# HG changeset patch # User jacint # Date 1083779516 0 # Node ID acd69f60b9c7f7b1f7261a8dff7d61628e7aa2ab # Parent c050de07093513870e99917fb63d2348e23856da Contains Edmonds' matching algorithm in a plain and in a heuristical form. diff -r c050de070935 -r acd69f60b9c7 src/work/jacint/max_matching.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/max_matching.h Wed May 05 17:51:56 2004 +0000 @@ -0,0 +1,568 @@ +// -*- C++ -*- +#ifndef HUGO_MAX_MATCHING_H +#define HUGO_MAX_MATCHING_H + +///\ingroup galgs +///\file +///\brief Maximum matching algorithm. + +#include + +#include +#include + +namespace hugo { + + /// \addtogroup galgs + /// @{ + + ///Maximum matching algorithms class. + + ///This class provides Edmonds' alternating forest matching + ///algorithm. The starting matching (if any) can be passed to the + ///algorithm using read-in functions \ref readNMapNode, \ref + ///readNMapEdge or \ref readEMapBool depending on the container. The + ///resulting maximum matching can be attained by write-out functions + ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool + ///depending on the preferred container. + + ///The dual side of a mathcing is a map of the nodes to + ///MaxMatching::pos_enum, having values D, A and C showing the + ///Gallai-Edmonds decomposition of the graph. The nodes in D induce + ///a graph with factor-critical components, the nodes in A form the + ///barrier, and the nodes in C induce a graph having a perfect + ///matching. This decomposition can be attained by calling \ref + ///writePos after running the algorithm. Before subsequent runs, + ///the function \ref resetPos() must be called. + + ///\param Graph The undirected graph type the algorithm runs on. + + ///\author Jacint Szabo + template + class MaxMatching { + typedef typename Graph::Node Node; + typedef typename Graph::Edge Edge; + typedef typename Graph::EdgeIt EdgeIt; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + + typedef UnionFindEnum UFE; + + public: + + ///Indicates the Gallai-Edmonds decomposition of the graph. + + ///Indicates the Gallai-Edmonds decomposition of the graph, which + ///shows an upper bound on the size of a maximum matching. The + ///nodes with pos_enum D induce a graph with factor-critical + ///components, the nodes in A form the canonical barrier, and the + ///nodes in C induce a graph having a perfect matching. + enum pos_enum { + D=0, + A=1, + C=2 + }; + + private: + + const Graph& G; + typename Graph::template NodeMap mate; + typename Graph::template NodeMap position; + + public: + + MaxMatching(Graph& _G) : G(_G), mate(_G,INVALID), position(_G,C) {} + + ///Runs Edmonds' algorithm. + + ///Runs Edmonds' algorithm for sparse graphs (edgeNum >= + ///2*nodeNum), and a heuristical Edmonds' algorithm with a + ///heuristic of postponing shrinks for dense graphs. \pre Before + ///the subsequent calls \ref resetPos must be called. + void run(); + + ///Runs Edmonds' algorithm. + + ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs + ///Edmonds' algorithm with a heuristic of postponing shrinks, + ///giving a faster algorithm for dense graphs. \pre Before the + ///subsequent calls \ref resetPos must be called. + void runEdmonds( int heur ); + + ///Finds a greedy matching starting from the actual matching. + + ///Starting form the actual matching stored, it finds a maximal + ///greedy matching. + void greedyMatching(); + + ///Returns the size of the actual matching stored. + + ///Returns the size of the actual matching stored. After \ref + ///run() it returns the size of a maximum matching in the graph. + int size(); + + ///Resets the map storing the Gallai-Edmonds decomposition. + + ///Resets the map storing the Gallai-Edmonds decomposition of the + ///graph, making it possible to run the algorithm. Must be called + ///before all runs of the Edmonds algorithm, except for the first + ///run. + void resetPos(); + + ///Resets the actual matching to the empty matching. + + ///Resets the actual matching to the empty matching. + /// + void resetMatching(); + + ///Reads a matching from a \c Node map of \c Nodes. + + ///Reads a matching from a \c Node map of \c Nodes. This map must be \e + ///symmetric, i.e. if \c map[u]=v then \c map[v]=u must hold, and + ///now \c uv is an edge of the matching. + template + void readNMapNode(NMapN& map) { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) { + mate.set(v,map[v]); + } + } + + ///Writes the stored matching to a \c Node map of \c Nodes. + + ///Writes the stored matching to a \c Node map of \c Nodes. The + ///resulting map will be \e symmetric, i.e. if \c map[u]=v then \c + ///map[v]=u will hold, and now \c uv is an edge of the matching. + template + void writeNMapNode(NMapN& map) { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) { + map.set(v,mate[v]); + } + } + + ///Reads a matching from a \c Node map of \c Edges. + + ///Reads a matching from a \c Node map of incident \c Edges. This + ///map must have the property that if \c G.bNode(map[u])=v then \c + ///G.bNode(map[v])=u must hold, and now this edge is an edge of + ///the matching. + template + void readNMapEdge(NMapE& map) { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) { + Edge e=map[v]; + if ( G.valid(e) ) + G.tail(e) == v ? mate.set(v,G.head(e)) : mate.set(v,G.tail(e)); + } + } + + ///Writes the matching stored to a \c Node map of \c Edges. + + ///Writes the stored matching to a \c Node map of incident \c + ///Edges. This map will have the property that if \c + ///G.bNode(map[u])=v then \c G.bNode(map[v])=u holds, and now this + ///edge is an edge of the matching. + template + void writeNMapEdge(NMapE& map) { + typename Graph::template NodeMap todo(G,false); + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) { + if ( mate[v]!=INVALID ) todo.set(v,true); + } + NodeIt e; + for( G.first(e); G.valid(e); G.next(e)) { + if ( todo[G.head(e)] && todo[G.tail(e)] ) { + Node u=G.tail(e); + Node v=G.head(e); + if ( mate[u]=v && mate[v]=u ) { + map.set(u,e); + map.set(v,e); + todo.set(u,false); + todo.set(v,false); + } + } + } + } + + ///Reads a matching from an \c Edge map of \c bools. + + ///Reads a matching from an \c Edge map of \c bools. This map must + ///have the property that there are no two adjacent edges \c e, \c + ///f with \c map[e]=map[f]=true. The edges \c e with \c + ///map[e]=true form the matching. + template + void readEMapBool(EMapB& map) { + EdgeIt e; + for( G.first(e); G.valid(e); G.next(e)) { + if ( G.valid(e) ) { + Node u=G.tail(e); + Node v=G.head(e); + mate.set(u,v); + mate.set(v,u); + } + } + } + + + ///Writes the matching stored to an \c Edge map of \c bools. + + ///Writes the matching stored to an \c Edge map of \c bools. This + ///map will have the property that there are no two adjacent edges + ///\c e, \c f with \c map[e]=map[f]=true. The edges \c e with \c + ///map[e]=true form the matching. + template + void writeEMapBool(EMapB& map) { + typename Graph::template NodeMap todo(G,false); + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) { + if ( mate[v]!=INVALID ) todo.set(v,true); + } + + NodeIt e; + for( G.first(e); G.valid(e); G.next(e)) { + map.set(e,false); + if ( todo[G.head(e)] && todo[G.tail(e)] ) { + Node u=G.tail(e); + Node v=G.head(e); + if ( mate[u]=v && mate[v]=u ) { + map.set(e,true); + todo.set(u,false); + todo.set(v,false); + } + } + } + } + + ///Writes the canonical decomposition of the graph after running + ///the algorithm. + + ///After calling any run methods of the class, and before calling + ///\ref resetPos(), it writes the Gallai-Edmonds canonical + ///decomposition of the graph. \c map must be a node map of \ref pos_enum 's. + template + void writePos(NMapEnum& map) { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) map.set(v,position[v]); + } + + private: + + void lateShrink(Node v, typename Graph::template NodeMap& ear, + UFE& blossom, UFE& tree); + + void normShrink(Node v, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree); + + bool noShrinkStep(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q); + + void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q); + + void augment(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree); + + }; + + + // ********************************************************************** + // IMPLEMENTATIONS + // ********************************************************************** + + + template + void MaxMatching::run() { + if ( G.edgeNum() > 2*G.nodeNum() ) { + greedyMatching(); + runEdmonds(1); + } else runEdmonds(0); + } + + template + void MaxMatching::runEdmonds( int heur=1 ) { + + typename Graph::template NodeMap ear(G,INVALID); + //undefined for the base nodes of the blossoms (i.e. for the + //representative elements of UFE blossom) and for the nodes in C + + typename UFE::MapType blossom_base(G); + UFE blossom(blossom_base); + typename UFE::MapType tree_base(G); + UFE tree(tree_base); + + NodeIt v; + for( G.first(v); G.valid(v); G.next(v) ) { + if ( position[v]==C && mate[v]==INVALID ) { + blossom.insert(v); + tree.insert(v); + position.set(v,D); + if ( heur == 1 ) lateShrink( v, ear, blossom, tree ); + else normShrink( v, ear, blossom, tree ); + } + } + } + + template + void MaxMatching::lateShrink(Node v, typename Graph::template NodeMap& ear, + UFE& blossom, UFE& tree) { + + std::queue Q; //queue of the totally unscanned nodes + Q.push(v); + std::queue R; + //queue of the nodes which must be scanned for a possible shrink + + while ( !Q.empty() ) { + Node x=Q.front(); + Q.pop(); + if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return; + else R.push(x); + } + + while ( !R.empty() ) { + Node x=R.front(); + R.pop(); + + OutEdgeIt e; + for( G.first(e,x); G.valid(e); G.next(e) ) { + Node y=G.bNode(e); + + if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { + //x and y must be in the same tree + + typename Graph::template NodeMap path(G,false); + + Node b=blossom.find(x); + path.set(b,true); + b=mate[b]; + while ( b!=INVALID ) { + b=blossom.find(ear[b]); + path.set(b,true); + b=mate[b]; + } //going till the root + + Node top=y; + Node middle=blossom.find(top); + Node bottom=x; + while ( !path[middle] ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + Node base=middle; + top=x; + middle=blossom.find(top); + bottom=y; + Node blossom_base=blossom.find(base); + while ( middle!=blossom_base ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + blossom.makeRep(base); + } // if shrink is needed + + while ( !Q.empty() ) { + Node x=Q.front(); + Q.pop(); + if ( noShrinkStep(x, ear, blossom, tree, Q) ) return; + else R.push(x); + } + } //for e + } // while ( !R.empty() ) + } + + template + void MaxMatching::normShrink(Node v, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree) { + + std::queue Q; //queue of the unscanned nodes + Q.push(v); + while ( !Q.empty() ) { + Node x=Q.front(); + Q.pop(); + + OutEdgeIt e; + for( G.first(e,x); G.valid(e); G.next(e) ) { + Node y=G.bNode(e); + + switch ( position[y] ) { + case D: //x and y must be in the same tree + if ( blossom.find(x) != blossom.find(y) ) { //shrink + typename Graph::template NodeMap path(G,false); + + Node b=blossom.find(x); + path.set(b,true); + b=mate[b]; + while ( b!=INVALID ) { + b=blossom.find(ear[b]); + path.set(b,true); + b=mate[b]; + } //going till the root + + Node top=y; + Node middle=blossom.find(top); + Node bottom=x; + while ( !path[middle] ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + Node base=middle; + top=x; + middle=blossom.find(top); + bottom=y; + Node blossom_base=blossom.find(base); + while ( middle!=blossom_base ) + shrinkStep(top, middle, bottom, ear, blossom, tree, Q); + + blossom.makeRep(base); + } + break; + case C: + if ( mate[y]!=INVALID ) { //grow + ear.set(y,x); + Node w=mate[y]; + blossom.insert(w); + position.set(y,A); + position.set(w,D); + tree.insert(y); + tree.insert(w); + tree.join(y,blossom.find(x)); + tree.join(w,y); + Q.push(w); + } else { //augment + augment(x, ear, blossom, tree); + mate.set(x,y); + mate.set(y,x); + return; + } //if + break; + default: break; + } + } + } + } + + template + void MaxMatching::greedyMatching() { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v) ) + if ( mate[v]==INVALID ) { + OutEdgeIt e; + for( G.first(e,v); G.valid(e); G.next(e) ) { + Node y=G.bNode(e); + if ( mate[y]==INVALID && y!=v ) { + mate.set(v,y); + mate.set(y,v); + break; + } + } + } + } + + template + int MaxMatching::size() { + int s=0; + NodeIt v; + for(G.first(v); G.valid(v); G.next(v) ) { + if ( G.valid(mate[v]) ) { + ++s; + } + } + return (int)s/2; + } + + template + void MaxMatching::resetPos() { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) + position.set(v,C); + } + + template + void MaxMatching::resetMatching() { + NodeIt v; + for( G.first(v); G.valid(v); G.next(v)) + mate.set(v,INVALID); + } + + template + bool MaxMatching::noShrinkStep(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q) { + OutEdgeIt e; + for( G.first(e,x); G.valid(e); G.next(e) ) { + Node y=G.bNode(e); + + if ( position[y]==C ) { + if ( mate[y]!=INVALID ) { //grow + ear.set(y,x); + Node w=mate[y]; + blossom.insert(w); + position.set(y,A); + position.set(w,D); + tree.insert(y); + tree.insert(w); + tree.join(y,blossom.find(x)); + tree.join(w,y); + Q.push(w); + } else { //augment + augment(x, ear, blossom, tree); + mate.set(x,y); + mate.set(y,x); + return true; + } + } + } + return false; + } + + template + void MaxMatching::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree, std::queue& Q) { + ear.set(top,bottom); + Node t=top; + while ( t!=middle ) { + Node u=mate[t]; + t=ear[u]; + ear.set(t,u); + } + bottom=mate[middle]; + position.set(bottom,D); + Q.push(bottom); + top=ear[bottom]; + Node oldmiddle=middle; + middle=blossom.find(top); + tree.erase(bottom); + tree.erase(oldmiddle); + blossom.insert(bottom); + blossom.join(bottom, oldmiddle); + blossom.join(top, oldmiddle); + } + + template + void MaxMatching::augment(Node x, typename Graph::NodeMap& ear, + UFE& blossom, UFE& tree) { + Node v=mate[x]; + while ( G.valid(v) ) { + + Node u=ear[v]; + mate.set(v,u); + Node tmp=v; + v=mate[u]; + mate.set(u,tmp); + } + typename UFE::ItemIt it; + for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) { + if ( position[it] == D ) { + typename UFE::ItemIt b_it; + for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) { + position.set( b_it ,C); + } + blossom.eraseClass(it); + } else position.set( it ,C); + } + tree.eraseClass(x); + } + + + + /// @} + +} //END OF NAMESPACE HUGO + +#endif //EDMONDS_H