# HG changeset patch # User marci # Date 1083255961 0 # Node ID 8c74de352f80a76d10d83d3b366fce3a2ae4be18 # Parent 02b8ddcb207ae272cb538bd4a17a104e0e03e895 preflow.f -> max_flow.h diff -r 02b8ddcb207a -r 8c74de352f80 src/work/jacint/max_flow.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/max_flow.h Thu Apr 29 16:26:01 2004 +0000 @@ -0,0 +1,1016 @@ +// -*- C++ -*- + +/* +Heuristics: + 2 phase + gap + list 'level_list' on the nodes on level i implemented by hand + stack 'active' on the active nodes on level i + runs heuristic 'highest label' for H1*n relabels + runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' + +Parameters H0 and H1 are initialized to 20 and 1. + +Constructors: + +Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if + FlowMap is not constant zero, and should be true if it is + +Members: + +void run() + +Num flowValue() : returns the value of a maximum flow + +void minMinCut(CutMap& M) : sets M to the characteristic vector of the + minimum min cut. M should be a map of bools initialized to false. ??Is it OK? + +void maxMinCut(CutMap& M) : sets M to the characteristic vector of the + maximum min cut. M should be a map of bools initialized to false. + +void minCut(CutMap& M) : sets M to the characteristic vector of + a min cut. M should be a map of bools initialized to false. + +*/ + +#ifndef HUGO_PREFLOW_H +#define HUGO_PREFLOW_H + +#define H0 20 +#define H1 1 + +#include +#include +#include + +#include +#include +#include +#include +#include + + +namespace hugo { + + template , + typename FlowMap=typename Graph::template EdgeMap > + class MaxFlow { + + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + typedef typename std::vector > VecStack; + typedef typename Graph::template NodeMap NNMap; + typedef typename std::vector VecNode; + + const Graph* g; + Node s; + Node t; + const CapMap* capacity; + FlowMap* flow; + int n; //the number of nodes of G + typedef ResGraphWrapper ResGW; + typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; + typedef typename ResGW::Edge ResGWEdge; + //typedef typename ResGW::template NodeMap ReachedMap; + typedef typename Graph::template NodeMap ReachedMap; + ReachedMap level; + //level works as a bool map in augmenting path algorithms + //and is used by bfs for storing reached information. + //In preflow, it shows levels of nodes. + //typename Graph::template NodeMap level; + typename Graph::template NodeMap excess; + + public: + + enum flowEnum{ + ZERO_FLOW=0, + GEN_FLOW=1, + PREFLOW=2 + }; + + MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, + FlowMap& _flow) : + g(&_G), s(_s), t(_t), capacity(&_capacity), + flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} + + void run() { + preflow( ZERO_FLOW ); + } + + void preflow( flowEnum fe ) { + preflowPhase0(fe); + preflowPhase1(); + } + + void preflowPhase0( flowEnum fe ); + + void preflowPhase1(); + + bool augmentOnShortestPath(); + + template bool augmentOnBlockingFlow(); + + bool augmentOnBlockingFlow2(); + + /// Returns the actual flow value. + /// More precisely, it returns the negative excess of s, thus + /// this works also for preflows. + Num flowValue() { + Num a=0; + FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; + FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; + return a; + } + + //should be used only between preflowPhase0 and preflowPhase1 + template + void actMinCut(_CutMap& M) { + NodeIt v; + for(g->first(v); g->valid(v); g->next(v)) + if ( level[v] < n ) { + M.set(v,false); + } else { + M.set(v,true); + } + } + + + + /* + Returns the minimum min cut, by a bfs from s in the residual graph. + */ + template + void minMinCut(_CutMap& M) { + + std::queue queue; + + M.set(s,true); + queue.push(s); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + OutEdgeIt e; + for(g->first(e,w) ; g->valid(e); g->next(e)) { + Node v=g->head(e); + if (!M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, true); + } + } + + InEdgeIt f; + for(g->first(f,w) ; g->valid(f); g->next(f)) { + Node v=g->tail(f); + if (!M[v] && (*flow)[f] > 0 ) { + queue.push(v); + M.set(v, true); + } + } + } + } + + + + /* + Returns the maximum min cut, by a reverse bfs + from t in the residual graph. + */ + + template + void maxMinCut(_CutMap& M) { + + NodeIt v; + for(g->first(v) ; g->valid(v); g->next(v)) { + M.set(v, true); + } + + std::queue queue; + + M.set(t,false); + queue.push(t); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + + InEdgeIt e; + for(g->first(e,w) ; g->valid(e); g->next(e)) { + Node v=g->tail(e); + if (M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, false); + } + } + + OutEdgeIt f; + for(g->first(f,w) ; g->valid(f); g->next(f)) { + Node v=g->head(f); + if (M[v] && (*flow)[f] > 0 ) { + queue.push(v); + M.set(v, false); + } + } + } + } + + + template + void minCut(CutMap& M) { + minMinCut(M); + } + + void resetTarget(Node _t) {t=_t;} + void resetSource(Node _s) {s=_s;} + + void resetCap(const CapMap& _cap) { + capacity=&_cap; + } + + void resetFlow(FlowMap& _flow) { + flow=&_flow; + } + + + private: + + int push(Node w, VecStack& active) { + + int lev=level[w]; + Num exc=excess[w]; + int newlevel=n; //bound on the next level of w + + OutEdgeIt e; + for(g->first(e,w); g->valid(e); g->next(e)) { + + if ( (*flow)[e] >= (*capacity)[e] ) continue; + Node v=g->head(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + int lev_v=level[v]; + active[lev_v].push(v); + } + + Num cap=(*capacity)[e]; + Num flo=(*flow)[e]; + Num remcap=cap-flo; + + if ( remcap >= exc ) { //A nonsaturating push. + + flow->set(e, flo+exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + + } else { //A saturating push. + flow->set(e, cap); + excess.set(v, excess[v]+remcap); + exc-=remcap; + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for out edges wv + + if ( exc > 0 ) { + InEdgeIt e; + for(g->first(e,w); g->valid(e); g->next(e)) { + + if( (*flow)[e] <= 0 ) continue; + Node v=g->tail(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + int lev_v=level[v]; + active[lev_v].push(v); + } + + Num flo=(*flow)[e]; + + if ( flo >= exc ) { //A nonsaturating push. + + flow->set(e, flo-exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + } else { //A saturating push. + + excess.set(v, excess[v]+flo); + exc-=flo; + flow->set(e,0); + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for in edges vw + + } // if w still has excess after the out edge for cycle + + excess.set(w, exc); + + return newlevel; + } + + + void preflowPreproc ( flowEnum fe, VecStack& active, + VecNode& level_list, NNMap& left, NNMap& right ) { + + std::queue bfs_queue; + + switch ( fe ) { + case ZERO_FLOW: + { + //Reverse_bfs from t, to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + } + + //the starting flow + OutEdgeIt e; + for(g->first(e,s); g->valid(e); g->next(e)) + { + Num c=(*capacity)[e]; + if ( c <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + flow->set(e, c); + excess.set(w, excess[w]+c); + } + } + break; + } + + case GEN_FLOW: + case PREFLOW: + { + //Reverse_bfs from t in the residual graph, + //to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) { + if ( 0 >= (*flow)[f] ) continue; + Node w=g->head(f); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node first=level_list[l]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + level_list[l]=w; + level.set(w, l); + } + } + } + + + //the starting flow + OutEdgeIt e; + for(g->first(e,s); g->valid(e); g->next(e)) + { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + flow->set(e, (*capacity)[e]); + excess.set(w, excess[w]+rem); + } + } + + InEdgeIt f; + for(g->first(f,s); g->valid(f); g->next(f)) + { + if ( (*flow)[f] <= 0 ) continue; + Node w=g->tail(f); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); + excess.set(w, excess[w]+(*flow)[f]); + flow->set(f, 0); + } + } + break; + } //case PREFLOW + } + } //preflowPreproc + + + + void relabel(Node w, int newlevel, VecStack& active, + VecNode& level_list, NNMap& left, + NNMap& right, int& b, int& k, bool what_heur ) + { + + Num lev=level[w]; + + Node right_n=right[w]; + Node left_n=left[w]; + + //unlacing starts + if ( g->valid(right_n) ) { + if ( g->valid(left_n) ) { + right.set(left_n, right_n); + left.set(right_n, left_n); + } else { + level_list[lev]=right_n; + left.set(right_n, INVALID); + } + } else { + if ( g->valid(left_n) ) { + right.set(left_n, INVALID); + } else { + level_list[lev]=INVALID; + } + } + //unlacing ends + + if ( !g->valid(level_list[lev]) ) { + + //gapping starts + for (int i=lev; i!=k ; ) { + Node v=level_list[++i]; + while ( g->valid(v) ) { + level.set(v,n); + v=right[v]; + } + level_list[i]=INVALID; + if ( !what_heur ) { + while ( !active[i].empty() ) { + active[i].pop(); //FIXME: ezt szebben kene + } + } + } + + level.set(w,n); + b=lev-1; + k=b; + //gapping ends + + } else { + + if ( newlevel == n ) level.set(w,n); + else { + level.set(w,++newlevel); + active[newlevel].push(w); + if ( what_heur ) b=newlevel; + if ( k < newlevel ) ++k; //now k=newlevel + Node first=level_list[newlevel]; + if ( g->valid(first) ) left.set(first,w); + right.set(w,first); + left.set(w,INVALID); + level_list[newlevel]=w; + } + } + + } //relabel + + + template + class DistanceMap { + protected: + const MapGraphWrapper* g; + typename MapGraphWrapper::template NodeMap dist; + public: + DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } + void set(const typename MapGraphWrapper::Node& n, int a) { + dist.set(n, a); + } + int operator[](const typename MapGraphWrapper::Node& n) + { return dist[n]; } +// int get(const typename MapGraphWrapper::Node& n) const { +// return dist[n]; } +// bool get(const typename MapGraphWrapper::Edge& e) const { +// return (dist.get(g->tail(e))head(e))); } + bool operator[](const typename MapGraphWrapper::Edge& e) const { + return (dist[g->tail(e)]head(e)]); + } + }; + + }; + + + template + void MaxFlow::preflowPhase0( flowEnum fe ) + { + + int heur0=(int)(H0*n); //time while running 'bound decrease' + int heur1=(int)(H1*n); //time while running 'highest label' + int heur=heur1; //starting time interval (#of relabels) + int numrelabel=0; + + bool what_heur=1; + //It is 0 in case 'bound decrease' and 1 in case 'highest label' + + bool end=false; + //Needed for 'bound decrease', true means no active nodes are above bound b. + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecStack active(n); + + NNMap left(*g, INVALID); + NNMap right(*g, INVALID); + VecNode level_list(n,INVALID); + //List of the nodes in level ifirst(v); g->valid(v); g->next(v)) level.set(v,n); + //setting each node to level n + + switch ( fe ) { + case PREFLOW: + { + //counting the excess + NodeIt v; + for(g->first(v); g->valid(v); g->next(v)) { + Num exc=0; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; + + excess.set(v,exc); + + //putting the active nodes into the stack + int lev=level[v]; + if ( exc > 0 && lev < n && v != t ) active[lev].push(v); + } + break; + } + case GEN_FLOW: + { + //Counting the excess of t + Num exc=0; + + InEdgeIt e; + for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; + OutEdgeIt f; + for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; + + excess.set(t,exc); + + break; + } + default: + break; + } + + preflowPreproc( fe, active, level_list, left, right ); + //End of preprocessing + + + //Push/relabel on the highest level active nodes. + while ( true ) { + if ( b == 0 ) { + if ( !what_heur && !end && k > 0 ) { + b=k; + end=true; + } else break; + } + + if ( active[b].empty() ) --b; + else { + end=false; + Node w=active[b].top(); + active[b].pop(); + int newlevel=push(w,active); + if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, + left, right, b, k, what_heur); + + ++numrelabel; + if ( numrelabel >= heur ) { + numrelabel=0; + if ( what_heur ) { + what_heur=0; + heur=heur0; + end=false; + } else { + what_heur=1; + heur=heur1; + b=k; + } + } + } + } + } + + + + template + void MaxFlow::preflowPhase1() + { + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecStack active(n); + level.set(s,0); + std::queue bfs_queue; + bfs_queue.push(s); + + while (!bfs_queue.empty()) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + InEdgeIt e; + for(g->first(e,v); g->valid(e); g->next(e)) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node u=g->tail(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) active[l].push(u); + } + } + + OutEdgeIt f; + for(g->first(f,v); g->valid(f); g->next(f)) { + if ( 0 >= (*flow)[f] ) continue; + Node u=g->head(f); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) active[l].push(u); + } + } + } + b=n-2; + + while ( true ) { + + if ( b == 0 ) break; + + if ( active[b].empty() ) --b; + else { + Node w=active[b].top(); + active[b].pop(); + int newlevel=push(w,active); + + //relabel + if ( excess[w] > 0 ) { + level.set(w,++newlevel); + active[newlevel].push(w); + b=newlevel; + } + } // if stack[b] is nonempty + } // while(true) + } + + + + template + bool MaxFlow::augmentOnShortestPath() + { + ResGW res_graph(*g, *capacity, *flow); + bool _augment=false; + + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + bfs.pushAndSetReached(s); + + typename ResGW::template NodeMap pred(res_graph); + pred.set(s, INVALID); + + typename ResGW::template NodeMap free(res_graph); + + //searching for augmenting path + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { + Node v=res_graph.tail(e); + Node w=res_graph.head(e); + pred.set(w, e); + if (res_graph.valid(pred[v])) { + free.set(w, std::min(free[v], res_graph.resCap(e))); + } else { + free.set(w, res_graph.resCap(e)); + } + if (res_graph.head(e)==t) { _augment=true; break; } + } + + ++bfs; + } //end of searching augmenting path + + if (_augment) { + Node n=t; + Num augment_value=free[t]; + while (res_graph.valid(pred[n])) { + ResGWEdge e=pred[n]; + res_graph.augment(e, augment_value); + n=res_graph.tail(e); + } + } + + return _augment; + } + + + + + + + + + + template + template + bool MaxFlow::augmentOnBlockingFlow() + { + typedef MutableGraph MG; + bool _augment=false; + + ResGW res_graph(*g, *capacity, *flow); + + //bfs for distances on the residual graph + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + bfs.pushAndSetReached(s); + typename ResGW::template NodeMap + dist(res_graph); //filled up with 0's + + //F will contain the physical copy of the residual graph + //with the set of edges which are on shortest paths + MG F; + typename ResGW::template NodeMap + res_graph_to_F(res_graph); + { + typename ResGW::NodeIt n; + for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { + res_graph_to_F.set(n, F.addNode()); + } + } + + typename MG::Node sF=res_graph_to_F[s]; + typename MG::Node tF=res_graph_to_F[t]; + typename MG::template EdgeMap original_edge(F); + typename MG::template EdgeMap residual_capacity(F); + + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e)) { + if (bfs.isBNodeNewlyReached()) { + dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); + typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); + original_edge.update(); + original_edge.set(f, e); + residual_capacity.update(); + residual_capacity.set(f, res_graph.resCap(e)); + } else { + if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { + typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); + original_edge.update(); + original_edge.set(f, e); + residual_capacity.update(); + residual_capacity.set(f, res_graph.resCap(e)); + } + } + } + ++bfs; + } //computing distances from s in the residual graph + + bool __augment=true; + + while (__augment) { + __augment=false; + //computing blocking flow with dfs + DfsIterator< MG, typename MG::template NodeMap > dfs(F); + typename MG::template NodeMap pred(F); + pred.set(sF, INVALID); + //invalid iterators for sources + + typename MG::template NodeMap free(F); + + dfs.pushAndSetReached(sF); + while (!dfs.finished()) { + ++dfs; + if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { + if (dfs.isBNodeNewlyReached()) { + typename MG::Node v=F.aNode(dfs); + typename MG::Node w=F.bNode(dfs); + pred.set(w, dfs); + if (F.valid(pred[v])) { + free.set(w, std::min(free[v], residual_capacity[dfs])); + } else { + free.set(w, residual_capacity[dfs]); + } + if (w==tF) { + __augment=true; + _augment=true; + break; + } + + } else { + F.erase(/*typename MG::OutEdgeIt*/(dfs)); + } + } + } + + if (__augment) { + typename MG::Node n=tF; + Num augment_value=free[tF]; + while (F.valid(pred[n])) { + typename MG::Edge e=pred[n]; + res_graph.augment(original_edge[e], augment_value); + n=F.tail(e); + if (residual_capacity[e]==augment_value) + F.erase(e); + else + residual_capacity.set(e, residual_capacity[e]-augment_value); + } + } + + } + + return _augment; + } + + + + + + + template + bool MaxFlow::augmentOnBlockingFlow2() + { + bool _augment=false; + + ResGW res_graph(*g, *capacity, *flow); + + //ReachedMap level(res_graph); + FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); + BfsIterator bfs(res_graph, level); + + bfs.pushAndSetReached(s); + DistanceMap dist(res_graph); + while ( !bfs.finished() ) { + ResGWOutEdgeIt e=bfs; + if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { + dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); + } + ++bfs; + } //computing distances from s in the residual graph + + //Subgraph containing the edges on some shortest paths + ConstMap true_map(true); + typedef SubGraphWrapper, + DistanceMap > FilterResGW; + FilterResGW filter_res_graph(res_graph, true_map, dist); + + //Subgraph, which is able to delete edges which are already + //met by the dfs + typename FilterResGW::template NodeMap + first_out_edges(filter_res_graph); + typename FilterResGW::NodeIt v; + for(filter_res_graph.first(v); filter_res_graph.valid(v); + filter_res_graph.next(v)) + { + typename FilterResGW::OutEdgeIt e; + filter_res_graph.first(e, v); + first_out_edges.set(v, e); + } + typedef ErasingFirstGraphWrapper > ErasingResGW; + ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); + + bool __augment=true; + + while (__augment) { + + __augment=false; + //computing blocking flow with dfs + DfsIterator< ErasingResGW, + typename ErasingResGW::template NodeMap > + dfs(erasing_res_graph); + typename ErasingResGW:: + template NodeMap + pred(erasing_res_graph); + pred.set(s, INVALID); + //invalid iterators for sources + + typename ErasingResGW::template NodeMap + free1(erasing_res_graph); + + dfs.pushAndSetReached( + typename ErasingResGW::Node( + typename FilterResGW::Node( + typename ResGW::Node(s) + ) + ) + ); + while (!dfs.finished()) { + ++dfs; + if (erasing_res_graph.valid( + typename ErasingResGW::OutEdgeIt(dfs))) + { + if (dfs.isBNodeNewlyReached()) { + + typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); + typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); + + pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); + if (erasing_res_graph.valid(pred[v])) { + free1.set(w, std::min(free1[v], res_graph.resCap( + typename ErasingResGW::OutEdgeIt(dfs)))); + } else { + free1.set(w, res_graph.resCap( + typename ErasingResGW::OutEdgeIt(dfs))); + } + + if (w==t) { + __augment=true; + _augment=true; + break; + } + } else { + erasing_res_graph.erase(dfs); + } + } + } + + if (__augment) { + typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); +// typename ResGW::NodeMap a(res_graph); +// typename ResGW::Node b; +// Num j=a[b]; +// typename FilterResGW::NodeMap a1(filter_res_graph); +// typename FilterResGW::Node b1; +// Num j1=a1[b1]; +// typename ErasingResGW::NodeMap a2(erasing_res_graph); +// typename ErasingResGW::Node b2; +// Num j2=a2[b2]; + Num augment_value=free1[n]; + while (erasing_res_graph.valid(pred[n])) { + typename ErasingResGW::OutEdgeIt e=pred[n]; + res_graph.augment(e, augment_value); + n=erasing_res_graph.tail(e); + if (res_graph.resCap(e)==0) + erasing_res_graph.erase(e); + } + } + + } //while (__augment) + + return _augment; + } + + + + +} //namespace hugo + +#endif //HUGO_PREFLOW_H + + + + diff -r 02b8ddcb207a -r 8c74de352f80 src/work/jacint/preflow.h --- a/src/work/jacint/preflow.h Thu Apr 29 16:26:01 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1016 +0,0 @@ -// -*- C++ -*- - -/* -Heuristics: - 2 phase - gap - list 'level_list' on the nodes on level i implemented by hand - stack 'active' on the active nodes on level i - runs heuristic 'highest label' for H1*n relabels - runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' - -Parameters H0 and H1 are initialized to 20 and 1. - -Constructors: - -Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if - FlowMap is not constant zero, and should be true if it is - -Members: - -void run() - -Num flowValue() : returns the value of a maximum flow - -void minMinCut(CutMap& M) : sets M to the characteristic vector of the - minimum min cut. M should be a map of bools initialized to false. ??Is it OK? - -void maxMinCut(CutMap& M) : sets M to the characteristic vector of the - maximum min cut. M should be a map of bools initialized to false. - -void minCut(CutMap& M) : sets M to the characteristic vector of - a min cut. M should be a map of bools initialized to false. - -*/ - -#ifndef HUGO_PREFLOW_H -#define HUGO_PREFLOW_H - -#define H0 20 -#define H1 1 - -#include -#include -#include - -#include -#include -#include -#include -#include - - -namespace hugo { - - template , - typename FlowMap=typename Graph::template EdgeMap > - class MaxFlow { - - typedef typename Graph::Node Node; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::InEdgeIt InEdgeIt; - - typedef typename std::vector > VecStack; - typedef typename Graph::template NodeMap NNMap; - typedef typename std::vector VecNode; - - const Graph* g; - Node s; - Node t; - const CapMap* capacity; - FlowMap* flow; - int n; //the number of nodes of G - typedef ResGraphWrapper ResGW; - typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; - typedef typename ResGW::Edge ResGWEdge; - //typedef typename ResGW::template NodeMap ReachedMap; - typedef typename Graph::template NodeMap ReachedMap; - ReachedMap level; - //level works as a bool map in augmenting path algorithms - //and is used by bfs for storing reached information. - //In preflow, it shows levels of nodes. - //typename Graph::template NodeMap level; - typename Graph::template NodeMap excess; - - public: - - enum flowEnum{ - ZERO_FLOW=0, - GEN_FLOW=1, - PREFLOW=2 - }; - - MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, - FlowMap& _flow) : - g(&_G), s(_s), t(_t), capacity(&_capacity), - flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} - - void run() { - preflow( ZERO_FLOW ); - } - - void preflow( flowEnum fe ) { - preflowPhase0(fe); - preflowPhase1(); - } - - void preflowPhase0( flowEnum fe ); - - void preflowPhase1(); - - bool augmentOnShortestPath(); - - template bool augmentOnBlockingFlow(); - - bool augmentOnBlockingFlow2(); - - /// Returns the actual flow value. - /// More precisely, it returns the negative excess of s, thus - /// this works also for preflows. - Num flowValue() { - Num a=0; - FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; - FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; - return a; - } - - //should be used only between preflowPhase0 and preflowPhase1 - template - void actMinCut(_CutMap& M) { - NodeIt v; - for(g->first(v); g->valid(v); g->next(v)) - if ( level[v] < n ) { - M.set(v,false); - } else { - M.set(v,true); - } - } - - - - /* - Returns the minimum min cut, by a bfs from s in the residual graph. - */ - template - void minMinCut(_CutMap& M) { - - std::queue queue; - - M.set(s,true); - queue.push(s); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - OutEdgeIt e; - for(g->first(e,w) ; g->valid(e); g->next(e)) { - Node v=g->head(e); - if (!M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, true); - } - } - - InEdgeIt f; - for(g->first(f,w) ; g->valid(f); g->next(f)) { - Node v=g->tail(f); - if (!M[v] && (*flow)[f] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - } - - - - /* - Returns the maximum min cut, by a reverse bfs - from t in the residual graph. - */ - - template - void maxMinCut(_CutMap& M) { - - NodeIt v; - for(g->first(v) ; g->valid(v); g->next(v)) { - M.set(v, true); - } - - std::queue queue; - - M.set(t,false); - queue.push(t); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - - InEdgeIt e; - for(g->first(e,w) ; g->valid(e); g->next(e)) { - Node v=g->tail(e); - if (M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, false); - } - } - - OutEdgeIt f; - for(g->first(f,w) ; g->valid(f); g->next(f)) { - Node v=g->head(f); - if (M[v] && (*flow)[f] > 0 ) { - queue.push(v); - M.set(v, false); - } - } - } - } - - - template - void minCut(CutMap& M) { - minMinCut(M); - } - - void resetTarget(Node _t) {t=_t;} - void resetSource(Node _s) {s=_s;} - - void resetCap(const CapMap& _cap) { - capacity=&_cap; - } - - void resetFlow(FlowMap& _flow) { - flow=&_flow; - } - - - private: - - int push(Node w, VecStack& active) { - - int lev=level[w]; - Num exc=excess[w]; - int newlevel=n; //bound on the next level of w - - OutEdgeIt e; - for(g->first(e,w); g->valid(e); g->next(e)) { - - if ( (*flow)[e] >= (*capacity)[e] ) continue; - Node v=g->head(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - int lev_v=level[v]; - active[lev_v].push(v); - } - - Num cap=(*capacity)[e]; - Num flo=(*flow)[e]; - Num remcap=cap-flo; - - if ( remcap >= exc ) { //A nonsaturating push. - - flow->set(e, flo+exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - - } else { //A saturating push. - flow->set(e, cap); - excess.set(v, excess[v]+remcap); - exc-=remcap; - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for out edges wv - - if ( exc > 0 ) { - InEdgeIt e; - for(g->first(e,w); g->valid(e); g->next(e)) { - - if( (*flow)[e] <= 0 ) continue; - Node v=g->tail(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - int lev_v=level[v]; - active[lev_v].push(v); - } - - Num flo=(*flow)[e]; - - if ( flo >= exc ) { //A nonsaturating push. - - flow->set(e, flo-exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - } else { //A saturating push. - - excess.set(v, excess[v]+flo); - exc-=flo; - flow->set(e,0); - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for in edges vw - - } // if w still has excess after the out edge for cycle - - excess.set(w, exc); - - return newlevel; - } - - - void preflowPreproc ( flowEnum fe, VecStack& active, - VecNode& level_list, NNMap& left, NNMap& right ) { - - std::queue bfs_queue; - - switch ( fe ) { - case ZERO_FLOW: - { - //Reverse_bfs from t, to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - Node w=g->tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - OutEdgeIt e; - for(g->first(e,s); g->valid(e); g->next(e)) - { - Num c=(*capacity)[e]; - if ( c <= 0 ) continue; - Node w=g->head(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - flow->set(e, c); - excess.set(w, excess[w]+c); - } - } - break; - } - - case GEN_FLOW: - case PREFLOW: - { - //Reverse_bfs from t in the residual graph, - //to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node w=g->tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) { - if ( 0 >= (*flow)[f] ) continue; - Node w=g->head(f); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - - //the starting flow - OutEdgeIt e; - for(g->first(e,s); g->valid(e); g->next(e)) - { - Num rem=(*capacity)[e]-(*flow)[e]; - if ( rem <= 0 ) continue; - Node w=g->head(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - flow->set(e, (*capacity)[e]); - excess.set(w, excess[w]+rem); - } - } - - InEdgeIt f; - for(g->first(f,s); g->valid(f); g->next(f)) - { - if ( (*flow)[f] <= 0 ) continue; - Node w=g->tail(f); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - excess.set(w, excess[w]+(*flow)[f]); - flow->set(f, 0); - } - } - break; - } //case PREFLOW - } - } //preflowPreproc - - - - void relabel(Node w, int newlevel, VecStack& active, - VecNode& level_list, NNMap& left, - NNMap& right, int& b, int& k, bool what_heur ) - { - - Num lev=level[w]; - - Node right_n=right[w]; - Node left_n=left[w]; - - //unlacing starts - if ( g->valid(right_n) ) { - if ( g->valid(left_n) ) { - right.set(left_n, right_n); - left.set(right_n, left_n); - } else { - level_list[lev]=right_n; - left.set(right_n, INVALID); - } - } else { - if ( g->valid(left_n) ) { - right.set(left_n, INVALID); - } else { - level_list[lev]=INVALID; - } - } - //unlacing ends - - if ( !g->valid(level_list[lev]) ) { - - //gapping starts - for (int i=lev; i!=k ; ) { - Node v=level_list[++i]; - while ( g->valid(v) ) { - level.set(v,n); - v=right[v]; - } - level_list[i]=INVALID; - if ( !what_heur ) { - while ( !active[i].empty() ) { - active[i].pop(); //FIXME: ezt szebben kene - } - } - } - - level.set(w,n); - b=lev-1; - k=b; - //gapping ends - - } else { - - if ( newlevel == n ) level.set(w,n); - else { - level.set(w,++newlevel); - active[newlevel].push(w); - if ( what_heur ) b=newlevel; - if ( k < newlevel ) ++k; //now k=newlevel - Node first=level_list[newlevel]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - left.set(w,INVALID); - level_list[newlevel]=w; - } - } - - } //relabel - - - template - class DistanceMap { - protected: - const MapGraphWrapper* g; - typename MapGraphWrapper::template NodeMap dist; - public: - DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } - void set(const typename MapGraphWrapper::Node& n, int a) { - dist.set(n, a); - } - int operator[](const typename MapGraphWrapper::Node& n) - { return dist[n]; } -// int get(const typename MapGraphWrapper::Node& n) const { -// return dist[n]; } -// bool get(const typename MapGraphWrapper::Edge& e) const { -// return (dist.get(g->tail(e))head(e))); } - bool operator[](const typename MapGraphWrapper::Edge& e) const { - return (dist[g->tail(e)]head(e)]); - } - }; - - }; - - - template - void MaxFlow::preflowPhase0( flowEnum fe ) - { - - int heur0=(int)(H0*n); //time while running 'bound decrease' - int heur1=(int)(H1*n); //time while running 'highest label' - int heur=heur1; //starting time interval (#of relabels) - int numrelabel=0; - - bool what_heur=1; - //It is 0 in case 'bound decrease' and 1 in case 'highest label' - - bool end=false; - //Needed for 'bound decrease', true means no active nodes are above bound b. - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecStack active(n); - - NNMap left(*g, INVALID); - NNMap right(*g, INVALID); - VecNode level_list(n,INVALID); - //List of the nodes in level ifirst(v); g->valid(v); g->next(v)) level.set(v,n); - //setting each node to level n - - switch ( fe ) { - case PREFLOW: - { - //counting the excess - NodeIt v; - for(g->first(v); g->valid(v); g->next(v)) { - Num exc=0; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; - - excess.set(v,exc); - - //putting the active nodes into the stack - int lev=level[v]; - if ( exc > 0 && lev < n && v != t ) active[lev].push(v); - } - break; - } - case GEN_FLOW: - { - //Counting the excess of t - Num exc=0; - - InEdgeIt e; - for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; - OutEdgeIt f; - for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; - - excess.set(t,exc); - - break; - } - default: - break; - } - - preflowPreproc( fe, active, level_list, left, right ); - //End of preprocessing - - - //Push/relabel on the highest level active nodes. - while ( true ) { - if ( b == 0 ) { - if ( !what_heur && !end && k > 0 ) { - b=k; - end=true; - } else break; - } - - if ( active[b].empty() ) --b; - else { - end=false; - Node w=active[b].top(); - active[b].pop(); - int newlevel=push(w,active); - if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, - left, right, b, k, what_heur); - - ++numrelabel; - if ( numrelabel >= heur ) { - numrelabel=0; - if ( what_heur ) { - what_heur=0; - heur=heur0; - end=false; - } else { - what_heur=1; - heur=heur1; - b=k; - } - } - } - } - } - - - - template - void MaxFlow::preflowPhase1() - { - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecStack active(n); - level.set(s,0); - std::queue bfs_queue; - bfs_queue.push(s); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node u=g->tail(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) active[l].push(u); - } - } - - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) { - if ( 0 >= (*flow)[f] ) continue; - Node u=g->head(f); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) active[l].push(u); - } - } - } - b=n-2; - - while ( true ) { - - if ( b == 0 ) break; - - if ( active[b].empty() ) --b; - else { - Node w=active[b].top(); - active[b].pop(); - int newlevel=push(w,active); - - //relabel - if ( excess[w] > 0 ) { - level.set(w,++newlevel); - active[newlevel].push(w); - b=newlevel; - } - } // if stack[b] is nonempty - } // while(true) - } - - - - template - bool MaxFlow::augmentOnShortestPath() - { - ResGW res_graph(*g, *capacity, *flow); - bool _augment=false; - - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - bfs.pushAndSetReached(s); - - typename ResGW::template NodeMap pred(res_graph); - pred.set(s, INVALID); - - typename ResGW::template NodeMap free(res_graph); - - //searching for augmenting path - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { - Node v=res_graph.tail(e); - Node w=res_graph.head(e); - pred.set(w, e); - if (res_graph.valid(pred[v])) { - free.set(w, std::min(free[v], res_graph.resCap(e))); - } else { - free.set(w, res_graph.resCap(e)); - } - if (res_graph.head(e)==t) { _augment=true; break; } - } - - ++bfs; - } //end of searching augmenting path - - if (_augment) { - Node n=t; - Num augment_value=free[t]; - while (res_graph.valid(pred[n])) { - ResGWEdge e=pred[n]; - res_graph.augment(e, augment_value); - n=res_graph.tail(e); - } - } - - return _augment; - } - - - - - - - - - - template - template - bool MaxFlow::augmentOnBlockingFlow() - { - typedef MutableGraph MG; - bool _augment=false; - - ResGW res_graph(*g, *capacity, *flow); - - //bfs for distances on the residual graph - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - bfs.pushAndSetReached(s); - typename ResGW::template NodeMap - dist(res_graph); //filled up with 0's - - //F will contain the physical copy of the residual graph - //with the set of edges which are on shortest paths - MG F; - typename ResGW::template NodeMap - res_graph_to_F(res_graph); - { - typename ResGW::NodeIt n; - for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { - res_graph_to_F.set(n, F.addNode()); - } - } - - typename MG::Node sF=res_graph_to_F[s]; - typename MG::Node tF=res_graph_to_F[t]; - typename MG::template EdgeMap original_edge(F); - typename MG::template EdgeMap residual_capacity(F); - - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e)) { - if (bfs.isBNodeNewlyReached()) { - dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); - typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); - original_edge.update(); - original_edge.set(f, e); - residual_capacity.update(); - residual_capacity.set(f, res_graph.resCap(e)); - } else { - if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { - typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); - original_edge.update(); - original_edge.set(f, e); - residual_capacity.update(); - residual_capacity.set(f, res_graph.resCap(e)); - } - } - } - ++bfs; - } //computing distances from s in the residual graph - - bool __augment=true; - - while (__augment) { - __augment=false; - //computing blocking flow with dfs - DfsIterator< MG, typename MG::template NodeMap > dfs(F); - typename MG::template NodeMap pred(F); - pred.set(sF, INVALID); - //invalid iterators for sources - - typename MG::template NodeMap free(F); - - dfs.pushAndSetReached(sF); - while (!dfs.finished()) { - ++dfs; - if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { - if (dfs.isBNodeNewlyReached()) { - typename MG::Node v=F.aNode(dfs); - typename MG::Node w=F.bNode(dfs); - pred.set(w, dfs); - if (F.valid(pred[v])) { - free.set(w, std::min(free[v], residual_capacity[dfs])); - } else { - free.set(w, residual_capacity[dfs]); - } - if (w==tF) { - __augment=true; - _augment=true; - break; - } - - } else { - F.erase(/*typename MG::OutEdgeIt*/(dfs)); - } - } - } - - if (__augment) { - typename MG::Node n=tF; - Num augment_value=free[tF]; - while (F.valid(pred[n])) { - typename MG::Edge e=pred[n]; - res_graph.augment(original_edge[e], augment_value); - n=F.tail(e); - if (residual_capacity[e]==augment_value) - F.erase(e); - else - residual_capacity.set(e, residual_capacity[e]-augment_value); - } - } - - } - - return _augment; - } - - - - - - - template - bool MaxFlow::augmentOnBlockingFlow2() - { - bool _augment=false; - - ResGW res_graph(*g, *capacity, *flow); - - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - - bfs.pushAndSetReached(s); - DistanceMap dist(res_graph); - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { - dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); - } - ++bfs; - } //computing distances from s in the residual graph - - //Subgraph containing the edges on some shortest paths - ConstMap true_map(true); - typedef SubGraphWrapper, - DistanceMap > FilterResGW; - FilterResGW filter_res_graph(res_graph, true_map, dist); - - //Subgraph, which is able to delete edges which are already - //met by the dfs - typename FilterResGW::template NodeMap - first_out_edges(filter_res_graph); - typename FilterResGW::NodeIt v; - for(filter_res_graph.first(v); filter_res_graph.valid(v); - filter_res_graph.next(v)) - { - typename FilterResGW::OutEdgeIt e; - filter_res_graph.first(e, v); - first_out_edges.set(v, e); - } - typedef ErasingFirstGraphWrapper > ErasingResGW; - ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); - - bool __augment=true; - - while (__augment) { - - __augment=false; - //computing blocking flow with dfs - DfsIterator< ErasingResGW, - typename ErasingResGW::template NodeMap > - dfs(erasing_res_graph); - typename ErasingResGW:: - template NodeMap - pred(erasing_res_graph); - pred.set(s, INVALID); - //invalid iterators for sources - - typename ErasingResGW::template NodeMap - free1(erasing_res_graph); - - dfs.pushAndSetReached( - typename ErasingResGW::Node( - typename FilterResGW::Node( - typename ResGW::Node(s) - ) - ) - ); - while (!dfs.finished()) { - ++dfs; - if (erasing_res_graph.valid( - typename ErasingResGW::OutEdgeIt(dfs))) - { - if (dfs.isBNodeNewlyReached()) { - - typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); - typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); - - pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); - if (erasing_res_graph.valid(pred[v])) { - free1.set(w, std::min(free1[v], res_graph.resCap( - typename ErasingResGW::OutEdgeIt(dfs)))); - } else { - free1.set(w, res_graph.resCap( - typename ErasingResGW::OutEdgeIt(dfs))); - } - - if (w==t) { - __augment=true; - _augment=true; - break; - } - } else { - erasing_res_graph.erase(dfs); - } - } - } - - if (__augment) { - typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); -// typename ResGW::NodeMap a(res_graph); -// typename ResGW::Node b; -// Num j=a[b]; -// typename FilterResGW::NodeMap a1(filter_res_graph); -// typename FilterResGW::Node b1; -// Num j1=a1[b1]; -// typename ErasingResGW::NodeMap a2(erasing_res_graph); -// typename ErasingResGW::Node b2; -// Num j2=a2[b2]; - Num augment_value=free1[n]; - while (erasing_res_graph.valid(pred[n])) { - typename ErasingResGW::OutEdgeIt e=pred[n]; - res_graph.augment(e, augment_value); - n=erasing_res_graph.tail(e); - if (res_graph.resCap(e)==0) - erasing_res_graph.erase(e); - } - } - - } //while (__augment) - - return _augment; - } - - - - -} //namespace hugo - -#endif //HUGO_PREFLOW_H - - - -