# HG changeset patch # User jacint # Date 1075474571 0 # Node ID e125f12784e2e82d2886f4e1996c85677e6baf0e # Parent f00a4f7e21498f1ad69dccfc5ba0f46e837d6f1d *** empty log message *** diff -r f00a4f7e2149 -r e125f12784e2 src/work/dijkstra.hh --- a/src/work/dijkstra.hh Fri Jan 30 14:55:10 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,192 +0,0 @@ -/* - *dijkstra - *by jacint - *Performs Dijkstra's algorithm from node s. - * - *Constructor: - * - *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance) - * - * - * - *Member functions: - * - *void run() - * - * The following function should be used after run() was already run. - * - * - *T dist(node_iterator v) : returns the distance from s to v. - * It is 0 if v is not reachable from s. - * - * - *edge_iterator pred(node_iterator v) - * Returns the last edge of a shortest s-v path. - * Returns an invalid iterator if v=s or v is not - * reachable from s. - * - * - *bool reach(node_iterator v) : true if v is reachable from s - * - * - * - * - * - *Problems: - * - *Heap implementation is needed, because the priority queue of stl - *does not have a mathod for key-decrease, so we had to use here a - *g\'any solution. - * - *The implementation of infinity would be desirable, see after line 100. - */ - -#ifndef DIJKSTRA_HH -#define DIJKSTRA_HH - -#include -#include - -#include -#include - - -namespace std { - namespace marci { - - - - - - template - class dijkstra{ - typedef typename graph_traits::node_iterator node_iterator; - typedef typename graph_traits::edge_iterator edge_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; - typedef typename graph_traits::out_edge_iterator out_edge_iterator; - - - graph_type& G; - node_iterator s; - node_property_vector predecessor; - node_property_vector distance; - edge_property_vector length; - node_property_vector reached; - - public : - - /* - The distance of all the nodes is 0. - */ - dijkstra(graph_type& _G, node_iterator _s, edge_property_vector& _length) : - G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } - - - - /*By Misi.*/ - struct node_dist_comp - { - node_property_vector &d; - node_dist_comp(node_property_vector &_d) : d(_d) {} - - bool operator()(const node_iterator& u, const node_iterator& v) const - { return d.get(u) < d.get(v); } - }; - - - - void run() { - - node_property_vector scanned(G, false); - std::priority_queue, node_dist_comp> - heap(( node_dist_comp(distance) )); - - heap.push(s); - reached.put(s, true); - - while (!heap.empty()) { - - node_iterator v=heap.top(); - heap.pop(); - - - if (!scanned.get(v)) { - - for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) { - node_iterator w=G.head(e); - - if (!scanned.get(w)) { - if (!reached.get(w)) { - reached.put(w,true); - distance.put(w, distance.get(v)-length.get(e)); - predecessor.put(w,e); - } else if (distance.get(v)-length.get(e)>distance.get(w)) { - distance.put(w, distance.get(v)-length.get(e)); - predecessor.put(w,e); - } - - heap.push(w); - - } - - } - scanned.put(v,true); - - } // if (!scanned.get(v)) - - - - } // while (!heap.empty()) - - - } //void run() - - - - - - /* - *Returns the distance of the node v. - *It is 0 for the root and for the nodes not - *reachable form the root. - */ - T dist(node_iterator v) { - return -distance.get(v); - } - - - - /* - * Returns the last edge of a shortest s-v path. - * Returns an invalid iterator if v=root or v is not - * reachable from the root. - */ - edge_iterator pred(node_iterator v) { - if (v!=s) { return predecessor.get(v);} - else {return edge_iterator();} - } - - - - bool reach(node_iterator v) { - return reached.get(v); - } - - - - - - - - - - };// class dijkstra - - - - } // namespace marci -} -#endif //DIJKSTRA_HH - - diff -r f00a4f7e2149 -r e125f12784e2 src/work/jacint/dijkstra.hh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/dijkstra.hh Fri Jan 30 14:56:11 2004 +0000 @@ -0,0 +1,192 @@ +/* + *dijkstra + *by jacint + *Performs Dijkstra's algorithm from node s. + * + *Constructor: + * + *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance) + * + * + * + *Member functions: + * + *void run() + * + * The following function should be used after run() was already run. + * + * + *T dist(node_iterator v) : returns the distance from s to v. + * It is 0 if v is not reachable from s. + * + * + *edge_iterator pred(node_iterator v) + * Returns the last edge of a shortest s-v path. + * Returns an invalid iterator if v=s or v is not + * reachable from s. + * + * + *bool reach(node_iterator v) : true if v is reachable from s + * + * + * + * + * + *Problems: + * + *Heap implementation is needed, because the priority queue of stl + *does not have a mathod for key-decrease, so we had to use here a + *g\'any solution. + * + *The implementation of infinity would be desirable, see after line 100. + */ + +#ifndef DIJKSTRA_HH +#define DIJKSTRA_HH + +#include +#include + +#include +#include + + +namespace std { + namespace marci { + + + + + + template + class dijkstra{ + typedef typename graph_traits::node_iterator node_iterator; + typedef typename graph_traits::edge_iterator edge_iterator; + typedef typename graph_traits::each_node_iterator each_node_iterator; + typedef typename graph_traits::in_edge_iterator in_edge_iterator; + typedef typename graph_traits::out_edge_iterator out_edge_iterator; + + + graph_type& G; + node_iterator s; + node_property_vector predecessor; + node_property_vector distance; + edge_property_vector length; + node_property_vector reached; + + public : + + /* + The distance of all the nodes is 0. + */ + dijkstra(graph_type& _G, node_iterator _s, edge_property_vector& _length) : + G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } + + + + /*By Misi.*/ + struct node_dist_comp + { + node_property_vector &d; + node_dist_comp(node_property_vector &_d) : d(_d) {} + + bool operator()(const node_iterator& u, const node_iterator& v) const + { return d.get(u) < d.get(v); } + }; + + + + void run() { + + node_property_vector scanned(G, false); + std::priority_queue, node_dist_comp> + heap(( node_dist_comp(distance) )); + + heap.push(s); + reached.put(s, true); + + while (!heap.empty()) { + + node_iterator v=heap.top(); + heap.pop(); + + + if (!scanned.get(v)) { + + for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) { + node_iterator w=G.head(e); + + if (!scanned.get(w)) { + if (!reached.get(w)) { + reached.put(w,true); + distance.put(w, distance.get(v)-length.get(e)); + predecessor.put(w,e); + } else if (distance.get(v)-length.get(e)>distance.get(w)) { + distance.put(w, distance.get(v)-length.get(e)); + predecessor.put(w,e); + } + + heap.push(w); + + } + + } + scanned.put(v,true); + + } // if (!scanned.get(v)) + + + + } // while (!heap.empty()) + + + } //void run() + + + + + + /* + *Returns the distance of the node v. + *It is 0 for the root and for the nodes not + *reachable form the root. + */ + T dist(node_iterator v) { + return -distance.get(v); + } + + + + /* + * Returns the last edge of a shortest s-v path. + * Returns an invalid iterator if v=root or v is not + * reachable from the root. + */ + edge_iterator pred(node_iterator v) { + if (v!=s) { return predecessor.get(v);} + else {return edge_iterator();} + } + + + + bool reach(node_iterator v) { + return reached.get(v); + } + + + + + + + + + + };// class dijkstra + + + + } // namespace marci +} +#endif //DIJKSTRA_HH + + diff -r f00a4f7e2149 -r e125f12784e2 src/work/jacint/reverse_bfs.hh --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/reverse_bfs.hh Fri Jan 30 14:56:11 2004 +0000 @@ -0,0 +1,94 @@ +/* +reverse_bfs +by jacint +Performs a bfs on the out edges. It does not count predecessors, +only the distances, but one can easily modify it to know the pred as well. + +Constructor: + +reverse_bfs(graph_type& G, node_iterator t) + + + +Member functions: + +void run(): runs a reverse bfs from t + + The following function should be used after run() was already run. + +int dist(node_iterator v) : returns the distance from v to t. It is the number of nodes if t is not reachable from v. + +*/ +#ifndef REVERSE_BFS_HH +#define REVERSE_BFS_HH + +#include + +#include +#include + + + +namespace marci { + + template + class reverse_bfs { + typedef typename graph_traits::node_iterator node_iterator; + //typedef typename graph_traits::edge_iterator edge_iterator; + typedef typename graph_traits::each_node_iterator each_node_iterator; + typedef typename graph_traits::in_edge_iterator in_edge_iterator; + + + graph_type& G; + node_iterator t; +// node_property_vector pred; + node_property_vector distance; + + + public : + + /* + The distance of the nodes is n, except t for which it is 0. + */ + reverse_bfs(graph_type& _G, node_iterator _t) : G(_G), t(_t), distance(G, number_of(G.first_node())) { + distance.put(t,0); + } + + void run() { + + node_property_vector reached(G, false); + reached.put(t, true); + + std::queue bfs_queue; + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + node_iterator v=bfs_queue.front(); + bfs_queue.pop(); + + for(in_edge_iterator e=G.first_in_edge(v); e.valid(); ++e) { + node_iterator w=G.tail(e); + if (!reached.get(w)) { + bfs_queue.push(w); + distance.put(w, distance.get(v)+1); + reached.put(w, true); + } + } + } + } + + + + int dist(node_iterator v) { + return distance.get(v); + } + + + }; + +} // namespace marci + +#endif //REVERSE_BFS_HH + + diff -r f00a4f7e2149 -r e125f12784e2 src/work/preflow_push_hl.hh --- a/src/work/preflow_push_hl.hh Fri Jan 30 14:55:10 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,320 +0,0 @@ -/* -preflow_push_hl.hh -by jacint. -Runs the highest label variant of the preflow push algorithm with -running time O(n^2\sqrt(m)). - -Member functions: - -void run() : runs the algorithm - - The following functions should be used after run() was already run. - -T maxflow() : returns the value of a maximum flow - -T flowonedge(edge_iterator e) : for a fixed maximum flow x it returns x(e) - -edge_property_vector allflow() : returns the fixed maximum flow x - -node_property_vector mincut() : returns a - characteristic vector of a minimum cut. (An empty level - in the algorithm gives a minimum cut.) -*/ - -#ifndef PREFLOW_PUSH_HL_HH -#define PREFLOW_PUSH_HL_HH - -#include -#include -#include - -#include -#include -#include - -namespace marci { - - template - class preflow_push_hl { - - typedef typename graph_traits::node_iterator node_iterator; - typedef typename graph_traits::edge_iterator edge_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::out_edge_iterator out_edge_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; - typedef typename graph_traits::each_edge_iterator each_edge_iterator; - - - graph_type& G; - node_iterator s; - node_iterator t; - edge_property_vector flow; - edge_property_vector& capacity; - T value; - node_property_vector mincutvector; - - - public: - - preflow_push_hl(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { } - - - - - /* - The run() function runs the highest label preflow-push, - running time: O(n^2\sqrt(m)) - */ - void run() { - - node_property_vector level(G); //level of node - node_property_vector excess(G); //excess of node - - int n=number_of(G.first_node()); //number of nodes - int b=n; - /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/ - - std::vector > stack(2*n-1); //Stack of the active nodes in level i. - - - - - /*Reverse_bfs from t, to find the starting level.*/ - - reverse_bfs bfs(G, t); - bfs.run(); - for(each_node_iterator v=G.first_node(); v.valid(); ++v) { - level.put(v, bfs.dist(v)); - //std::cout << "the level of " << v << " is " << bfs.dist(v); - } - - /*The level of s is fixed to n*/ - level.put(s,n); - - - - - - /* Starting flow. It is everywhere 0 at the moment. */ - - for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) - { - node_iterator w=G.head(i); - flow.put(i, capacity.get(i)); - stack[bfs.dist(w)].push(w); - excess.put(w, capacity.get(i)); - } - - - /* - End of preprocessing - */ - - - - /* - Push/relabel on the highest level active nodes. - */ - - /*While there exists active node.*/ - while (b) { - - /*We decrease the bound if there is no active node of level b.*/ - if (stack[b].empty()) { - --b; - } else { - - node_iterator w=stack[b].top(); //w is the highest label active node. - stack[b].pop(); //We delete w from the stack. - - int newlevel=2*n-2; //In newlevel we maintain the next level of w. - - for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) { - node_iterator v=G.head(e); - /*e is the edge wv.*/ - - if (flow.get(e) excess.get(w)) { - /*A nonsaturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - flow.put(e, flow.get(e)+excess.get(w)); - excess.put(v, excess.get(v)+excess.get(w)); - excess.put(w,0); - //std::cout << w << " " << v <<" elore elen nonsat pump " << std::endl; - break; - } else { - /*A saturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e)); - excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e)); - flow.put(e, capacity.get(e)); - //std::cout << w<<" " < excess.get(w)) - } // if(level.get(w)==level.get(v)+1) - - else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} - - } //if (flow.get(e)0) { - /*e is an edge of the residual graph */ - - if(level.get(w)==level.get(v)+1) { - /*Push is allowed now*/ - - if (flow.get(e) > excess.get(w)) { - /*A nonsaturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - flow.put(e, flow.get(e)-excess.get(w)); - excess.put(v, excess.get(v)+excess.get(w)); - excess.put(w,0); - //std::cout << v << " " << w << " vissza elen nonsat pump " << std::endl; - break; - } else { - /*A saturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - excess.put(v, excess.get(v)+flow.get(e)); - excess.put(w, excess.get(w)-flow.get(e)); - flow.put(e,0); - //std::cout << v <<" " << w << " vissza elen sat pump " << std::endl; - if (excess.get(w)==0) { break;} - } //if (flow.get(e) > excess.get(v)) - } //if(level.get(w)==level.get(v)+1) - - else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} - - - } //if (flow.get(e)>0) - - } //for - - - if (excess.get(w)>0) { - level.put(w,++newlevel); - stack[newlevel].push(w); - b=newlevel; - //std::cout << "The new level of " << w << " is "<< newlevel < allflow() { - return flow; - } - - - - /* - Returns a minimum cut by using a reverse bfs from t in the residual graph. - */ - - node_property_vector mincut() { - - std::queue queue; - - mincutvector.put(t,false); - queue.push(t); - - while (!queue.empty()) { - node_iterator w=queue.front(); - queue.pop(); - - for(in_edge_iterator e=G.first_in_edge(w) ; e.valid(); ++e) { - node_iterator v=G.tail(e); - if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) { - queue.push(v); - mincutvector.put(v, false); - } - } // for - - for(out_edge_iterator e=G.first_out_edge(w) ; e.valid(); ++e) { - node_iterator v=G.head(e); - if (mincutvector.get(v) && flow.get(e) > 0 ) { - queue.push(v); - mincutvector.put(v, false); - } - } // for - - } - - return mincutvector; - - } - - - }; -}//namespace marci -#endif - - - - diff -r f00a4f7e2149 -r e125f12784e2 src/work/preflow_push_max_flow.hh --- a/src/work/preflow_push_max_flow.hh Fri Jan 30 14:55:10 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,315 +0,0 @@ -/* -preflow_push_max_flow_hh -by jacint. -Runs a preflow push algorithm with the modification, -that we do not push on nodes with level at least n. -Moreover, if a level gets empty, we put all nodes above that -level to level n. Hence, in the end, we arrive at a maximum preflow -with value of a max flow value. An empty level gives a minimum cut. - -Member functions: - -void run() : runs the algorithm - - The following functions should be used after run() was already run. - -T maxflow() : returns the value of a maximum flow - -node_property_vector mincut(): returns a - characteristic vector of a minimum cut. -*/ - -#ifndef PREFLOW_PUSH_MAX_FLOW_HH -#define PREFLOW_PUSH_MAX_FLOW_HH - -#include -#include -#include - -#include -#include -#include -#include - - -namespace marci { - - template - class preflow_push_max_flow { - - typedef typename graph_traits::node_iterator node_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::out_edge_iterator out_edge_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; - - graph_type& G; - node_iterator s; - node_iterator t; - edge_property_vector& capacity; - T value; - node_property_vector mincutvector; - - - - public: - - preflow_push_max_flow(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector& _capacity) : G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { } - - - /* - The run() function runs a modified version of the highest label preflow-push, which only - finds a maximum preflow, hence giving the value of a maximum flow. - */ - void run() { - - edge_property_vector flow(G, 0); //the flow value, 0 everywhere - node_property_vector level(G); //level of node - node_property_vector excess(G); //excess of node - - int n=number_of(G.first_node()); //number of nodes - int b=n-2; - /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/ - - std::vector numb(n); //The number of nodes on level i < n. - - std::vector > stack(2*n-1); //Stack of the active nodes in level i. - - - - /*Reverse_bfs from t, to find the starting level.*/ - - reverse_bfs bfs(G, t); - bfs.run(); - for(each_node_iterator v=G.first_node(); v.valid(); ++v) - { - int dist=bfs.dist(v); - level.put(v, dist); - ++numb[dist]; - } - - /*The level of s is fixed to n*/ - level.put(s,n); - - - /* Starting flow. It is everywhere 0 at the moment. */ - - for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) - { - node_iterator w=G.head(i); - flow.put(i, capacity.get(i)); - stack[bfs.dist(w)].push(w); - excess.put(w, capacity.get(i)); - } - - - /* - End of preprocessing - */ - - - - - /* - Push/relabel on the highest level active nodes. - */ - - /*While there exists an active node.*/ - while (b) { - - /*We decrease the bound if there is no active node of level b.*/ - if (stack[b].empty()) { - --b; - } else { - - node_iterator w=stack[b].top(); //w is the highest label active node. - stack[b].pop(); //We delete w from the stack. - - int newlevel=2*n-2; //In newlevel we maintain the next level of w. - - for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) { - node_iterator v=G.head(e); - /*e is the edge wv.*/ - - if (flow.get(e) excess.get(w)) { - /*A nonsaturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - flow.put(e, flow.get(e)+excess.get(w)); - excess.put(v, excess.get(v)+excess.get(w)); - excess.put(w,0); - //std::cout << w << " " << v <<" elore elen nonsat pump " << std::endl; - break; - } else { - /*A saturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e)); - excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e)); - flow.put(e, capacity.get(e)); - //std::cout << w <<" " << v <<" elore elen sat pump " << std::endl; - if (excess.get(w)==0) break; - /*If w is not active any more, then we go on to the next node.*/ - - } // if (capacity.get(e)-flow.get(e) > excess.get(w)) - } // if (level.get(w)==level.get(v)+1) - - else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} - - } //if (flow.get(e)0) { - /*e is an edge of the residual graph */ - - if(level.get(w)==level.get(v)+1) { - /*Push is allowed now*/ - - if (flow.get(e) > excess.get(w)) { - /*A nonsaturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - flow.put(e, flow.get(e)-excess.get(w)); - excess.put(v, excess.get(v)+excess.get(w)); - excess.put(w,0); - //std::cout << v << " " << w << " vissza elen nonsat pump " << std::endl; - break; - } else { - /*A saturating push.*/ - - if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); - /*v becomes active.*/ - - flow.put(e,0); - excess.put(v, excess.get(v)+flow.get(e)); - excess.put(w, excess.get(w)-flow.get(e)); - //std::cout << v <<" " << w << " vissza elen sat pump " << std::endl; - if (excess.get(w)==0) { break;} - } //if (flow.get(e) > excess.get(v)) - } //if(level.get(w)==level.get(v)+1) - - else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} - //std::cout << "Leveldecrease of node " << w << " to " << newlevel << std::endl; - - } //if (flow.get(e)>0) - - } //for in-edge - - - - - /* - Relabel - */ - if (excess.get(w)>0) { - /*Now newlevel <= n*/ - - int l=level.get(w); //l is the old level of w. - --numb[l]; - - if (newlevel == n) { - level.put(w,n); - - } else { - - if (numb[l]) { - /*If the level of w remains nonempty.*/ - - level.put(w,++newlevel); - ++numb[newlevel]; - stack[newlevel].push(w); - b=newlevel; - } else { - /*If the level of w gets empty.*/ - - for (each_node_iterator v=G.first_node() ; v.valid() ; ++v) { - if (level.get(v) >= l ) { - level.put(v,n); - } - } - - for (int i=l+1 ; i!=n ; ++i) numb[i]=0; - } //if (numb[l]) - - } // if (newlevel = n) - - } // if (excess.get(w)>0) - - - } //else - - } //while(b) - - value=excess.get(t); - /*Max flow value.*/ - - - - /* - We find an empty level, e. The nodes above this level give - a minimum cut. - */ - - int e=1; - - while(e) { - if(numb[e]) ++e; - else break; - } - for (each_node_iterator v=G.first_node(); v.valid(); ++v) { - if (level.get(v) > e) mincutvector.put(v, true); - } - - - } // void run() - - - - /* - Returns the maximum value of a flow. - */ - - T maxflow() { - return value; - } - - - - /* - Returns a minimum cut. - */ - - node_property_vector mincut() { - return mincutvector; - } - - - }; -}//namespace marci -#endif - - - - - diff -r f00a4f7e2149 -r e125f12784e2 src/work/reverse_bfs.hh --- a/src/work/reverse_bfs.hh Fri Jan 30 14:55:10 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,94 +0,0 @@ -/* -reverse_bfs -by jacint -Performs a bfs on the out edges. It does not count predecessors, -only the distances, but one can easily modify it to know the pred as well. - -Constructor: - -reverse_bfs(graph_type& G, node_iterator t) - - - -Member functions: - -void run(): runs a reverse bfs from t - - The following function should be used after run() was already run. - -int dist(node_iterator v) : returns the distance from v to t. It is the number of nodes if t is not reachable from v. - -*/ -#ifndef REVERSE_BFS_HH -#define REVERSE_BFS_HH - -#include - -#include -#include - - - -namespace marci { - - template - class reverse_bfs { - typedef typename graph_traits::node_iterator node_iterator; - //typedef typename graph_traits::edge_iterator edge_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; - - - graph_type& G; - node_iterator t; -// node_property_vector pred; - node_property_vector distance; - - - public : - - /* - The distance of the nodes is n, except t for which it is 0. - */ - reverse_bfs(graph_type& _G, node_iterator _t) : G(_G), t(_t), distance(G, number_of(G.first_node())) { - distance.put(t,0); - } - - void run() { - - node_property_vector reached(G, false); - reached.put(t, true); - - std::queue bfs_queue; - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - node_iterator v=bfs_queue.front(); - bfs_queue.pop(); - - for(in_edge_iterator e=G.first_in_edge(v); e.valid(); ++e) { - node_iterator w=G.tail(e); - if (!reached.get(w)) { - bfs_queue.push(w); - distance.put(w, distance.get(v)+1); - reached.put(w, true); - } - } - } - } - - - - int dist(node_iterator v) { - return distance.get(v); - } - - - }; - -} // namespace marci - -#endif //REVERSE_BFS_HH - -