# HG changeset patch # User deba # Date 1138295892 0 # Node ID c925a077cf7383689fb1abdeebddfc63ab499def # Parent f95eea8c34b071a82b16e504489f7955925f69cd The pre BpUGraph concept diff -r f95eea8c34b0 -r c925a077cf73 lemon/concept/bpugraph.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/concept/bpugraph.h Thu Jan 26 17:18:12 2006 +0000 @@ -0,0 +1,906 @@ +/* -*- C++ -*- + * + * lemon/concept/ugraph_component.h - Part of LEMON, a generic + * C++ optimization library + * + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi + * Kutatocsoport (Egervary Research Group on Combinatorial Optimization, + * EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +/// \ingroup graph_concepts +/// \file +/// \brief Undirected bipartite graphs and components of. + + +#ifndef LEMON_CONCEPT_BPUGRAPH_H +#define LEMON_CONCEPT_BPUGRAPH_H + +#include + +#include +#include + +#include + +namespace lemon { + namespace concept { + + /// \addtogroup graph_concepts + /// @{ + + + /// \brief Class describing the concept of Bipartite Undirected Graphs. + /// + /// This class describes the common interface of all + /// Undirected Bipartite Graphs. + /// + /// As all concept describing classes it provides only interface + /// without any sensible implementation. So any algorithm for + /// bipartite undirected graph should compile with this class, but it + /// will not run properly, of course. + /// + /// In LEMON bipartite undirected graphs also fulfill the concept of + /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). + /// + /// You can assume that all undirected bipartite graph can be handled + /// as an undirected graph and consequently as a static graph. + /// + /// The bipartite graph stores two types of nodes which are named + /// ANode and BNode. Even so the graph type does not contain ANode + /// and BNode classes, becaue the nodes can be accessed just with the + /// common Node class. + /// + /// The iteration on the partition can be done with the ANodeIt and + /// BNodeIt classes. The node map can be used to map values to the nodes + /// and similarly we can use to map values for just the ANodes and + /// BNodes the ANodeMap and BNodeMap template classes. + + class BpUGraph { + public: + /// \todo undocumented + /// + typedef True UTag; + + /// \brief The base type of node iterators, + /// or in other words, the trivial node iterator. + /// + /// This is the base type of each node iterator, + /// thus each kind of node iterator converts to this. + /// More precisely each kind of node iterator should be inherited + /// from the trivial node iterator. The Node class represents + /// both of two types of nodes. + class Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + Node() { } + /// Copy constructor. + + /// Copy constructor. + /// + Node(const Node&) { } + + /// Invalid constructor \& conversion. + + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + Node(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(Node) const { return true; } + + /// Inequality operator + + /// \sa operator==(Node n) + /// + bool operator!=(Node) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + /// + /// \bug This is a technical requirement. Do we really need this? + bool operator<(Node) const { return false; } + + }; + + /// This iterator goes through each node. + + /// This iterator goes through each node. + /// Its usage is quite simple, for example you can count the number + /// of nodes in graph \c g of type \c Graph like this: + /// \code + /// int count=0; + /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; + /// \endcode + class NodeIt : public Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + NodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + NodeIt(const NodeIt& n) : Node(n) { } + /// Invalid constructor \& conversion. + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + NodeIt(Invalid) { } + /// Sets the iterator to the first node. + + /// Sets the iterator to the first node of \c g. + /// + NodeIt(const BpUGraph&) { } + /// Node -> NodeIt conversion. + + /// Sets the iterator to the node of \c the graph pointed by + /// the trivial iterator. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + NodeIt(const BpUGraph&, const Node&) { } + /// Next node. + + /// Assign the iterator to the next node. + /// + NodeIt& operator++() { return *this; } + }; + + /// This iterator goes through each ANode. + + /// This iterator goes through each ANode. + /// Its usage is quite simple, for example you can count the number + /// of nodes in graph \c g of type \c Graph like this: + /// \code + /// int count=0; + /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count; + /// \endcode + class ANodeIt : public Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + ANodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + ANodeIt(const ANodeIt& n) : Node(n) { } + /// Invalid constructor \& conversion. + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + ANodeIt(Invalid) { } + /// Sets the iterator to the first node. + + /// Sets the iterator to the first node of \c g. + /// + ANodeIt(const BpUGraph&) { } + /// Node -> ANodeIt conversion. + + /// Sets the iterator to the node of \c the graph pointed by + /// the trivial iterator. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + ANodeIt(const BpUGraph&, const Node&) { } + /// Next node. + + /// Assign the iterator to the next node. + /// + ANodeIt& operator++() { return *this; } + }; + + /// This iterator goes through each BNode. + + /// This iterator goes through each BNode. + /// Its usage is quite simple, for example you can count the number + /// of nodes in graph \c g of type \c Graph like this: + /// \code + /// int count=0; + /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count; + /// \endcode + class BNodeIt : public Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + BNodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + BNodeIt(const BNodeIt& n) : Node(n) { } + /// Invalid constructor \& conversion. + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + BNodeIt(Invalid) { } + /// Sets the iterator to the first node. + + /// Sets the iterator to the first node of \c g. + /// + BNodeIt(const BpUGraph&) { } + /// Node -> BNodeIt conversion. + + /// Sets the iterator to the node of \c the graph pointed by + /// the trivial iterator. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + BNodeIt(const BpUGraph&, const Node&) { } + /// Next node. + + /// Assign the iterator to the next node. + /// + BNodeIt& operator++() { return *this; } + }; + + + /// The base type of the undirected edge iterators. + + /// The base type of the undirected edge iterators. + /// + class UEdge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + UEdge() { } + /// Copy constructor. + + /// Copy constructor. + /// + UEdge(const UEdge&) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + UEdge(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(UEdge) const { return true; } + /// Inequality operator + + /// \sa operator==(UEdge n) + /// + bool operator!=(UEdge) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + /// + /// \bug This is a technical requirement. Do we really need this? + bool operator<(UEdge) const { return false; } + }; + + /// This iterator goes through each undirected edge. + + /// This iterator goes through each undirected edge of a graph. + /// Its usage is quite simple, for example you can count the number + /// of undirected edges in a graph \c g of type \c Graph as follows: + /// \code + /// int count=0; + /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; + /// \endcode + class UEdgeIt : public UEdge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + UEdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + UEdgeIt(const UEdgeIt& e) : UEdge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + UEdgeIt(Invalid) { } + /// This constructor sets the iterator to the first undirected edge. + + /// This constructor sets the iterator to the first undirected edge. + UEdgeIt(const BpUGraph&) { } + /// UEdge -> UEdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator. + /// This feature necessitates that each time we + /// iterate the undirected edge-set, the iteration order is the + /// same. + UEdgeIt(const BpUGraph&, const UEdge&) { } + /// Next undirected edge + + /// Assign the iterator to the next undirected edge. + UEdgeIt& operator++() { return *this; } + }; + + /// \brief This iterator goes trough the incident undirected + /// edges of a node. + /// + /// This iterator goes trough the incident undirected edges + /// of a certain node + /// of a graph. + /// Its usage is quite simple, for example you can compute the + /// degree (i.e. count the number + /// of incident edges of a node \c n + /// in graph \c g of type \c Graph as follows. + /// \code + /// int count=0; + /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; + /// \endcode + class IncEdgeIt : public UEdge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + IncEdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + IncEdgeIt(Invalid) { } + /// This constructor sets the iterator to first incident edge. + + /// This constructor set the iterator to the first incident edge of + /// the node. + IncEdgeIt(const BpUGraph&, const Node&) { } + /// UEdge -> IncEdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + IncEdgeIt(const BpUGraph&, const UEdge&) { } + /// Next incident edge + + /// Assign the iterator to the next incident edge + /// of the corresponding node. + IncEdgeIt& operator++() { return *this; } + }; + + /// The directed edge type. + + /// The directed edge type. It can be converted to the + /// undirected edge. + class Edge : public UEdge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + Edge() { } + /// Copy constructor. + + /// Copy constructor. + /// + Edge(const Edge& e) : UEdge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + Edge(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(Edge) const { return true; } + /// Inequality operator + + /// \sa operator==(Edge n) + /// + bool operator!=(Edge) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + /// + /// \bug This is a technical requirement. Do we really need this? + bool operator<(Edge) const { return false; } + + }; + /// This iterator goes through each directed edge. + + /// This iterator goes through each edge of a graph. + /// Its usage is quite simple, for example you can count the number + /// of edges in a graph \c g of type \c Graph as follows: + /// \code + /// int count=0; + /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; + /// \endcode + class EdgeIt : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + EdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + EdgeIt(const EdgeIt& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + EdgeIt(Invalid) { } + /// This constructor sets the iterator to the first edge. + + /// This constructor sets the iterator to the first edge of \c g. + ///@param g the graph + EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); } + /// Edge -> EdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + EdgeIt(const BpUGraph&, const Edge&) { } + ///Next edge + + /// Assign the iterator to the next edge. + EdgeIt& operator++() { return *this; } + }; + + /// This iterator goes trough the outgoing directed edges of a node. + + /// This iterator goes trough the \e outgoing edges of a certain node + /// of a graph. + /// Its usage is quite simple, for example you can count the number + /// of outgoing edges of a node \c n + /// in graph \c g of type \c Graph as follows. + /// \code + /// int count=0; + /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; + /// \endcode + + class OutEdgeIt : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + OutEdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + OutEdgeIt(Invalid) { } + /// This constructor sets the iterator to the first outgoing edge. + + /// This constructor sets the iterator to the first outgoing edge of + /// the node. + ///@param n the node + ///@param g the graph + OutEdgeIt(const BpUGraph& n, const Node& g) { + ignore_unused_variable_warning(n); + ignore_unused_variable_warning(g); + } + /// Edge -> OutEdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + OutEdgeIt(const BpUGraph&, const Edge&) { } + ///Next outgoing edge + + /// Assign the iterator to the next + /// outgoing edge of the corresponding node. + OutEdgeIt& operator++() { return *this; } + }; + + /// This iterator goes trough the incoming directed edges of a node. + + /// This iterator goes trough the \e incoming edges of a certain node + /// of a graph. + /// Its usage is quite simple, for example you can count the number + /// of outgoing edges of a node \c n + /// in graph \c g of type \c Graph as follows. + /// \code + /// int count=0; + /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; + /// \endcode + + class InEdgeIt : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + InEdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + InEdgeIt(const InEdgeIt& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + InEdgeIt(Invalid) { } + /// This constructor sets the iterator to first incoming edge. + + /// This constructor set the iterator to the first incoming edge of + /// the node. + ///@param n the node + ///@param g the graph + InEdgeIt(const BpUGraph& g, const Node& n) { + ignore_unused_variable_warning(n); + ignore_unused_variable_warning(g); + } + /// Edge -> InEdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the same. + InEdgeIt(const BpUGraph&, const Edge&) { } + /// Next incoming edge + + /// Assign the iterator to the next inedge of the corresponding node. + /// + InEdgeIt& operator++() { return *this; } + }; + + /// \brief Read write map of the nodes to type \c T. + /// + /// ReadWrite map of the nodes to type \c T. + /// \sa Reference + /// \warning Making maps that can handle bool type (NodeMap) + /// needs some extra attention! + /// \todo Wrong documentation + template + class NodeMap : public ReadWriteMap< Node, T > + { + public: + + ///\e + NodeMap(const BpUGraph&) { } + ///\e + NodeMap(const BpUGraph&, T) { } + + ///Copy constructor + NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } + ///Assignment operator + NodeMap& operator=(const NodeMap&) { return *this; } + // \todo fix this concept + }; + + /// \brief Read write map of the ANodes to type \c T. + /// + /// ReadWrite map of the ANodes to type \c T. + /// \sa Reference + /// \warning Making maps that can handle bool type (NodeMap) + /// needs some extra attention! + /// \todo Wrong documentation + template + class ANodeMap : public ReadWriteMap< Node, T > + { + public: + + ///\e + ANodeMap(const BpUGraph&) { } + ///\e + ANodeMap(const BpUGraph&, T) { } + + ///Copy constructor + ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } + ///Assignment operator + ANodeMap& operator=(const NodeMap&) { return *this; } + // \todo fix this concept + }; + + /// \brief Read write map of the BNodes to type \c T. + /// + /// ReadWrite map of the BNodes to type \c T. + /// \sa Reference + /// \warning Making maps that can handle bool type (NodeMap) + /// needs some extra attention! + /// \todo Wrong documentation + template + class BNodeMap : public ReadWriteMap< Node, T > + { + public: + + ///\e + BNodeMap(const BpUGraph&) { } + ///\e + BNodeMap(const BpUGraph&, T) { } + + ///Copy constructor + BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } + ///Assignment operator + BNodeMap& operator=(const NodeMap&) { return *this; } + // \todo fix this concept + }; + + /// \brief Read write map of the directed edges to type \c T. + /// + /// Reference map of the directed edges to type \c T. + /// \sa Reference + /// \warning Making maps that can handle bool type (EdgeMap) + /// needs some extra attention! + /// \todo Wrong documentation + template + class EdgeMap : public ReadWriteMap + { + public: + + ///\e + EdgeMap(const BpUGraph&) { } + ///\e + EdgeMap(const BpUGraph&, T) { } + ///Copy constructor + EdgeMap(const EdgeMap& em) : ReadWriteMap(em) { } + ///Assignment operator + EdgeMap& operator=(const EdgeMap&) { return *this; } + // \todo fix this concept + }; + + /// Read write map of the undirected edges to type \c T. + + /// Reference map of the edges to type \c T. + /// \sa Reference + /// \warning Making maps that can handle bool type (UEdgeMap) + /// needs some extra attention! + /// \todo Wrong documentation + template + class UEdgeMap : public ReadWriteMap + { + public: + + ///\e + UEdgeMap(const BpUGraph&) { } + ///\e + UEdgeMap(const BpUGraph&, T) { } + ///Copy constructor + UEdgeMap(const UEdgeMap& em) : ReadWriteMap(em) {} + ///Assignment operator + UEdgeMap &operator=(const UEdgeMap&) { return *this; } + // \todo fix this concept + }; + + /// \brief Direct the given undirected edge. + /// + /// Direct the given undirected edge. The returned edge source + /// will be the given edge. + Edge direct(const UEdge&, const Node&) const { + return INVALID; + } + + /// \brief Direct the given undirected edge. + /// + /// Direct the given undirected edge. The returned edge source + /// will be the source of the undirected edge if the given bool + /// is true. + Edge direct(const UEdge&, bool) const { + return INVALID; + } + + /// \brief Returns true when the given node is an ANode. + /// + /// Returns true when the given node is an ANode. + bool aNode(Node) const { return true;} + + /// \brief Returns true when the given node is an BNode. + /// + /// Returns true when the given node is an BNode. + bool bNode(Node) const { return true;} + + /// \brief Returns the edge's end node which is in the ANode set. + /// + /// Returns the edge's end node which is in the ANode set. + Node aNode(UEdge) const { return INVALID;} + + /// \brief Returns the edge's end node which is in the BNode set. + /// + /// Returns the edge's end node which is in the BNode set. + Node bNode(UEdge) const { return INVALID;} + + /// \brief Returns true if the edge has default orientation. + /// + /// Returns whether the given directed edge is same orientation as + /// the corresponding undirected edge. + bool direction(Edge) const { return true; } + + /// \brief Returns the opposite directed edge. + /// + /// Returns the opposite directed edge. + Edge oppositeEdge(Edge) const { return INVALID; } + + /// \brief Opposite node on an edge + /// + /// \return the opposite of the given Node on the given Edge + Node oppositeNode(Node, UEdge) const { return INVALID; } + + /// \brief First node of the undirected edge. + /// + /// \return the first node of the given UEdge. + /// + /// Naturally uectected edges don't have direction and thus + /// don't have source and target node. But we use these two methods + /// to query the two endnodes of the edge. The direction of the edge + /// which arises this way is called the inherent direction of the + /// undirected edge, and is used to define the "default" direction + /// of the directed versions of the edges. + /// \sa direction + Node source(UEdge) const { return INVALID; } + + /// \brief Second node of the undirected edge. + Node target(UEdge) const { return INVALID; } + + /// \brief Source node of the directed edge. + Node source(Edge) const { return INVALID; } + + /// \brief Target node of the directed edge. + Node target(Edge) const { return INVALID; } + + /// \brief Base node of the iterator + /// + /// Returns the base node (the source in this case) of the iterator + Node baseNode(OutEdgeIt e) const { + return source(e); + } + + /// \brief Running node of the iterator + /// + /// Returns the running node (the target in this case) of the + /// iterator + Node runningNode(OutEdgeIt e) const { + return target(e); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node (the target in this case) of the iterator + Node baseNode(InEdgeIt e) const { + return target(e); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (the source in this case) of the + /// iterator + Node runningNode(InEdgeIt e) const { + return source(e); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node of the iterator + Node baseNode(IncEdgeIt) const { + return INVALID; + } + + /// \brief Running node of the iterator + /// + /// Returns the running node of the iterator + Node runningNode(IncEdgeIt) const { + return INVALID; + } + + template + struct Constraints { + void constraints() { + } + }; + + }; + + /// \brief An empty non-static undirected graph class. + /// + /// This class provides everything that \ref BpUGraph does. + /// Additionally it enables building graphs from scratch. + class ExtendableBpUGraph : public BpUGraph { + public: + + /// \brief Add a new ANode to the graph. + /// + /// Add a new ANode to the graph. + /// \return the new node. + Node addANode(); + + /// \brief Add a new ANode to the graph. + /// + /// Add a new ANode to the graph. + /// \return the new node. + Node addBNode(); + + /// \brief Add a new undirected edge to the graph. + /// + /// Add a new undirected edge to the graph. One of the nodes + /// should be ANode and the other should be BNode. + /// \pre The nodes are not in the same nodeset. + /// \return the new edge. + UEdge addEdge(const Node& from, const Node& to); + + /// \brief Resets the graph. + /// + /// This function deletes all undirected edges and nodes of the graph. + /// It also frees the memory allocated to store them. + void clear() { } + + template + struct Constraints { + void constraints() {} + }; + + }; + + /// \brief An empty erasable undirected graph class. + /// + /// This class is an extension of \ref ExtendableBpUGraph. It makes it + /// possible to erase undirected edges or nodes. + class ErasableBpUGraph : public ExtendableBpUGraph { + public: + + /// \brief Deletes a node. + /// + /// Deletes a node. + /// + void erase(Node) { } + /// \brief Deletes an undirected edge. + /// + /// Deletes an undirected edge. + /// + void erase(UEdge) { } + + template + struct Constraints { + void constraints() {} + }; + + }; + + /// @} + + } + +} + +#endif