# HG changeset patch # User deba # Date 1144172735 0 # Node ID 33db140585439ebcf3b501446bd2df2ba84f5f66 # Parent 32e4bebee6163f84b67c69381813628cd9316bd9 LinearHeap is renamed to BucketHeap which is more conform and widely used name for this data structure diff -r 32e4bebee616 -r 33db14058543 demo/coloring.cc --- a/demo/coloring.cc Tue Apr 04 17:43:23 2006 +0000 +++ b/demo/coloring.cc Tue Apr 04 17:45:35 2006 +0000 @@ -30,7 +30,7 @@ #include #include -#include +#include #include #include @@ -63,7 +63,7 @@ Graph::NodeMap color(graph, -2); Graph::NodeMap heapMap(graph, -1); - LinearHeap > heap(heapMap); + BucketHeap > heap(heapMap); for (NodeIt it(graph); it != INVALID; ++it) { heap.push(it, countOutEdges(graph, it)); diff -r 32e4bebee616 -r 33db14058543 lemon/Makefile.am --- a/lemon/Makefile.am Tue Apr 04 17:43:23 2006 +0000 +++ b/lemon/Makefile.am Tue Apr 04 17:45:35 2006 +0000 @@ -53,7 +53,7 @@ iterable_maps.h \ johnson.h \ kruskal.h \ - linear_heap.h \ + bucket_heap.h \ list_graph.h \ lp.h \ lp_base.h \ diff -r 32e4bebee616 -r 33db14058543 lemon/bucket_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/bucket_heap.h Tue Apr 04 17:45:35 2006 +0000 @@ -0,0 +1,520 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2006 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BUCKET_HEAP_H +#define LEMON_BUCKET_HEAP_H + +///\ingroup auxdat +///\file +///\brief Bucket Heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup auxdat + + /// \brief A Bucket Heap implementation. + /// + /// This class implements the \e bucket \e heap data structure. A \e heap + /// is a data structure for storing items with specified values called \e + /// priorities in such a way that finding the item with minimum priority is + /// efficient. The bucket heap is very simple implementation, it can store + /// only integer priorities and it stores for each priority in the [0..C] + /// range a list of items. So it should be used only when the priorities + /// are small. It is not intended to use as dijkstra heap. + /// + /// \param _Item Type of the items to be stored. + /// \param _ItemIntMap A read and writable Item int map, used internally + /// to handle the cross references. + /// \param minimize If the given parameter is true then the heap gives back + /// the lowest priority. + template + class BucketHeap { + + public: + typedef _Item Item; + typedef int Prio; + typedef std::pair Pair; + typedef _ItemIntMap ItemIntMap; + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The ItemIntMap \e should be initialized in such way that it maps + /// PRE_HEAP (-1) to any element to be put in the heap... + enum state_enum { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + public: + /// \brief The constructor. + /// + /// The constructor. + /// \param _index should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {} + + /// The number of items stored in the heap. + /// + /// \brief Returns the number of items stored in the heap. + int size() const { return data.size(); } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return data.empty(); } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. + void clear() { + for (int i = 0; i < (int)data.size(); ++i) { + index[data[i].item] = -2; + } + data.clear(); first.clear(); minimal = 0; + } + + private: + + void relocate_last(int idx) { + if (idx + 1 < (int)data.size()) { + data[idx] = data.back(); + if (data[idx].prev != -1) { + data[data[idx].prev].next = idx; + } else { + first[data[idx].value] = idx; + } + if (data[idx].next != -1) { + data[data[idx].next].prev = idx; + } + index[data[idx].item] = idx; + } + data.pop_back(); + } + + void unlace(int idx) { + if (data[idx].prev != -1) { + data[data[idx].prev].next = data[idx].next; + } else { + first[data[idx].value] = data[idx].next; + } + if (data[idx].next != -1) { + data[data[idx].next].prev = data[idx].prev; + } + } + + void lace(int idx) { + if ((int)first.size() <= data[idx].value) { + first.resize(data[idx].value + 1, -1); + } + data[idx].next = first[data[idx].value]; + if (data[idx].next != -1) { + data[data[idx].next].prev = idx; + } + first[data[idx].value] = idx; + data[idx].prev = -1; + } + + public: + /// \brief Insert a pair of item and priority into the heap. + /// + /// Adds \c p.first to the heap with priority \c p.second. + /// \param p The pair to insert. + void push(const Pair& p) { + push(p.first, p.second); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int idx = data.size(); + index[i] = idx; + data.push_back(BucketItem(i, p)); + lace(idx); + if (p < minimal) { + minimal = p; + } + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + while (first[minimal] == -1) { + ++minimal; + } + return data[first[minimal]].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + while (first[minimal] == -1) { + ++minimal; + } + return minimal; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority from the heap. + /// \pre The heap must be non-empty. + void pop() { + while (first[minimal] == -1) { + ++minimal; + } + int idx = first[minimal]; + index[data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + /// \brief Deletes \c i from the heap. + /// + /// This method deletes item \c i from the heap, if \c i was + /// already stored in the heap. + /// \param i The item to erase. + void erase(const Item &i) { + int idx = index[i]; + index[data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + int idx = index[i]; + return data[idx].value; + } + + /// \brief \c i gets to the heap with priority \c p independently + /// if \c i was already there. + /// + /// This method calls \ref push(\c i, \c p) if \c i is not stored + /// in the heap and sets the priority of \c i to \c p otherwise. + /// \param i The item. + /// \param p The priority. + void set(const Item &i, const Prio &p) { + int idx = index[i]; + if (idx < 0) { + push(i,p); + } else if (p > data[idx].value) { + increase(i, p); + } else { + decrease(i, p); + } + } + + /// \brief Decreases the priority of \c i to \c p. + + /// This method decreases the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at least \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void decrease(const Item &i, const Prio &p) { + int idx = index[i]; + unlace(idx); + data[idx].value = p; + if (p < minimal) { + minimal = p; + } + lace(idx); + } + + /// \brief Increases the priority of \c i to \c p. + /// + /// This method sets the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at most \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void increase(const Item &i, const Prio &p) { + int idx = index[i]; + unlace(idx); + data[idx].value = p; + lace(idx); + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + state_enum state(const Item &i) const { + int idx = index[i]; + if (idx >= 0) idx = 0; + return state_enum(idx); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, state_enum st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + index[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + struct BucketItem { + BucketItem(const Item& _item, int _value) + : item(_item), value(_value) {} + + Item item; + int value; + + int prev, next; + }; + + ItemIntMap& index; + std::vector first; + std::vector data; + mutable int minimal; + + }; // class BucketHeap + + + template + class BucketHeap<_Item, _ItemIntMap, false> { + + public: + typedef _Item Item; + typedef int Prio; + typedef std::pair Pair; + typedef _ItemIntMap ItemIntMap; + + enum state_enum { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + public: + + explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {} + + int size() const { return data.size(); } + bool empty() const { return data.empty(); } + + void clear() { + for (int i = 0; i < (int)data.size(); ++i) { + index[data[i].item] = -2; + } + data.clear(); first.clear(); maximal = -1; + } + + private: + + void relocate_last(int idx) { + if (idx + 1 != (int)data.size()) { + data[idx] = data.back(); + if (data[idx].prev != -1) { + data[data[idx].prev].next = idx; + } else { + first[data[idx].value] = idx; + } + if (data[idx].next != -1) { + data[data[idx].next].prev = idx; + } + index[data[idx].item] = idx; + } + data.pop_back(); + } + + void unlace(int idx) { + if (data[idx].prev != -1) { + data[data[idx].prev].next = data[idx].next; + } else { + first[data[idx].value] = data[idx].next; + } + if (data[idx].next != -1) { + data[data[idx].next].prev = data[idx].prev; + } + } + + void lace(int idx) { + if ((int)first.size() <= data[idx].value) { + first.resize(data[idx].value + 1, -1); + } + data[idx].next = first[data[idx].value]; + if (data[idx].next != -1) { + data[data[idx].next].prev = idx; + } + first[data[idx].value] = idx; + data[idx].prev = -1; + } + + public: + + void push(const Pair& p) { + push(p.first, p.second); + } + + void push(const Item &i, const Prio &p) { + int idx = data.size(); + index[i] = idx; + data.push_back(BucketItem(i, p)); + lace(idx); + if (data[idx].value > maximal) { + maximal = data[idx].value; + } + } + + Item top() const { + while (first[maximal] == -1) { + --maximal; + } + return data[first[maximal]].item; + } + + Prio prio() const { + while (first[maximal] == -1) { + --maximal; + } + return maximal; + } + + void pop() { + while (first[maximal] == -1) { + --maximal; + } + int idx = first[maximal]; + index[data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + void erase(const Item &i) { + int idx = index[i]; + index[data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + Prio operator[](const Item &i) const { + int idx = index[i]; + return data[idx].value; + } + + void set(const Item &i, const Prio &p) { + int idx = index[i]; + if (idx < 0) { + push(i,p); + } else if (p > data[idx].value) { + decrease(i, p); + } else { + increase(i, p); + } + } + + void decrease(const Item &i, const Prio &p) { + int idx = index[i]; + unlace(idx); + data[idx].value = p; + if (p > maximal) { + maximal = p; + } + lace(idx); + } + + void increase(const Item &i, const Prio &p) { + int idx = index[i]; + unlace(idx); + data[idx].value = p; + lace(idx); + } + + state_enum state(const Item &i) const { + int idx = index[i]; + if (idx >= 0) idx = 0; + return state_enum(idx); + } + + void state(const Item& i, state_enum st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + index[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + struct BucketItem { + BucketItem(const Item& _item, int _value) + : item(_item), value(_value) {} + + Item item; + int value; + + int prev, next; + }; + + ItemIntMap& index; + std::vector first; + std::vector data; + mutable int maximal; + + }; // class BucketHeap + +} + +#endif diff -r 32e4bebee616 -r 33db14058543 lemon/linear_heap.h --- a/lemon/linear_heap.h Tue Apr 04 17:43:23 2006 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,520 +0,0 @@ -/* -*- C++ -*- - * - * This file is a part of LEMON, a generic C++ optimization library - * - * Copyright (C) 2003-2006 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_LINEAR_HEAP_H -#define LEMON_LINEAR_HEAP_H - -///\ingroup auxdat -///\file -///\brief Binary Heap implementation. - -#include -#include -#include - -namespace lemon { - - /// \ingroup auxdat - - /// \brief A Linear Heap implementation. - /// - /// This class implements the \e linear \e heap data structure. A \e heap - /// is a data structure for storing items with specified values called \e - /// priorities in such a way that finding the item with minimum priority is - /// efficient. The linear heap is very simple implementation, it can store - /// only integer priorities and it stores for each priority in the [0..C] - /// range a list of items. So it should be used only when the priorities - /// are small. It is not intended to use as dijkstra heap. - /// - /// \param _Item Type of the items to be stored. - /// \param _ItemIntMap A read and writable Item int map, used internally - /// to handle the cross references. - /// \param minimize If the given parameter is true then the heap gives back - /// the lowest priority. - template - class LinearHeap { - - public: - typedef _Item Item; - typedef int Prio; - typedef std::pair Pair; - typedef _ItemIntMap ItemIntMap; - - /// \brief Type to represent the items states. - /// - /// Each Item element have a state associated to it. It may be "in heap", - /// "pre heap" or "post heap". The latter two are indifferent from the - /// heap's point of view, but may be useful to the user. - /// - /// The ItemIntMap \e should be initialized in such way that it maps - /// PRE_HEAP (-1) to any element to be put in the heap... - enum state_enum { - IN_HEAP = 0, - PRE_HEAP = -1, - POST_HEAP = -2 - }; - - public: - /// \brief The constructor. - /// - /// The constructor. - /// \param _index should be given to the constructor, since it is used - /// internally to handle the cross references. The value of the map - /// should be PRE_HEAP (-1) for each element. - explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {} - - /// The number of items stored in the heap. - /// - /// \brief Returns the number of items stored in the heap. - int size() const { return data.size(); } - - /// \brief Checks if the heap stores no items. - /// - /// Returns \c true if and only if the heap stores no items. - bool empty() const { return data.empty(); } - - /// \brief Make empty this heap. - /// - /// Make empty this heap. - void clear() { - for (int i = 0; i < (int)data.size(); ++i) { - index[data[i].item] = -2; - } - data.clear(); first.clear(); minimal = 0; - } - - private: - - void relocate_last(int idx) { - if (idx + 1 < (int)data.size()) { - data[idx] = data.back(); - if (data[idx].prev != -1) { - data[data[idx].prev].next = idx; - } else { - first[data[idx].value] = idx; - } - if (data[idx].next != -1) { - data[data[idx].next].prev = idx; - } - index[data[idx].item] = idx; - } - data.pop_back(); - } - - void unlace(int idx) { - if (data[idx].prev != -1) { - data[data[idx].prev].next = data[idx].next; - } else { - first[data[idx].value] = data[idx].next; - } - if (data[idx].next != -1) { - data[data[idx].next].prev = data[idx].prev; - } - } - - void lace(int idx) { - if ((int)first.size() <= data[idx].value) { - first.resize(data[idx].value + 1, -1); - } - data[idx].next = first[data[idx].value]; - if (data[idx].next != -1) { - data[data[idx].next].prev = idx; - } - first[data[idx].value] = idx; - data[idx].prev = -1; - } - - public: - /// \brief Insert a pair of item and priority into the heap. - /// - /// Adds \c p.first to the heap with priority \c p.second. - /// \param p The pair to insert. - void push(const Pair& p) { - push(p.first, p.second); - } - - /// \brief Insert an item into the heap with the given priority. - /// - /// Adds \c i to the heap with priority \c p. - /// \param i The item to insert. - /// \param p The priority of the item. - void push(const Item &i, const Prio &p) { - int idx = data.size(); - index[i] = idx; - data.push_back(LinearItem(i, p)); - lace(idx); - if (p < minimal) { - minimal = p; - } - } - - /// \brief Returns the item with minimum priority. - /// - /// This method returns the item with minimum priority. - /// \pre The heap must be nonempty. - Item top() const { - while (first[minimal] == -1) { - ++minimal; - } - return data[first[minimal]].item; - } - - /// \brief Returns the minimum priority. - /// - /// It returns the minimum priority. - /// \pre The heap must be nonempty. - Prio prio() const { - while (first[minimal] == -1) { - ++minimal; - } - return minimal; - } - - /// \brief Deletes the item with minimum priority. - /// - /// This method deletes the item with minimum priority from the heap. - /// \pre The heap must be non-empty. - void pop() { - while (first[minimal] == -1) { - ++minimal; - } - int idx = first[minimal]; - index[data[idx].item] = -2; - unlace(idx); - relocate_last(idx); - } - - /// \brief Deletes \c i from the heap. - /// - /// This method deletes item \c i from the heap, if \c i was - /// already stored in the heap. - /// \param i The item to erase. - void erase(const Item &i) { - int idx = index[i]; - index[data[idx].item] = -2; - unlace(idx); - relocate_last(idx); - } - - - /// \brief Returns the priority of \c i. - /// - /// This function returns the priority of item \c i. - /// \pre \c i must be in the heap. - /// \param i The item. - Prio operator[](const Item &i) const { - int idx = index[i]; - return data[idx].value; - } - - /// \brief \c i gets to the heap with priority \c p independently - /// if \c i was already there. - /// - /// This method calls \ref push(\c i, \c p) if \c i is not stored - /// in the heap and sets the priority of \c i to \c p otherwise. - /// \param i The item. - /// \param p The priority. - void set(const Item &i, const Prio &p) { - int idx = index[i]; - if (idx < 0) { - push(i,p); - } else if (p > data[idx].value) { - increase(i, p); - } else { - decrease(i, p); - } - } - - /// \brief Decreases the priority of \c i to \c p. - - /// This method decreases the priority of item \c i to \c p. - /// \pre \c i must be stored in the heap with priority at least \c - /// p relative to \c Compare. - /// \param i The item. - /// \param p The priority. - void decrease(const Item &i, const Prio &p) { - int idx = index[i]; - unlace(idx); - data[idx].value = p; - if (p < minimal) { - minimal = p; - } - lace(idx); - } - - /// \brief Increases the priority of \c i to \c p. - /// - /// This method sets the priority of item \c i to \c p. - /// \pre \c i must be stored in the heap with priority at most \c - /// p relative to \c Compare. - /// \param i The item. - /// \param p The priority. - void increase(const Item &i, const Prio &p) { - int idx = index[i]; - unlace(idx); - data[idx].value = p; - lace(idx); - } - - /// \brief Returns if \c item is in, has already been in, or has - /// never been in the heap. - /// - /// This method returns PRE_HEAP if \c item has never been in the - /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP - /// otherwise. In the latter case it is possible that \c item will - /// get back to the heap again. - /// \param i The item. - state_enum state(const Item &i) const { - int idx = index[i]; - if (idx >= 0) idx = 0; - return state_enum(idx); - } - - /// \brief Sets the state of the \c item in the heap. - /// - /// Sets the state of the \c item in the heap. It can be used to - /// manually clear the heap when it is important to achive the - /// better time complexity. - /// \param i The item. - /// \param st The state. It should not be \c IN_HEAP. - void state(const Item& i, state_enum st) { - switch (st) { - case POST_HEAP: - case PRE_HEAP: - if (state(i) == IN_HEAP) { - erase(i); - } - index[i] = st; - break; - case IN_HEAP: - break; - } - } - - private: - - struct LinearItem { - LinearItem(const Item& _item, int _value) - : item(_item), value(_value) {} - - Item item; - int value; - - int prev, next; - }; - - ItemIntMap& index; - std::vector first; - std::vector data; - mutable int minimal; - - }; // class LinearHeap - - - template - class LinearHeap<_Item, _ItemIntMap, false> { - - public: - typedef _Item Item; - typedef int Prio; - typedef std::pair Pair; - typedef _ItemIntMap ItemIntMap; - - enum state_enum { - IN_HEAP = 0, - PRE_HEAP = -1, - POST_HEAP = -2 - }; - - public: - - explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {} - - int size() const { return data.size(); } - bool empty() const { return data.empty(); } - - void clear() { - for (int i = 0; i < (int)data.size(); ++i) { - index[data[i].item] = -2; - } - data.clear(); first.clear(); maximal = -1; - } - - private: - - void relocate_last(int idx) { - if (idx + 1 != (int)data.size()) { - data[idx] = data.back(); - if (data[idx].prev != -1) { - data[data[idx].prev].next = idx; - } else { - first[data[idx].value] = idx; - } - if (data[idx].next != -1) { - data[data[idx].next].prev = idx; - } - index[data[idx].item] = idx; - } - data.pop_back(); - } - - void unlace(int idx) { - if (data[idx].prev != -1) { - data[data[idx].prev].next = data[idx].next; - } else { - first[data[idx].value] = data[idx].next; - } - if (data[idx].next != -1) { - data[data[idx].next].prev = data[idx].prev; - } - } - - void lace(int idx) { - if ((int)first.size() <= data[idx].value) { - first.resize(data[idx].value + 1, -1); - } - data[idx].next = first[data[idx].value]; - if (data[idx].next != -1) { - data[data[idx].next].prev = idx; - } - first[data[idx].value] = idx; - data[idx].prev = -1; - } - - public: - - void push(const Pair& p) { - push(p.first, p.second); - } - - void push(const Item &i, const Prio &p) { - int idx = data.size(); - index[i] = idx; - data.push_back(LinearItem(i, p)); - lace(idx); - if (data[idx].value > maximal) { - maximal = data[idx].value; - } - } - - Item top() const { - while (first[maximal] == -1) { - --maximal; - } - return data[first[maximal]].item; - } - - Prio prio() const { - while (first[maximal] == -1) { - --maximal; - } - return maximal; - } - - void pop() { - while (first[maximal] == -1) { - --maximal; - } - int idx = first[maximal]; - index[data[idx].item] = -2; - unlace(idx); - relocate_last(idx); - } - - void erase(const Item &i) { - int idx = index[i]; - index[data[idx].item] = -2; - unlace(idx); - relocate_last(idx); - } - - Prio operator[](const Item &i) const { - int idx = index[i]; - return data[idx].value; - } - - void set(const Item &i, const Prio &p) { - int idx = index[i]; - if (idx < 0) { - push(i,p); - } else if (p > data[idx].value) { - decrease(i, p); - } else { - increase(i, p); - } - } - - void decrease(const Item &i, const Prio &p) { - int idx = index[i]; - unlace(idx); - data[idx].value = p; - if (p > maximal) { - maximal = p; - } - lace(idx); - } - - void increase(const Item &i, const Prio &p) { - int idx = index[i]; - unlace(idx); - data[idx].value = p; - lace(idx); - } - - state_enum state(const Item &i) const { - int idx = index[i]; - if (idx >= 0) idx = 0; - return state_enum(idx); - } - - void state(const Item& i, state_enum st) { - switch (st) { - case POST_HEAP: - case PRE_HEAP: - if (state(i) == IN_HEAP) { - erase(i); - } - index[i] = st; - break; - case IN_HEAP: - break; - } - } - - private: - - struct LinearItem { - LinearItem(const Item& _item, int _value) - : item(_item), value(_value) {} - - Item item; - int value; - - int prev, next; - }; - - ItemIntMap& index; - std::vector first; - std::vector data; - mutable int maximal; - - }; // class LinearHeap - -} - -#endif diff -r 32e4bebee616 -r 33db14058543 lemon/min_cut.h --- a/lemon/min_cut.h Tue Apr 04 17:43:23 2006 +0000 +++ b/lemon/min_cut.h Tue Apr 04 17:45:35 2006 +0000 @@ -24,7 +24,7 @@ #include #include -#include +#include #include #include @@ -48,7 +48,7 @@ struct HeapSelector > > { template struct Selector { - typedef LinearHeap Heap; + typedef BucketHeap Heap; }; }; @@ -94,7 +94,7 @@ /// maximalize the priorities. The default heap type is /// the \ref BinHeap, but it is specialized when the /// CapacityMap is ConstMap > - /// to LinearHeap. + /// to BucketHeap. /// /// \sa MaxCardinalitySearch typedef typename _min_cut_bits @@ -841,7 +841,7 @@ /// /// The complexity of the algorithm is O(n*e*log(n)) but with Fibonacci /// heap it can be decreased to O(n*e+n^2*log(n)). When the neutral capacity - /// map is used then it uses LinearHeap which results O(n*e) time complexity. + /// map is used then it uses BucketHeap which results O(n*e) time complexity. #ifdef DOXYGEN template #else diff -r 32e4bebee616 -r 33db14058543 lemon/topology.h --- a/lemon/topology.h Tue Apr 04 17:43:23 2006 +0000 +++ b/lemon/topology.h Tue Apr 04 17:45:35 2006 +0000 @@ -30,7 +30,7 @@ #include #include -#include +#include #include #include diff -r 32e4bebee616 -r 33db14058543 test/heap_test.cc --- a/test/heap_test.cc Tue Apr 04 17:43:23 2006 +0000 +++ b/test/heap_test.cc Tue Apr 04 17:45:35 2006 +0000 @@ -31,7 +31,7 @@ #include #include #include -#include +#include #include "test_tools.h" @@ -120,14 +120,14 @@ } { - std::cerr << "Checking Linear Heap" << std::endl; + std::cerr << "Checking Bucket Heap" << std::endl; - typedef LinearHeap IntHeap; + typedef BucketHeap IntHeap; checkConcept, IntHeap>(); heapSortTest(100); heapIncreaseTest(100); - typedef LinearHeap > NodeHeap; + typedef BucketHeap > NodeHeap; checkConcept >, NodeHeap>(); Timer timer; dijkstraHeapTest(graph, length, start);