# HG changeset patch # User jacint # Date 1105641890 0 # Node ID 784a8bc073168e214faf0a27fc19eca4ec51171b # Parent 67a115cdade4475f67f54795a5cd40f6c45e7840 Edmonds matching alg diff -r 67a115cdade4 -r 784a8bc07316 src/lemon/max_matching.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/lemon/max_matching.h Thu Jan 13 18:44:50 2005 +0000 @@ -0,0 +1,572 @@ +/* -*- C++ -*- + * src/lemon/max_matching.h - Part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Combinatorial Optimization Research Group, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_MAX_MATCHING_H +#define LEMON_MAX_MATCHING_H + +#include +#include +#include +#include + +///\ingroup galgs +///\file +///\brief Maximum matching algorithm. + +namespace lemon { + + /// \addtogroup galgs + /// @{ + + ///Edmonds' alternating forest maximum matching algorithm. + + ///This class provides Edmonds' alternating forest matching + ///algorithm. The starting matching (if any) can be passed to the + ///algorithm using read-in functions \ref readNMapNode, \ref + ///readNMapEdge or \ref readEMapBool depending on the container. The + ///resulting maximum matching can be attained by write-out functions + ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool + ///depending on the preferred container. + /// + ///The dual side of a matching is a map of the nodes to + ///MaxMatching::pos_enum, having values D, A and C showing the + ///Gallai-Edmonds decomposition of the graph. The nodes in D induce + ///a graph with factor-critical components, the nodes in A form the + ///barrier, and the nodes in C induce a graph having a perfect + ///matching. This decomposition can be attained by calling \ref + ///writePos after running the algorithm. Before subsequent runs, + ///the function \ref resetPos() must be called. + /// + ///\param Graph The undirected graph type the algorithm runs on. + /// + ///\author Jacint Szabo + template + class MaxMatching { + typedef typename Graph::Node Node; + typedef typename Graph::Edge Edge; + typedef typename Graph::UndirEdgeIt UndirEdgeIt; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::IncEdgeIt IncEdgeIt; + + typedef UnionFindEnum UFE; + + public: + + ///Indicates the Gallai-Edmonds decomposition of the graph. + + ///Indicates the Gallai-Edmonds decomposition of the graph, which + ///shows an upper bound on the size of a maximum matching. The + ///nodes with pos_enum \c D induce a graph with factor-critical + ///components, the nodes in \c A form the canonical barrier, and the + ///nodes in \c C induce a graph having a perfect matching. + enum pos_enum { + D=0, + A=1, + C=2 + }; + + private: + + static const int HEUR_density=2; + const Graph& g; + typename Graph::template NodeMap mate; + typename Graph::template NodeMap position; + + public: + + MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {} + + ///Runs Edmonds' algorithm. + + ///Runs Edmonds' algorithm for sparse graphs (number of edges < + ///2*number of nodes), and a heuristical Edmonds' algorithm with a + ///heuristic of postponing shrinks for dense graphs. \pre Before + ///the subsequent calls \ref resetPos must be called. + inline void run(); + + ///Runs Edmonds' algorithm. + + ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs + ///Edmonds' algorithm with a heuristic of postponing shrinks, + ///giving a faster algorithm for dense graphs. \pre Before the + ///subsequent calls \ref resetPos must be called. + void runEdmonds( int heur ); + + ///Finds a greedy matching starting from the actual matching. + + ///Starting form the actual matching stored, it finds a maximal + ///greedy matching. + void greedyMatching(); + + ///Returns the size of the actual matching stored. + + ///Returns the size of the actual matching stored. After \ref + ///run() it returns the size of a maximum matching in the graph. + int size() const; + + ///Resets the map storing the Gallai-Edmonds decomposition. + + ///Resets the map storing the Gallai-Edmonds decomposition of the + ///graph, making it possible to run the algorithm. Must be called + ///before all runs of the Edmonds algorithm, except for the first + ///run. + void resetPos(); + + ///Resets the actual matching to the empty matching. + + ///Resets the actual matching to the empty matching. + /// + void resetMatching(); + + ///Reads a matching from a \c Node map of \c Nodes. + + ///Reads a matching from a \c Node map of \c Nodes. This map must be \e + ///symmetric, i.e. if \c map[u]==v then \c map[v]==u must hold, and + ///\c uv will be an edge of the matching. + template + void readNMapNode(NMapN& map) { + for(NodeIt v(g); v!=INVALID; ++v) { + mate.set(v,map[v]); + } + } + + ///Writes the stored matching to a \c Node map of \c Nodes. + + ///Writes the stored matching to a \c Node map of \c Nodes. The + ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c + ///map[v]==u will hold, and now \c uv is an edge of the matching. + template + void writeNMapNode (NMapN& map) const { + for(NodeIt v(g); v!=INVALID; ++v) { + map.set(v,mate[v]); + } + } + + ///Reads a matching from a \c Node map of \c Edges. + + ///Reads a matching from a \c Node map of incident \c Edges. This + ///map must have the property that if \c G.target(map[u])==v then \c + ///G.target(map[v])==u must hold, and now this edge is an edge of + ///the matching. + template + void readNMapEdge(NMapE& map) { + for(NodeIt v(g); v!=INVALID; ++v) { + Edge e=map[v]; + if ( g.valid(e) ) + g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); + } + } + + ///Writes the matching stored to a \c Node map of \c Edges. + + ///Writes the stored matching to a \c Node map of incident \c + ///Edges. This map will have the property that if \c + ///g.target(map[u])==v then \c g.target(map[v])==u holds, and now this + ///edge is an edge of the matching. + template + void writeNMapEdge (NMapE& map) const { + typename Graph::template NodeMap todo(g,true); + for(NodeIt v(g); v!=INVALID; ++v) { + if ( todo[v] && mate[v]!=INVALID ) { + Node u=mate[v]; + for(IncEdgeIt e(g,v); e!=INVALID; ++e) { + if ( g.target(e) == u ) { + map.set(u,e); + map.set(v,e); + todo.set(u,false); + todo.set(v,false); + break; + } + } + } + } + } + + + ///Reads a matching from an \c Edge map of \c bools. + + ///Reads a matching from an \c Edge map of \c bools. This map must + ///have the property that there are no two adjacent edges \c e, \c + ///f with \c map[e]==map[f]==true. The edges \c e with \c + ///map[e]==true form the matching. + template + void readEMapBool(EMapB& map) { + for(UndirEdgeIt e(g); e!=INVALID; ++e) { + if ( map[e] ) { + Node u=g.source(e); + Node v=g.target(e); + mate.set(u,v); + mate.set(v,u); + } + } + } + + + ///Writes the matching stored to an \c Edge map of \c bools. + + ///Writes the matching stored to an \c Edge map of \c bools. This + ///map will have the property that there are no two adjacent edges + ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c + ///map[e]==true form the matching. + template + void writeEMapBool (EMapB& map) const { + for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false); + + typename Graph::template NodeMap todo(g,true); + for(NodeIt v(g); v!=INVALID; ++v) { + if ( todo[v] && mate[v]!=INVALID ) { + Node u=mate[v]; + for(IncEdgeIt e(g,v); e!=INVALID; ++e) { + if ( g.target(e) == u ) { + map.set(e,true); + todo.set(u,false); + todo.set(v,false); + break; + } + } + } + } + } + + + ///Writes the canonical decomposition of the graph after running + ///the algorithm. + + ///After calling any run methods of the class, and before calling + ///\ref resetPos(), it writes the Gallai-Edmonds canonical + ///decomposition of the graph. \c map must be a node map + ///of \ref pos_enum 's. + template + void writePos (NMapEnum& map) const { + for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]); + } + + private: + + void lateShrink(Node v, typename Graph::template NodeMap& ear, + UFE& blossom, UFE& tree); + + void normShrink(Node v, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree); + + bool noShrinkStep(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q); + + void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q); + + void augment(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree); + + }; + + + // ********************************************************************** + // IMPLEMENTATIONS + // ********************************************************************** + + + template + void MaxMatching::run() { + if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) { + greedyMatching(); + runEdmonds(0); + } else runEdmonds(1); + } + + + template + void MaxMatching::runEdmonds( int heur=1 ) { + + typename Graph::template NodeMap ear(g,INVALID); + //undefined for the base nodes of the blossoms (i.e. for the + //representative elements of UFE blossom) and for the nodes in C + + typename UFE::MapType blossom_base(g); + UFE blossom(blossom_base); + typename UFE::MapType tree_base(g); + UFE tree(tree_base); + + for(NodeIt v(g); v!=INVALID; ++v) { + if ( position[v]==C && mate[v]==INVALID ) { + blossom.insert(v); + tree.insert(v); + position.set(v,D); + if ( heur == 1 ) lateShrink( v, ear, blossom, tree ); + else normShrink( v, ear, blossom, tree ); + } + } + } + + + template + void MaxMatching::lateShrink(Node v, typename Graph::template NodeMap& ear, + UFE& blossom, UFE& tree) { + + std::queue Q; //queue of the totally unscanned nodes + Q.push(v); + std::queue R; + //queue of the nodes which must be scanned for a possible shrink + + while ( !Q.empty() ) { + Node x=Q.front(); + Q.pop(); + if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return; + else R.push(x); + } + + while ( !R.empty() ) { + Node x=R.front(); + R.pop(); + + for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) { + Node y=g.target(e); + + if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { + //x and y must be in the same tree + + typename Graph::template NodeMap path(g,false); + + Node b=blossom.find(x); + path.set(b,true); + b=mate[b]; + while ( b!=INVALID ) { + b=blossom.find(ear[b]); + path.set(b,true); + b=mate[b]; + } //going till the root + + Node top=y; + Node middle=blossom.find(top); + Node bottom=x; + while ( !path[middle] ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + Node base=middle; + top=x; + middle=blossom.find(top); + bottom=y; + Node blossom_base=blossom.find(base); + while ( middle!=blossom_base ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + blossom.makeRep(base); + } // if shrink is needed + + while ( !Q.empty() ) { + Node x=Q.front(); + Q.pop(); + if ( noShrinkStep(x, ear, blossom, tree, Q) ) return; + else R.push(x); + } + } //for e + } // while ( !R.empty() ) + } + + + template + void MaxMatching::normShrink(Node v, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree) { + + std::queue Q; //queue of the unscanned nodes + Q.push(v); + while ( !Q.empty() ) { + + Node x=Q.front(); + Q.pop(); + + for( IncEdgeIt e(g,x); e!=INVALID; ++e ) { + Node y=g.target(e); + + switch ( position[y] ) { + case D: //x and y must be in the same tree + + if ( blossom.find(x) != blossom.find(y) ) { //shrink + typename Graph::template NodeMap path(g,false); + + Node b=blossom.find(x); + path.set(b,true); + b=mate[b]; + while ( b!=INVALID ) { + b=blossom.find(ear[b]); + path.set(b,true); + b=mate[b]; + } //going till the root + + Node top=y; + Node middle=blossom.find(top); + Node bottom=x; + while ( !path[middle] ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + Node base=middle; + top=x; + middle=blossom.find(top); + bottom=y; + Node blossom_base=blossom.find(base); + while ( middle!=blossom_base ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + blossom.makeRep(base); + } + break; + case C: + if ( mate[y]!=INVALID ) { //grow + + ear.set(y,x); + Node w=mate[y]; + blossom.insert(w); + position.set(y,A); + position.set(w,D); + tree.insert(y); + tree.insert(w); + tree.join(y,blossom.find(x)); + tree.join(w,y); + Q.push(w); + } else { //augment + augment(x, ear, blossom, tree); + mate.set(x,y); + mate.set(y,x); + return; + } //if + break; + default: break; + } + } + } + } + + template + void MaxMatching::greedyMatching() { + for(NodeIt v(g); v!=INVALID; ++v) + if ( mate[v]==INVALID ) { + for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) { + Node y=g.target(e); + if ( mate[y]==INVALID && y!=v ) { + mate.set(v,y); + mate.set(y,v); + break; + } + } + } + } + + template + int MaxMatching::size() const { + int s=0; + for(NodeIt v(g); v!=INVALID; ++v) { + if ( mate[v]!=INVALID ) { + ++s; + } + } + return (int)s/2; + } + + template + void MaxMatching::resetPos() { + for(NodeIt v(g); v!=INVALID; ++v) + position.set(v,C); + } + + template + void MaxMatching::resetMatching() { + for(NodeIt v(g); v!=INVALID; ++v) + mate.set(v,INVALID); + } + + template + bool MaxMatching::noShrinkStep(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q) { + for( IncEdgeIt e(g,x); e!= INVALID; ++e ) { + Node y=g.target(e); + + if ( position[y]==C ) { + if ( mate[y]!=INVALID ) { //grow + ear.set(y,x); + Node w=mate[y]; + blossom.insert(w); + position.set(y,A); + position.set(w,D); + tree.insert(y); + tree.insert(w); + tree.join(y,blossom.find(x)); + tree.join(w,y); + Q.push(w); + } else { //augment + augment(x, ear, blossom, tree); + mate.set(x,y); + mate.set(y,x); + return true; + } + } + } + return false; + } + + template + void MaxMatching::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q) { + ear.set(top,bottom); + Node t=top; + while ( t!=middle ) { + Node u=mate[t]; + t=ear[u]; + ear.set(t,u); + } + bottom=mate[middle]; + position.set(bottom,D); + Q.push(bottom); + top=ear[bottom]; + Node oldmiddle=middle; + middle=blossom.find(top); + tree.erase(bottom); + tree.erase(oldmiddle); + blossom.insert(bottom); + blossom.join(bottom, oldmiddle); + blossom.join(top, oldmiddle); + } + + template + void MaxMatching::augment(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree) { + Node v=mate[x]; + while ( v!=INVALID ) { + + Node u=ear[v]; + mate.set(v,u); + Node tmp=v; + v=mate[u]; + mate.set(u,tmp); + } + typename UFE::ItemIt it; + for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) { + if ( position[it] == D ) { + typename UFE::ItemIt b_it; + for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) { + position.set( b_it ,C); + } + blossom.eraseClass(it); + } else position.set( it ,C); + } + tree.eraseClass(x); + + } + + /// @} + +} //END OF NAMESPACE LEMON + +#endif //EDMONDS_H