# HG changeset patch # User jacint # Date 1076685130 0 # Node ID e560867cbe79cbbda8de81b9fadcd17255c833f0 # Parent 1d8d806ac8e056aa08637a4c1f019c698712671f modern valtozat diff -r 1d8d806ac8e0 -r e560867cbe79 src/work/jacint/flow_test.cc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/flow_test.cc Fri Feb 13 15:12:10 2004 +0000 @@ -0,0 +1,247 @@ +#include +#include +#include + +#include +#include +#include +#include +#include +#include +//#include + +using namespace marci; + + +int main (int, char*[]) +{ + typedef graph_traits::node_iterator node_iterator; + typedef graph_traits::edge_iterator edge_iterator; + typedef graph_traits::each_node_iterator each_node_iterator; + typedef graph_traits::each_edge_iterator each_edge_iterator; + typedef graph_traits::out_edge_iterator out_edge_iterator; + typedef graph_traits::in_edge_iterator in_edge_iterator; + typedef graph_traits::sym_edge_iterator sym_edge_iterator; + + list_graph flow_test; + + //Ahuja könyv példája, maxflowvalue=13 + node_iterator s=flow_test.add_node(); + node_iterator v1=flow_test.add_node(); + node_iterator v2=flow_test.add_node(); + node_iterator v3=flow_test.add_node(); + node_iterator v4=flow_test.add_node(); + node_iterator v5=flow_test.add_node(); + node_iterator t=flow_test.add_node(); + + node_property_vector node_name(flow_test); + node_name.put(s, "s"); + node_name.put(v1, "v1"); + node_name.put(v2, "v2"); + node_name.put(v3, "v3"); + node_name.put(v4, "v4"); + node_name.put(v5, "v5"); + node_name.put(t, "t"); + + edge_iterator s_v1=flow_test.add_edge(s, v1); + edge_iterator s_v2=flow_test.add_edge(s, v2); + edge_iterator s_v3=flow_test.add_edge(s, v3); + edge_iterator v2_v4=flow_test.add_edge(v2, v4); + edge_iterator v2_v5=flow_test.add_edge(v2, v5); + edge_iterator v3_v5=flow_test.add_edge(v3, v5); + edge_iterator v4_t=flow_test.add_edge(v4, t); + edge_iterator v5_t=flow_test.add_edge(v5, t); + edge_iterator v2_s=flow_test.add_edge(v2, s); + + edge_property_vector cap(flow_test); + cap.put(s_v1, 0); + cap.put(s_v2, 10); + cap.put(s_v3, 10); + cap.put(v2_v4, 5); + cap.put(v2_v5, 8); + cap.put(v3_v5, 5); + cap.put(v4_t, 8); + cap.put(v5_t, 8); + cap.put(v2_s, 0); + + + + //Marci példája, maxflowvalue=23 + /* node_iterator s=flow_test.add_node(); + node_iterator v1=flow_test.add_node(); + node_iterator v2=flow_test.add_node(); + node_iterator v3=flow_test.add_node(); + node_iterator v4=flow_test.add_node(); + node_iterator t=flow_test.add_node(); + node_iterator w=flow_test.add_node(); + + + node_property_vector node_name(flow_test); + node_name.put(s, "s"); + node_name.put(v1, "v1"); + node_name.put(v2, "v2"); + node_name.put(v3, "v3"); + node_name.put(v4, "v4"); + node_name.put(t, "t"); + node_name.put(w, "w"); + + edge_iterator s_v1=flow_test.add_edge(s, v1); + edge_iterator s_v2=flow_test.add_edge(s, v2); + edge_iterator v1_v2=flow_test.add_edge(v1, v2); + edge_iterator v2_v1=flow_test.add_edge(v2, v1); + edge_iterator v1_v3=flow_test.add_edge(v1, v3); + edge_iterator v3_v2=flow_test.add_edge(v3, v2); + edge_iterator v2_v4=flow_test.add_edge(v2, v4); + edge_iterator v4_v3=flow_test.add_edge(v4, v3); + edge_iterator v3_t=flow_test.add_edge(v3, t); + edge_iterator v4_t=flow_test.add_edge(v4, t); + edge_iterator v3_v3=flow_test.add_edge(v3, v3); + edge_iterator s_w=flow_test.add_edge(s, w); + // edge_iterator v2_s=flow_test.add_edge(v2, s); + + + + edge_property_vector cap(flow_test); //serves as length in dijkstra + cap.put(s_v1, 16); + cap.put(s_v2, 13); + cap.put(v1_v2, 10); + cap.put(v2_v1, 4); + cap.put(v1_v3, 12); + cap.put(v3_v2, 9); + cap.put(v2_v4, 14); + cap.put(v4_v3, 7); + cap.put(v3_t, 20); + cap.put(v4_t, 4); + cap.put(v3_v3, 4); + cap.put(s_w, 4); + // cap.put(v2_s, 0); + +*/ + + //pelda 3, maxflowvalue=4 + /* node_iterator s=flow_test.add_node(); + node_iterator v1=flow_test.add_node(); + node_iterator v2=flow_test.add_node(); + node_iterator t=flow_test.add_node(); + node_iterator w=flow_test.add_node(); + + node_property_vector node_name(flow_test); + node_name.put(s, "s"); + node_name.put(v1, "v1"); + node_name.put(v2, "v2"); + node_name.put(t, "t"); + node_name.put(w, "w"); + + edge_iterator s_v1=flow_test.add_edge(s, v1); + edge_iterator v1_v2=flow_test.add_edge(v1, v2); + edge_iterator v2_t=flow_test.add_edge(v2, t); + edge_iterator v1_v1=flow_test.add_edge(v1, v1); + edge_iterator s_w=flow_test.add_edge(s, w); + + + edge_property_vector cap(flow_test); + + cap.put(s_v1, 16); + cap.put(v1_v2, 10); + cap.put(v2_t, 4); + cap.put(v1_v1, 3); + cap.put(s_w, 5); + */ + + + + /* + std::cout << "Testing reverse_bfs..." << std::endl; + + reverse_bfs bfs_test(flow_test, t); + + bfs_test.run(); + + for (each_node_iterator w=flow_test.first_node(); w.valid(); ++w) { + std::cout <<"The distance of " << w << " is " << bfs_test.dist(w) < preflow_push_test(flow_test, s, t, cap); + + preflow_push_test.run(); + + std::cout << "Maximum flow value is: " << preflow_push_test.maxflow() << "."< flow=preflow_push_test.allflow(); + for (each_edge_iterator e=flow_test.first_edge(); e.valid(); ++e) { + std::cout <<"Flow on edge " << flow_test.tail(e) <<"-" << flow_test.head(e)<< " is " < mincut=preflow_push_test.mincut(); + + for (each_node_iterator v=flow_test.first_node(); v.valid(); ++v) { + if (mincut.get(v)) std::cout < max_flow_test(flow_test, s, t, cap); + + max_flow_test.run(); + + std::cout << "Maximum flow value is: " << max_flow_test.maxflow() << "."<< std::endl; + + std::cout << "A minimum cut: " < mincut2=max_flow_test.mincut(); + + for (each_node_iterator v=flow_test.first_node(); v.valid(); ++v) { + if (mincut2.get(v)) std::cout < dijkstra_test(flow_test, root, cap); + + dijkstra_test.run(); + + for (each_node_iterator w=flow_test.first_node(); w.valid(); ++w) { + if (dijkstra_test.reach(w)) { + std::cout <<"The distance of " << w << " is " << dijkstra_test.dist(w); + if (dijkstra_test.pred(w).valid()) { + std::cout <<", a shortest path from the root ends with edge " << dijkstra_test.pred(w) < allflow() : returns the fixed maximum flow x + +NodeMap mincut() : returns a + characteristic vector of a minimum cut. (An empty level + in the algorithm gives a minimum cut.) +*/ + +#ifndef PREFLOW_PUSH_HL_H +#define PREFLOW_PUSH_HL_H + +#include +#include +#include + +#include + +namespace marci { + + template + class preflow_push_hl { + + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::EdgeIt EdgeIt; + typedef typename Graph::EachNodeIt EachNodeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + typedef typename Graph::EachEdgeIt EachEdgeIt; + + + Graph& G; + NodeIt s; + NodeIt t; + Graph::EdgeMap flow; + Graph::EdgeMap capacity; + T value; + Graph::NodeMap mincutvector; + + + public: + + preflow_push_hl(Graph& _G, NodeIt _s, NodeIt _t, + Graph::EdgeMap& _capacity) : + G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { } + + + + + /* + The run() function runs the highest label preflow-push, + running time: O(n^2\sqrt(m)) + */ + void run() { + + Graph::NodeMap level(G); //level of Node + Graph::NodeMap excess(G); //excess of Node + + int n=G.nodeNum(); //number of Nodes + int b=n; + /*b is a bound on the highest level of an active Node. In the beginning it is at most n-2.*/ + + std::vector > stack(2*n-1); //Stack of the active Nodes in level i. + + + + + /*Reverse_bfs from t, to find the starting level.*/ + + reverse_bfs bfs(G, t); + bfs.run(); + for(EachNodeIt v=G.template first(); v.valid(); ++v) { + level.set(v, bfs.dist(v)); + //std::cout << "the level of " << v << " is " << bfs.dist(v); + } + + /*The level of s is fixed to n*/ + level.set(s,n); + + + + + + /* Starting flow. It is everywhere 0 at the moment. */ + + for(OutEdgeIt i=G.template first(s); i.valid(); ++i) + { + NodeIt w=G.head(i); + flow.set(i, capacity.get(i)); + stack[bfs.dist(w)].push(w); + excess.set(w, capacity.get(i)); + } + + + /* + End of preprocessing + */ + + + + /* + Push/relabel on the highest level active Nodes. + */ + + /*While there exists active Node.*/ + while (b) { + + /*We decrease the bound if there is no active Node of level b.*/ + if (stack[b].empty()) { + --b; + } else { + + NodeIt w=stack[b].top(); //w is the highest label active Node. + stack[b].pop(); //We delete w from the stack. + + int newlevel=2*n-2; //In newlevel we maintain the next level of w. + + for(OutEdgeIt e=G.template first(w); e.valid(); ++e) { + NodeIt v=G.head(e); + /*e is the Edge wv.*/ + + if (flow.get(e) excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.set(e, flow.get(e)+excess.get(w)); + excess.set(v, excess.get(v)+excess.get(w)); + excess.set(w,0); + //std::cout << w << " " << v <<" elore elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + excess.set(v, excess.get(v)+capacity.get(e)-flow.get(e)); + excess.set(w, excess.get(w)-capacity.get(e)+flow.get(e)); + flow.set(e, capacity.get(e)); + //std::cout << w<<" " < excess.get(w)) + } // if(level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + + } //if (flow.get(e)(w); e.valid(); ++e) { + NodeIt v=G.tail(e); + /*e is the Edge vw.*/ + + if (excess.get(w)==0) break; + /*It may happen, that w became inactive in the first for cycle.*/ + if(flow.get(e)>0) { + /*e is an Edge of the residual graph */ + + if(level.get(w)==level.get(v)+1) { + /*Push is allowed now*/ + + if (flow.get(e) > excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.set(e, flow.get(e)-excess.get(w)); + excess.set(v, excess.get(v)+excess.get(w)); + excess.set(w,0); + //std::cout << v << " " << w << " vissza elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + excess.set(v, excess.get(v)+flow.get(e)); + excess.set(w, excess.get(w)-flow.get(e)); + flow.set(e,0); + //std::cout << v <<" " << w << " vissza elen sat pump " << std::endl; + if (excess.get(w)==0) { break;} + } //if (flow.get(e) > excess.get(v)) + } //if(level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + + + } //if (flow.get(e)>0) + + } //for + + + if (excess.get(w)>0) { + level.set(w,++newlevel); + stack[newlevel].push(w); + b=newlevel; + //std::cout << "The new level of " << w << " is "<< newlevel < allflow() { + return flow; + } + + + + /* + Returns a minimum cut by using a reverse bfs from t in the residual graph. + */ + + NodeMap mincut() { + + std::queue queue; + + mincutvector.set(t,false); + queue.push(t); + + while (!queue.empty()) { + NodeIt w=queue.front(); + queue.pop(); + + for(InEdgeIt e=G.template first(w) ; e.valid(); ++e) { + NodeIt v=G.tail(e); + if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) { + queue.push(v); + mincutvector.set(v, false); + } + } // for + + for(OutEdgeIt e=G.template first(w) ; e.valid(); ++e) { + NodeIt v=G.head(e); + if (mincutvector.get(v) && flow.get(e) > 0 ) { + queue.push(v); + mincutvector.set(v, false); + } + } // for + + } + + return mincutvector; + + } + + + }; +}//namespace marci +#endif + + + +