the next admissible residual outgoing edge + double p = pi[v]; + Edge e = stack[stack_head].first; + if (!stack[stack_head].second) { + _graph.nextIn(e); + goto in_edge_4; + } + _graph.nextOut(e); + while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || + !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) + _graph.nextOut(e); + if (e != INVALID) { + stack[stack_head] = pair(e, true); + goto next_step_4; + } + _graph.firstIn(e, v); + in_edge_4: + while ( e != INVALID && ((*_flow)[e] == 0 || + !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) + _graph.nextIn(e); + stack[stack_head] = pair(e, false); + next_step_4: ; + } + } + } + } + t1.stop(); + + // Tighten potentials and epsilon + if (--iter > 0) { + // Compute levels + t2.start(); + for (int i = proc_head; i >= 0; --i) { + Node v = proc_vector[i]; + double p = pi[v]; + int l = 0; + for (InEdgeIt e(_graph, v); e != INVALID; ++e) { + Node u = _graph.source(e); + if ( _capacity[e] - (*_flow)[e] > 0 && + tol.negative(_cost[e] + pi[u] - p) && + level[u] + 1 > l ) l = level[u] + 1; + } + for (OutEdgeIt e(_graph, v); e != INVALID; ++e) { + Node u = _graph.target(e); + if ( (*_flow)[e] > 0 && + tol.negative(-_cost[e] + pi[u] - p) && + level[u] + 1 > l ) l = level[u] + 1; + } + level[v] = l; + } + + // Modify potentials + double p, q = -1; + for (EdgeIt e(_graph); e != INVALID; ++e) { + Node u = _graph.source(e); + Node v = _graph.target(e); + if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) { + p = (_cost[e] + pi[u] - pi[v] + epsilon) / + (level[u] - level[v] + 1); + if (q < 0 || p < q) q = p; + } + else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) { + p = (-_cost[e] - pi[u] + pi[v] + epsilon) / + (level[v] - level[u] + 1); + if (q < 0 || p < q) q = p; + } + } + for (NodeIt v(_graph); v != INVALID; ++v) { + pi[v] -= q * level[v]; + } + + // Modify epsilon + epsilon = 0; + for (EdgeIt e(_graph); e != INVALID; ++e) { + double curr = _cost[e] + pi[_graph.source(e)] + - pi[_graph.target(e)]; + if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon) + epsilon = -curr; + else if ((*_flow)[e] > 0 && curr > epsilon) + epsilon = curr; + } + t2.stop(); + } else { + // Set epsilon to the minimum cycle mean + t3.start(); + +/**/ + StaticGraph static_graph; + typename ResGraph::template NodeMap node_ref(*_res_graph); + typename ResGraph::template EdgeMap edge_ref(*_res_graph); + static_graph.build(*_res_graph, node_ref, edge_ref); + typename StaticGraph::template NodeMap static_pi(static_graph); + typename StaticGraph::template EdgeMap static_cost(static_graph); + + for (typename ResGraph::EdgeIt e(*_res_graph); e != INVALID; ++e) + static_cost[edge_ref[e]] = _res_cost[e]; + + MinMeanCycle > + mmc(static_graph, static_cost); + mmc.init(); + mmc.findMinMean(); + epsilon = -mmc.cycleMean(); +/**/ + +/* + MinMeanCycle mmc(*_res_graph, _res_cost); + mmc.init(); + mmc.findMinMean(); + epsilon = -mmc.cycleMean(); +*/ + + // Compute feasible potentials for the current epsilon + for (typename StaticGraph::EdgeIt e(static_graph); e != INVALID; ++e) + static_cost[e] += epsilon; + typename BellmanFord >:: + template DefDistMap >:: + template DefOperationTraits::Create + bf(static_graph, static_cost); + bf.distMap(static_pi).init(0); + bf.start(); + for (NodeIt n(_graph); n != INVALID; ++n) + pi[n] = static_pi[node_ref[n]]; + +/* + for (typename ResGraph::EdgeIt e(*_res_graph); e != INVALID; ++e) + shift_cost[e] = _res_cost[e] + epsilon; + typename BellmanFord:: + template DefDistMap:: + template DefOperationTraits::Create + bf(*_res_graph, shift_cost); + bf.distMap(pi).init(0); + bf.start(); +*/ + + iter = limit; + t3.stop(); + } + } + +// std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n"; + + // Handle non-zero lower bounds + if (_lower) { + for (EdgeIt e(_graph); e != INVALID; ++e) + (*_flow)[e] += (*_lower)[e]; + } + return true; + } + + }; //class CancelAndTighten + + ///@} + +} //namespace lemon + +#endif //LEMON_CANCEL_AND_TIGHTEN_H