# HG changeset patch # User jacint # Date 1084359113 0 # Node ID 6e917be931afc5b5d80e41671bb9e397e3bbe4ce # Parent e09818232531e81f0d6f6a502a598957f9f4b8d9 diff -r e09818232531 -r 6e917be931af src/work/jacint/max_save.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/max_save.h Wed May 12 10:51:53 2004 +0000 @@ -0,0 +1,1136 @@ +// -*- C++ -*- +#ifndef HUGO_MAX_FLOW_H +#define HUGO_MAX_FLOW_H + +///\ingroup galgs +///\file +///\brief Maximum flow algorithm. + +#define H0 20 +#define H1 1 + +#include +#include +#include + +#include +#include +#include +#include +#include + +/// \file +/// \brief Dimacs file format reader. + +namespace hugo { + + /// \addtogroup galgs + /// @{ + + ///Maximum flow algorithms class. + + ///This class provides various algorithms for finding a flow of + ///maximum value in a directed graph. The \e source node, the \e + ///target node, the \e capacity of the edges and the \e starting \e + ///flow value of the edges can be passed to the algorithm by the + ///constructor. It is possible to change these quantities using the + ///functions \ref resetSource, \ref resetTarget, \ref resetCap and + ///\ref resetFlow. Before any subsequent runs of any algorithm of + ///the class \ref resetFlow should be called, otherwise it will + ///start from a maximum flow. + + ///After running an algorithm of the class, the maximum value of a + ///value can be obtained by calling \ref flowValue(). The minimum + ///value cut can be written into a \c node map of \c bools by + ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes + ///the inclusionwise minimum and maximum of the minimum value + ///cuts, resp.) + + ///\param Graph The undirected graph type the algorithm runs on. + ///\param Num The number type of the capacities and the flow values. + ///\param The type of the capacity map. + ///\param The type of the flow map. + + ///\author Marton Makai, Jacint Szabo + template , + typename FlowMap=typename Graph::template EdgeMap > + class MaxFlow { + + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + typedef typename std::vector > VecStack; + typedef typename Graph::template NodeMap NNMap; + typedef typename std::vector VecNode; + + typedef ResGraphWrapper ResGW; + typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; + typedef typename ResGW::Edge ResGWEdge; + //typedef typename ResGW::template NodeMap ReachedMap; //fixme + typedef typename Graph::template NodeMap ReachedMap; + + const Graph* g; + Node s; + Node t; + const CapMap* capacity; + FlowMap* flow; + int n; //the number of nodes of G + + //level works as a bool map in augmenting path algorithms and is + //used by bfs for storing reached information. In preflow, it + //shows the levels of nodes. + ReachedMap level; + + //excess is needed only in preflow + typename Graph::template NodeMap excess; + + + //fixme + // protected: + // MaxFlow() { } + // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, + // FlowMap& _flow) + // { + // g=&_G; + // s=_s; + // t=_t; + // capacity=&_capacity; + // flow=&_flow; + // n=_G.nodeNum; + // level.set (_G); //kellene vmi ilyesmi fv + // excess(_G,0); //itt is + // } + + public: + + ///Indicates the property of the starting flow. + + ///Indicates the property of the starting flow. The meanings: + ///- \c ZERO_FLOW: constant zero flow + ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to + ///the sum of the out-flows in every node except the source and + ///the target. + ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at + ///least the sum of the out-flows in every node except the source. + enum flowEnum{ + ZERO_FLOW=0, + GEN_FLOW=1, + PRE_FLOW=2 + }; + + MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, + FlowMap& _flow) : + g(&_G), s(_s), t(_t), capacity(&_capacity), + flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} + + ///Runs a maximum flow algorithm. + + ///Runs a preflow algorithm, which is the fastest maximum flow + ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. + ///\pre The starting flow must be a + /// - constant zero flow if \c fe is \c ZERO_FLOW, + /// - an arbitary flow if \c fe is \c GEN_FLOW, + /// - an arbitary preflow if \c fe is \c PRE_FLOW. + void run( flowEnum fe=ZERO_FLOW ) { + preflow(fe); + } + + ///Runs a preflow algorithm. + + ///Runs a preflow algorithm. The preflow algorithms provide the + ///fastest way to compute a maximum flow in a directed graph. + ///\pre The starting flow must be a + /// - constant zero flow if \c fe is \c ZERO_FLOW, + /// - an arbitary flow if \c fe is \c GEN_FLOW, + /// - an arbitary preflow if \c fe is \c PRE_FLOW. + void preflow(flowEnum fe) { + preflowPhase1(fe); + preflowPhase2(); + } + // Heuristics: + // 2 phase + // gap + // list 'level_list' on the nodes on level i implemented by hand + // stack 'active' on the active nodes on level i + // runs heuristic 'highest label' for H1*n relabels + // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' + // Parameters H0 and H1 are initialized to 20 and 1. + + ///Runs the first phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs the + ///first phase. After the first phase the maximum flow value and a + ///minimum value cut can already be computed, though a maximum flow + ///is net yet obtained. So after calling this method \ref flowValue + ///and \ref actMinCut gives proper results. + ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not + ///give minimum value cuts unless calling \ref preflowPhase2. + ///\pre The starting flow must be a + /// - constant zero flow if \c fe is \c ZERO_FLOW, + /// - an arbitary flow if \c fe is \c GEN_FLOW, + /// - an arbitary preflow if \c fe is \c PRE_FLOW. + void preflowPhase1( flowEnum fe ); + + ///Runs the second phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs + ///the second phase. After calling \ref preflowPhase1 and then + ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, + ///\ref minMinCut and \ref maxMinCut give proper results. + ///\pre \ref preflowPhase1 must be called before. + void preflowPhase2(); + + /// Starting from a flow, this method searches for an augmenting path + /// according to the Edmonds-Karp algorithm + /// and augments the flow on if any. + /// The return value shows if the augmentation was successful. + bool augmentOnShortestPath(); + + /// Starting from a flow, this method searches for an augmenting blockin + /// flow according to Dinits' algorithm and augments the flow on if any. + /// The blocking flow is computed in a physically constructed + /// residual graph of type \c Mutablegraph. + /// The return value show sif the augmentation was succesful. + template bool augmentOnBlockingFlow(); + + /// The same as \c augmentOnBlockingFlow but the + /// residual graph is not constructed physically. + /// The return value shows if the augmentation was succesful. + bool augmentOnBlockingFlow2(); + + /// Returns the actual flow value. + /// More precisely, it returns the negative excess of s, thus + /// this works also for preflows. + ///Can be called already after \ref preflowPhase1. + + Num flowValue() { + Num a=0; + FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; + FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; + return a; + //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan + } + + ///Returns a minimum value cut after calling \ref preflowPhase1. + + ///After the first phase of the preflow algorithm the maximum flow + ///value and a minimum value cut can already be computed. This + ///method can be called after running \ref preflowPhase1 for + ///obtaining a minimum value cut. + ///\warning: Gives proper result only right after calling \ref + ///preflowPhase1. + ///\todo We have to make some status variable which shows the actual state + /// of the class. This enables us to determine which methods are valid + /// for MinCut computation + template + void actMinCut(_CutMap& M) { + NodeIt v; + for(g->first(v); g->valid(v); g->next(v)) { + if ( level[v] < n ) { + M.set(v,false); + } else { + M.set(v,true); + } + } + } + + ///Returns the inclusionwise minimum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise minimum. It is computed by processing + ///a bfs from the source node \c s in the residual graph. + ///\pre M should be a node map of bools initialized to false. + ///\pre \c flow must be a maximum flow. + template + void minMinCut(_CutMap& M) { + + std::queue queue; + + M.set(s,true); + queue.push(s); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + OutEdgeIt e; + for(g->first(e,w) ; g->valid(e); g->next(e)) { + Node v=g->head(e); + if (!M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, true); + } + } + + InEdgeIt f; + for(g->first(f,w) ; g->valid(f); g->next(f)) { + Node v=g->tail(f); + if (!M[v] && (*flow)[f] > 0 ) { + queue.push(v); + M.set(v, true); + } + } + } + } + + + ///Returns the inclusionwise maximum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise maximum. It is computed by processing a + ///backward bfs from the target node \c t in the residual graph. + ///\pre M should be a node map of bools initialized to false. + ///\pre \c flow must be a maximum flow. + template + void maxMinCut(_CutMap& M) { + + NodeIt v; + for(g->first(v) ; g->valid(v); g->next(v)) { + M.set(v, true); + } + + std::queue queue; + + M.set(t,false); + queue.push(t); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + + InEdgeIt e; + for(g->first(e,w) ; g->valid(e); g->next(e)) { + Node v=g->tail(e); + if (M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, false); + } + } + + OutEdgeIt f; + for(g->first(f,w) ; g->valid(f); g->next(f)) { + Node v=g->head(f); + if (M[v] && (*flow)[f] > 0 ) { + queue.push(v); + M.set(v, false); + } + } + } + } + + + ///Returns a minimum value cut. + + ///Sets \c M to the characteristic vector of a minimum value cut. + ///\pre M should be a node map of bools initialized to false. + ///\pre \c flow must be a maximum flow. + template + void minCut(CutMap& M) { minMinCut(M); } + + ///Resets the source node to \c _s. + + ///Resets the source node to \c _s. + /// + void resetSource(Node _s) { s=_s; } + + + ///Resets the target node to \c _t. + + ///Resets the target node to \c _t. + /// + void resetTarget(Node _t) { t=_t; } + + /// Resets the edge map of the capacities to _cap. + + /// Resets the edge map of the capacities to _cap. + /// + void resetCap(const CapMap& _cap) { capacity=&_cap; } + + /// Resets the edge map of the flows to _flow. + + /// Resets the edge map of the flows to _flow. + /// + void resetFlow(FlowMap& _flow) { flow=&_flow; } + + + private: + + int push(Node w, VecStack& active) { + + int lev=level[w]; + Num exc=excess[w]; + int newlevel=n; //bound on the next level of w + + OutEdgeIt e; + for(g->first(e,w); g->valid(e); g->next(e)) { + + if ( (*flow)[e] >= (*capacity)[e] ) continue; + Node v=g->head(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + int lev_v=level[v]; + active[lev_v].push(v); + } + + Num cap=(*capacity)[e]; + Num flo=(*flow)[e]; + Num remcap=cap-flo; + + if ( remcap >= exc ) { //A nonsaturating push. + + flow->set(e, flo+exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + + } else { //A saturating push. + flow->set(e, cap); + excess.set(v, excess[v]+remcap); + exc-=remcap; + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for out edges wv + + if ( exc > 0 ) { + InEdgeIt e; + for(g->first(e,w); g->valid(e); g->next(e)) { + + if( (*flow)[e] <= 0 ) continue; + Node v=g->tail(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + int lev_v=level[v]; + active[lev_v].push(v); + } + + Num flo=(*flow)[e]; + + if ( flo >= exc ) { //A nonsaturating push. + + flow->set(e, flo-exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + } else { //A saturating push. + + excess.set(v, excess[v]+flo); + exc-=flo; + flow->set(e,0); + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for in edges vw + + } // if w still has excess after the out edge for cycle + + excess.set(w, exc); + + return newlevel; + } + + + void preflowPreproc ( flowEnum fe, VecStack& active, + VecNode& level_list, NNMap& left, NNMap& right ) { + + std::queue bfs_queue; + + switch ( fe ) { + case ZERO_FLOW: + { + //Reverse_bfs from t, to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + } + + //the starting flow + OutEdgeIt e; + for(g->first(e,s); g->valid(e); g->next(e)) + { + Num c=(*capacity)[e]; + if ( c <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + flow->set(e, c); + excess.set(w, excess[w]+c); + } + } + break; + } + + case GEN_FLOW: + case PRE_FLOW: + { + //Reverse_bfs from t in the residual graph, + //to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) { + if ( 0 >= (*flow)[f] ) continue; + Node w=g->head(f); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + } + + + //the starting flow + OutEdgeIt e; + for(g->first(e,s); g->valid(e); g->next(e)) + { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + flow->set(e, (*capacity)[e]); + excess.set(w, excess[w]+rem); + } + } + + InEdgeIt f; + for(g->first(f,s); g->valid(f); g->next(f)) + { + if ( (*flow)[f] <= 0 ) continue; + Node w=g->tail(f); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + excess.set(w, excess[w]+(*flow)[f]); + flow->set(f, 0); + } + } + break; + } //case PRE_FLOW + } + } //preflowPreproc + + + + void relabel(Node w, int newlevel, VecStack& active, + VecNode& level_list, NNMap& left, + NNMap& right, int& b, int& k, bool what_heur ) + { + + Num lev=level[w]; + + Node right_n=right[w]; + Node left_n=left[w]; + + //unlacing starts + if ( g->valid(right_n) ) { + if ( g->valid(left_n) ) { + right.set(left_n, right_n); + left.set(right_n, left_n); + } else { + level_list[lev]=right_n; + left.set(right_n, INVALID); + } + } else { + if ( g->valid(left_n) ) { + right.set(left_n, INVALID); + } else { + level_list[lev]=INVALID; + } + } + //unlacing ends + + if ( !g->valid(level_list[lev]) ) { + + //gapping starts + for (int i=lev; i!=k ; ) { + Node v=level_list[++i]; + while ( g->valid(v) ) { + level.set(v,n); + v=right[v]; + } + level_list[i]=INVALID; + if ( !what_heur ) { + while ( !active[i].empty() ) { + active[i].pop(); //FIXME: ezt szebben kene + } + } + } + + level.set(w,n); + b=lev-1; + k=b; + //gapping ends + + } else { + + if ( newlevel == n ) level.set(w,n); + else { + level.set(w,++newlevel); + active[newlevel].push(w); + if ( what_heur ) b=newlevel; + if ( k < newlevel ) ++k; //now k=newlevel + Node first=level_list[newlevel]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + left.set(w,INVALID); + level_list[newlevel]=w; + } + } + + } //relabel + + + template + class DistanceMap { + protected: + const MapGraphWrapper* g; + typename MapGraphWrapper::template NodeMap dist; + public: + DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } + void set(const typename MapGraphWrapper::Node& n, int a) { + dist.set(n, a); + } + int operator[](const typename MapGraphWrapper::Node& n) + { return dist[n]; } + // int get(const typename MapGraphWrapper::Node& n) const { + // return dist[n]; } + // bool get(const typename MapGraphWrapper::Edge& e) const { + // return (dist.get(g->tail(e))head(e))); } + bool operator[](const typename MapGraphWrapper::Edge& e) const { + return (dist[g->tail(e)]head(e)]); + } + }; + + }; + + + template + void MaxFlow::preflowPhase1( flowEnum fe ) + { + + int heur0=(int)(H0*n); //time while running 'bound decrease' + int heur1=(int)(H1*n); //time while running 'highest label' + int heur=heur1; //starting time interval (#of relabels) + int numrelabel=0; + + bool what_heur=1; + //It is 0 in case 'bound decrease' and 1 in case 'highest label' + + bool end=false; + //Needed for 'bound decrease', true means no active nodes are above bound b. + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecStack active(n); + + NNMap left(*g, INVALID); + NNMap right(*g, INVALID); + VecNode level_list(n,INVALID); + //List of the nodes in level ifirst(v); g->valid(v); g->next(v)) level.set(v,n); + //setting each node to level n + + switch ( fe ) { + case PRE_FLOW: + { + //counting the excess + NodeIt v; + for(g->first(v); g->valid(v); g->next(v)) { + Num exc=0; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; + + excess.set(v,exc); + + //putting the active nodes into the stack + int lev=level[v]; + if ( exc > 0 && lev < n && v != t ) active[lev].push(v); + } + break; + } + case GEN_FLOW: + { + //Counting the excess of t + Num exc=0; + + InEdgeIt e; + for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; + OutEdgeIt f; + for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; + + excess.set(t,exc); + + break; + } + default: + break; + } + + preflowPreproc( fe, active, level_list, left, right ); + //End of preprocessing + + + //Push/relabel on the highest level active nodes. + while ( true ) { + if ( b == 0 ) { + if ( !what_heur && !end && k > 0 ) { + b=k; + end=true; + } else break; + } + + if ( active[b].empty() ) --b; + else { + end=false; + Node w=active[b].top(); + active[b].pop(); + int newlevel=push(w,active); + if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, + left, right, b, k, what_heur); + + ++numrelabel; + if ( numrelabel >= heur ) { + numrelabel=0; + if ( what_heur ) { + what_heur=0; + heur=heur0; + end=false; + } else { + what_heur=1; + heur=heur1; + b=k; + } + } + } + } + } + + + + template + void MaxFlow::preflowPhase2() + { + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecStack active(n); + level.set(s,0); + std::queue bfs_queue; + bfs_queue.push(s); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node u=g->tail(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) active[l].push(u); + } + } + + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) { + if ( 0 >= (*flow)[f] ) continue; + Node u=g->head(f); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) active[l].push(u); + } + } + } + b=n-2; + + while ( true ) { + + if ( b == 0 ) break; + + if ( active[b].empty() ) --b; + else { + Node w=active[b].top(); + active[b].pop(); + int newlevel=push(w,active); + + //relabel + if ( excess[w] > 0 ) { + level.set(w,++newlevel); + active[newlevel].push(w); + b=newlevel; + } + } // if stack[b] is nonempty + } // while(true) + } + + + + template + bool MaxFlow::augmentOnShortestPath() + { + ResGW res_graph(*g, *capacity, *flow); + bool _augment=false; + + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + bfs.pushAndSetReached(s); + + typename ResGW::template NodeMap pred(res_graph); + pred.set(s, INVALID); + + typename ResGW::template NodeMap free(res_graph); + + //searching for augmenting path + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { + Node v=res_graph.tail(e); + Node w=res_graph.head(e); + pred.set(w, e); + if (res_graph.valid(pred[v])) { + free.set(w, std::min(free[v], res_graph.resCap(e))); + } else { + free.set(w, res_graph.resCap(e)); + } + if (res_graph.head(e)==t) { _augment=true; break; } + } + + ++bfs; + } //end of searching augmenting path + + if (_augment) { + Node n=t; + Num augment_value=free[t]; + while (res_graph.valid(pred[n])) { + ResGWEdge e=pred[n]; + res_graph.augment(e, augment_value); + n=res_graph.tail(e); + } + } + + return _augment; + } + + + + + + + + + + template + template + bool MaxFlow::augmentOnBlockingFlow() + { + typedef MutableGraph MG; + bool _augment=false; + + ResGW res_graph(*g, *capacity, *flow); + + //bfs for distances on the residual graph + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + bfs.pushAndSetReached(s); + typename ResGW::template NodeMap + dist(res_graph); //filled up with 0's + + //F will contain the physical copy of the residual graph + //with the set of edges which are on shortest paths + MG F; + typename ResGW::template NodeMap + res_graph_to_F(res_graph); + { + typename ResGW::NodeIt n; + for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { + res_graph_to_F.set(n, F.addNode()); + } + } + + typename MG::Node sF=res_graph_to_F[s]; + typename MG::Node tF=res_graph_to_F[t]; + typename MG::template EdgeMap original_edge(F); + typename MG::template EdgeMap residual_capacity(F); + + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e)) { + if (bfs.isBNodeNewlyReached()) { + dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); + typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); + original_edge.update(); + original_edge.set(f, e); + residual_capacity.update(); + residual_capacity.set(f, res_graph.resCap(e)); + } else { + if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { + typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); + original_edge.update(); + original_edge.set(f, e); + residual_capacity.update(); + residual_capacity.set(f, res_graph.resCap(e)); + } + } + } + ++bfs; + } //computing distances from s in the residual graph + + bool __augment=true; + + while (__augment) { + __augment=false; + //computing blocking flow with dfs + DfsIterator< MG, typename MG::template NodeMap > dfs(F); + typename MG::template NodeMap pred(F); + pred.set(sF, INVALID); + //invalid iterators for sources + + typename MG::template NodeMap free(F); + + dfs.pushAndSetReached(sF); + while (!dfs.finished()) { + ++dfs; + if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { + if (dfs.isBNodeNewlyReached()) { + typename MG::Node v=F.aNode(dfs); + typename MG::Node w=F.bNode(dfs); + pred.set(w, dfs); + if (F.valid(pred[v])) { + free.set(w, std::min(free[v], residual_capacity[dfs])); + } else { + free.set(w, residual_capacity[dfs]); + } + if (w==tF) { + __augment=true; + _augment=true; + break; + } + + } else { + F.erase(/*typename MG::OutEdgeIt*/(dfs)); + } + } + } + + if (__augment) { + typename MG::Node n=tF; + Num augment_value=free[tF]; + while (F.valid(pred[n])) { + typename MG::Edge e=pred[n]; + res_graph.augment(original_edge[e], augment_value); + n=F.tail(e); + if (residual_capacity[e]==augment_value) + F.erase(e); + else + residual_capacity.set(e, residual_capacity[e]-augment_value); + } + } + + } + + return _augment; + } + + + + + + + template + bool MaxFlow::augmentOnBlockingFlow2() + { + bool _augment=false; + + ResGW res_graph(*g, *capacity, *flow); + + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + + bfs.pushAndSetReached(s); + DistanceMap dist(res_graph); + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { + dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); + } + ++bfs; + } //computing distances from s in the residual graph + + //Subgraph containing the edges on some shortest paths + ConstMap true_map(true); + typedef SubGraphWrapper, + DistanceMap > FilterResGW; + FilterResGW filter_res_graph(res_graph, true_map, dist); + + //Subgraph, which is able to delete edges which are already + //met by the dfs + typename FilterResGW::template NodeMap + first_out_edges(filter_res_graph); + typename FilterResGW::NodeIt v; + for(filter_res_graph.first(v); filter_res_graph.valid(v); + filter_res_graph.next(v)) + { + typename FilterResGW::OutEdgeIt e; + filter_res_graph.first(e, v); + first_out_edges.set(v, e); + } + typedef ErasingFirstGraphWrapper > ErasingResGW; + ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); + + bool __augment=true; + + while (__augment) { + + __augment=false; + //computing blocking flow with dfs + DfsIterator< ErasingResGW, + typename ErasingResGW::template NodeMap > + dfs(erasing_res_graph); + typename ErasingResGW:: + template NodeMap + pred(erasing_res_graph); + pred.set(s, INVALID); + //invalid iterators for sources + + typename ErasingResGW::template NodeMap + free1(erasing_res_graph); + + dfs.pushAndSetReached( + typename ErasingResGW::Node( + typename FilterResGW::Node( + typename ResGW::Node(s) + ) + ) + ); + while (!dfs.finished()) { + ++dfs; + if (erasing_res_graph.valid( + typename ErasingResGW::OutEdgeIt(dfs))) + { + if (dfs.isBNodeNewlyReached()) { + + typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); + typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); + + pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); + if (erasing_res_graph.valid(pred[v])) { + free1.set(w, std::min(free1[v], res_graph.resCap( + typename ErasingResGW::OutEdgeIt(dfs)))); + } else { + free1.set(w, res_graph.resCap( + typename ErasingResGW::OutEdgeIt(dfs))); + } + + if (w==t) { + __augment=true; + _augment=true; + break; + } + } else { + erasing_res_graph.erase(dfs); + } + } + } + + if (__augment) { + typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); + // typename ResGW::NodeMap a(res_graph); + // typename ResGW::Node b; + // Num j=a[b]; + // typename FilterResGW::NodeMap a1(filter_res_graph); + // typename FilterResGW::Node b1; + // Num j1=a1[b1]; + // typename ErasingResGW::NodeMap a2(erasing_res_graph); + // typename ErasingResGW::Node b2; + // Num j2=a2[b2]; + Num augment_value=free1[n]; + while (erasing_res_graph.valid(pred[n])) { + typename ErasingResGW::OutEdgeIt e=pred[n]; + res_graph.augment(e, augment_value); + n=erasing_res_graph.tail(e); + if (res_graph.resCap(e)==0) + erasing_res_graph.erase(e); + } + } + + } //while (__augment) + + return _augment; + } + + + + /// @} + +} //END OF NAMESPACE HUGO + +#endif //HUGO_MAX_FLOW_H + + + +