# HG changeset patch # User jacint # Date 1076948158 0 # Node ID ecc1171307be71581c8e0886acf8507e382fa595 # Parent 69b2d279c8f078b08e8e5e68fbfe250febf98f19 modern valtozat diff -r 69b2d279c8f0 -r ecc1171307be src/work/jacint/dijkstra.hh --- a/src/work/jacint/dijkstra.hh Mon Feb 16 15:57:59 2004 +0000 +++ b/src/work/jacint/dijkstra.hh Mon Feb 16 16:15:58 2004 +0000 @@ -1,11 +1,11 @@ /* *dijkstra *by jacint - *Performs Dijkstra's algorithm from node s. + *Performs Dijkstra's algorithm from Node s. * *Constructor: * - *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance) + *dijkstra(graph_type& G, NodeIt s, EdgeMap& distance) * * * @@ -16,17 +16,17 @@ * The following function should be used after run() was already run. * * - *T dist(node_iterator v) : returns the distance from s to v. + *T dist(NodeIt v) : returns the distance from s to v. * It is 0 if v is not reachable from s. * * - *edge_iterator pred(node_iterator v) - * Returns the last edge of a shortest s-v path. + *EdgeIt pred(NodeIt v) + * Returns the last Edge of a shortest s-v path. * Returns an invalid iterator if v=s or v is not * reachable from s. * * - *bool reach(node_iterator v) : true if v is reachable from s + *bool reach(NodeIt v) : true if v is reachable from s * * * @@ -48,7 +48,7 @@ #include #include -#include +#include namespace std { @@ -60,37 +60,37 @@ template class dijkstra{ - typedef typename graph_traits::node_iterator node_iterator; - typedef typename graph_traits::edge_iterator edge_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; - typedef typename graph_traits::out_edge_iterator out_edge_iterator; + typedef typename graph_traits::NodeIt NodeIt; + typedef typename graph_traits::EdgeIt EdgeIt; + typedef typename graph_traits::EachNodeIt EachNodeIt; + typedef typename graph_traits::InEdgeIt InEdgeIt; + typedef typename graph_traits::OutEdgeIt OutEdgeIt; graph_type& G; - node_iterator s; - node_property_vector predecessor; - node_property_vector distance; - edge_property_vector length; - node_property_vector reached; + NodeIt s; + NodeMap predecessor; + NodeMap distance; + EdgeMap length; + NodeMap reached; public : /* - The distance of all the nodes is 0. + The distance of all the Nodes is 0. */ - dijkstra(graph_type& _G, node_iterator _s, edge_property_vector& _length) : + dijkstra(graph_type& _G, NodeIt _s, EdgeMap& _length) : G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } /*By Misi.*/ - struct node_dist_comp + struct Node_dist_comp { - node_property_vector &d; - node_dist_comp(node_property_vector &_d) : d(_d) {} + NodeMap &d; + Node_dist_comp(NodeMap &_d) : d(_d) {} - bool operator()(const node_iterator& u, const node_iterator& v) const + bool operator()(const NodeIt& u, const NodeIt& v) const { return d.get(u) < d.get(v); } }; @@ -98,23 +98,23 @@ void run() { - node_property_vector scanned(G, false); - std::priority_queue, node_dist_comp> - heap(( node_dist_comp(distance) )); + NodeMap scanned(G, false); + std::priority_queue, Node_dist_comp> + heap(( Node_dist_comp(distance) )); heap.push(s); reached.put(s, true); while (!heap.empty()) { - node_iterator v=heap.top(); + NodeIt v=heap.top(); heap.pop(); if (!scanned.get(v)) { - for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) { - node_iterator w=G.head(e); + for(OutEdgeIt e=G.template first(v); e.valid(); ++e) { + NodeIt w=G.head(e); if (!scanned.get(w)) { if (!reached.get(w)) { @@ -147,29 +147,29 @@ /* - *Returns the distance of the node v. - *It is 0 for the root and for the nodes not + *Returns the distance of the Node v. + *It is 0 for the root and for the Nodes not *reachable form the root. */ - T dist(node_iterator v) { + T dist(NodeIt v) { return -distance.get(v); } /* - * Returns the last edge of a shortest s-v path. + * Returns the last Edge of a shortest s-v path. * Returns an invalid iterator if v=root or v is not * reachable from the root. */ - edge_iterator pred(node_iterator v) { + EdgeIt pred(NodeIt v) { if (v!=s) { return predecessor.get(v);} - else {return edge_iterator();} + else {return EdgeIt();} } - bool reach(node_iterator v) { + bool reach(NodeIt v) { return reached.get(v); } diff -r 69b2d279c8f0 -r ecc1171307be src/work/jacint/flow_test.cc --- a/src/work/jacint/flow_test.cc Mon Feb 16 15:57:59 2004 +0000 +++ b/src/work/jacint/flow_test.cc Mon Feb 16 16:15:58 2004 +0000 @@ -2,150 +2,147 @@ #include #include -#include -#include -#include -#include -#include -#include -//#include +#include +#include +#include +#include +//#include using namespace marci; int main (int, char*[]) { - typedef graph_traits::node_iterator node_iterator; - typedef graph_traits::edge_iterator edge_iterator; - typedef graph_traits::each_node_iterator each_node_iterator; - typedef graph_traits::each_edge_iterator each_edge_iterator; - typedef graph_traits::out_edge_iterator out_edge_iterator; - typedef graph_traits::in_edge_iterator in_edge_iterator; - typedef graph_traits::sym_edge_iterator sym_edge_iterator; - - list_graph flow_test; + typedef ListGraph::NodeIt NodeIt; + typedef ListGraph::EdgeIt EdgeIt; + typedef ListGraph::EachNodeIt EachNodeIt; + typedef ListGraph::EachEdgeIt EachEdgeIt; + typedef ListGraph::OutEdgeIt OutEdgeIt; + typedef ListGraph::InEdgeIt InEdgeIt; + + ListGraph flow_test; //Ahuja könyv példája, maxflowvalue=13 - node_iterator s=flow_test.add_node(); - node_iterator v1=flow_test.add_node(); - node_iterator v2=flow_test.add_node(); - node_iterator v3=flow_test.add_node(); - node_iterator v4=flow_test.add_node(); - node_iterator v5=flow_test.add_node(); - node_iterator t=flow_test.add_node(); + NodeIt s=flow_test.addNode(); + NodeIt v1=flow_test.addNode(); + NodeIt v2=flow_test.addNode(); + NodeIt v3=flow_test.addNode(); + NodeIt v4=flow_test.addNode(); + NodeIt v5=flow_test.addNode(); + NodeIt t=flow_test.addNode(); - node_property_vector node_name(flow_test); - node_name.put(s, "s"); - node_name.put(v1, "v1"); - node_name.put(v2, "v2"); - node_name.put(v3, "v3"); - node_name.put(v4, "v4"); - node_name.put(v5, "v5"); - node_name.put(t, "t"); + ListGraph::NodeMap Node_name(flow_test); + Node_name.set(s, "s"); + Node_name.set(v1, "v1"); + Node_name.set(v2, "v2"); + Node_name.set(v3, "v3"); + Node_name.set(v4, "v4"); + Node_name.set(v5, "v5"); + Node_name.set(t, "t"); - edge_iterator s_v1=flow_test.add_edge(s, v1); - edge_iterator s_v2=flow_test.add_edge(s, v2); - edge_iterator s_v3=flow_test.add_edge(s, v3); - edge_iterator v2_v4=flow_test.add_edge(v2, v4); - edge_iterator v2_v5=flow_test.add_edge(v2, v5); - edge_iterator v3_v5=flow_test.add_edge(v3, v5); - edge_iterator v4_t=flow_test.add_edge(v4, t); - edge_iterator v5_t=flow_test.add_edge(v5, t); - edge_iterator v2_s=flow_test.add_edge(v2, s); + EdgeIt s_v1=flow_test.addEdge(s, v1); + EdgeIt s_v2=flow_test.addEdge(s, v2); + EdgeIt s_v3=flow_test.addEdge(s, v3); + EdgeIt v2_v4=flow_test.addEdge(v2, v4); + EdgeIt v2_v5=flow_test.addEdge(v2, v5); + EdgeIt v3_v5=flow_test.addEdge(v3, v5); + EdgeIt v4_t=flow_test.addEdge(v4, t); + EdgeIt v5_t=flow_test.addEdge(v5, t); + EdgeIt v2_s=flow_test.addEdge(v2, s); - edge_property_vector cap(flow_test); - cap.put(s_v1, 0); - cap.put(s_v2, 10); - cap.put(s_v3, 10); - cap.put(v2_v4, 5); - cap.put(v2_v5, 8); - cap.put(v3_v5, 5); - cap.put(v4_t, 8); - cap.put(v5_t, 8); - cap.put(v2_s, 0); + ListGraph::EdgeMap cap(flow_test); + cap.set(s_v1, 0); + cap.set(s_v2, 10); + cap.set(s_v3, 10); + cap.set(v2_v4, 5); + cap.set(v2_v5, 8); + cap.set(v3_v5, 5); + cap.set(v4_t, 8); + cap.set(v5_t, 8); + cap.set(v2_s, 0); //Marci példája, maxflowvalue=23 - /* node_iterator s=flow_test.add_node(); - node_iterator v1=flow_test.add_node(); - node_iterator v2=flow_test.add_node(); - node_iterator v3=flow_test.add_node(); - node_iterator v4=flow_test.add_node(); - node_iterator t=flow_test.add_node(); - node_iterator w=flow_test.add_node(); + /* NodeIt s=flow_test.addNode(); + NodeIt v1=flow_test.addNode(); + NodeIt v2=flow_test.addNode(); + NodeIt v3=flow_test.addNode(); + NodeIt v4=flow_test.addNode(); + NodeIt t=flow_test.addNode(); + NodeIt w=flow_test.addNode(); - node_property_vector node_name(flow_test); - node_name.put(s, "s"); - node_name.put(v1, "v1"); - node_name.put(v2, "v2"); - node_name.put(v3, "v3"); - node_name.put(v4, "v4"); - node_name.put(t, "t"); - node_name.put(w, "w"); + NodeMap Node_name(flow_test); + Node_name.set(s, "s"); + Node_name.set(v1, "v1"); + Node_name.set(v2, "v2"); + Node_name.set(v3, "v3"); + Node_name.set(v4, "v4"); + Node_name.set(t, "t"); + Node_name.set(w, "w"); - edge_iterator s_v1=flow_test.add_edge(s, v1); - edge_iterator s_v2=flow_test.add_edge(s, v2); - edge_iterator v1_v2=flow_test.add_edge(v1, v2); - edge_iterator v2_v1=flow_test.add_edge(v2, v1); - edge_iterator v1_v3=flow_test.add_edge(v1, v3); - edge_iterator v3_v2=flow_test.add_edge(v3, v2); - edge_iterator v2_v4=flow_test.add_edge(v2, v4); - edge_iterator v4_v3=flow_test.add_edge(v4, v3); - edge_iterator v3_t=flow_test.add_edge(v3, t); - edge_iterator v4_t=flow_test.add_edge(v4, t); - edge_iterator v3_v3=flow_test.add_edge(v3, v3); - edge_iterator s_w=flow_test.add_edge(s, w); - // edge_iterator v2_s=flow_test.add_edge(v2, s); + EdgeIt s_v1=flow_test.addEdge(s, v1); + EdgeIt s_v2=flow_test.addEdge(s, v2); + EdgeIt v1_v2=flow_test.addEdge(v1, v2); + EdgeIt v2_v1=flow_test.addEdge(v2, v1); + EdgeIt v1_v3=flow_test.addEdge(v1, v3); + EdgeIt v3_v2=flow_test.addEdge(v3, v2); + EdgeIt v2_v4=flow_test.addEdge(v2, v4); + EdgeIt v4_v3=flow_test.addEdge(v4, v3); + EdgeIt v3_t=flow_test.addEdge(v3, t); + EdgeIt v4_t=flow_test.addEdge(v4, t); + EdgeIt v3_v3=flow_test.addEdge(v3, v3); + EdgeIt s_w=flow_test.addEdge(s, w); + // EdgeIt v2_s=flow_test.addEdge(v2, s); - edge_property_vector cap(flow_test); //serves as length in dijkstra - cap.put(s_v1, 16); - cap.put(s_v2, 13); - cap.put(v1_v2, 10); - cap.put(v2_v1, 4); - cap.put(v1_v3, 12); - cap.put(v3_v2, 9); - cap.put(v2_v4, 14); - cap.put(v4_v3, 7); - cap.put(v3_t, 20); - cap.put(v4_t, 4); - cap.put(v3_v3, 4); - cap.put(s_w, 4); - // cap.put(v2_s, 0); + EdgeMap cap(flow_test); //serves as length in dijkstra + cap.set(s_v1, 16); + cap.set(s_v2, 13); + cap.set(v1_v2, 10); + cap.set(v2_v1, 4); + cap.set(v1_v3, 12); + cap.set(v3_v2, 9); + cap.set(v2_v4, 14); + cap.set(v4_v3, 7); + cap.set(v3_t, 20); + cap.set(v4_t, 4); + cap.set(v3_v3, 4); + cap.set(s_w, 4); + // cap.set(v2_s, 0); */ //pelda 3, maxflowvalue=4 - /* node_iterator s=flow_test.add_node(); - node_iterator v1=flow_test.add_node(); - node_iterator v2=flow_test.add_node(); - node_iterator t=flow_test.add_node(); - node_iterator w=flow_test.add_node(); + /* NodeIt s=flow_test.addNode(); + NodeIt v1=flow_test.addNode(); + NodeIt v2=flow_test.addNode(); + NodeIt t=flow_test.addNode(); + NodeIt w=flow_test.addNode(); - node_property_vector node_name(flow_test); - node_name.put(s, "s"); - node_name.put(v1, "v1"); - node_name.put(v2, "v2"); - node_name.put(t, "t"); - node_name.put(w, "w"); + NodeMap Node_name(flow_test); + Node_name.set(s, "s"); + Node_name.set(v1, "v1"); + Node_name.set(v2, "v2"); + Node_name.set(t, "t"); + Node_name.set(w, "w"); - edge_iterator s_v1=flow_test.add_edge(s, v1); - edge_iterator v1_v2=flow_test.add_edge(v1, v2); - edge_iterator v2_t=flow_test.add_edge(v2, t); - edge_iterator v1_v1=flow_test.add_edge(v1, v1); - edge_iterator s_w=flow_test.add_edge(s, w); + EdgeIt s_v1=flow_test.addEdge(s, v1); + EdgeIt v1_v2=flow_test.addEdge(v1, v2); + EdgeIt v2_t=flow_test.addEdge(v2, t); + EdgeIt v1_v1=flow_test.addEdge(v1, v1); + EdgeIt s_w=flow_test.addEdge(s, w); - edge_property_vector cap(flow_test); + EdgeMap cap(flow_test); - cap.put(s_v1, 16); - cap.put(v1_v2, 10); - cap.put(v2_t, 4); - cap.put(v1_v1, 3); - cap.put(s_w, 5); + cap.set(s_v1, 16); + cap.set(v1_v2, 10); + cap.set(v2_t, 4); + cap.set(v1_v1, 3); + cap.set(s_w, 5); */ @@ -153,11 +150,11 @@ /* std::cout << "Testing reverse_bfs..." << std::endl; - reverse_bfs bfs_test(flow_test, t); + reverse_bfs bfs_test(flow_test, t); bfs_test.run(); - for (each_node_iterator w=flow_test.first_node(); w.valid(); ++w) { + for (EachNodeIt w=flow_test.first_Node(); w.valid(); ++w) { std::cout <<"The distance of " << w << " is " << bfs_test.dist(w) < preflow_push_test(flow_test, s, t, cap); + preflow_push_hl preflow_push_test(flow_test, s, t, cap); preflow_push_test.run(); std::cout << "Maximum flow value is: " << preflow_push_test.maxflow() << "."< flow=preflow_push_test.allflow(); - for (each_edge_iterator e=flow_test.first_edge(); e.valid(); ++e) { - std::cout <<"Flow on edge " << flow_test.tail(e) <<"-" << flow_test.head(e)<< " is " < flow=preflow_push_test.allflow(); + for (EachEdgeIt e=flow_test.template first(); e.valid(); ++e) { + std::cout <<"Flow on Edge " << flow_test.tail(e) <<"-" << flow_test.head(e)<< " is " < mincut=preflow_push_test.mincut(); + ListGraph::NodeMap mincut=preflow_push_test.mincut(); - for (each_node_iterator v=flow_test.first_node(); v.valid(); ++v) { - if (mincut.get(v)) std::cout <(); v.valid(); ++v) { + if (mincut.get(v)) std::cout < max_flow_test(flow_test, s, t, cap); + preflow_push_max_flow max_flow_test(flow_test, s, t, cap); max_flow_test.run(); std::cout << "Maximum flow value is: " << max_flow_test.maxflow() << "."<< std::endl; std::cout << "A minimum cut: " < mincut2=max_flow_test.mincut(); + ListGraph::NodeMap mincut2=max_flow_test.mincut(); - for (each_node_iterator v=flow_test.first_node(); v.valid(); ++v) { - if (mincut2.get(v)) std::cout <(); v.valid(); ++v) { + if (mincut2.get(v)) std::cout < dijkstra_test(flow_test, root, cap); + dijkstra dijkstra_test(flow_test, root, cap); dijkstra_test.run(); - for (each_node_iterator w=flow_test.first_node(); w.valid(); ++w) { + for (EachNodeIt w=flow_test.first_Node(); w.valid(); ++w) { if (dijkstra_test.reach(w)) { std::cout <<"The distance of " << w << " is " << dijkstra_test.dist(w); if (dijkstra_test.pred(w).valid()) { - std::cout <<", a shortest path from the root ends with edge " << dijkstra_test.pred(w) < #include -#include +#include namespace marci { - template + template class preflow_push_hl { typedef typename Graph::NodeIt NodeIt; @@ -47,16 +47,16 @@ Graph& G; NodeIt s; NodeIt t; - Graph::EdgeMap flow; - Graph::EdgeMap capacity; + typename Graph::EdgeMap flow; + typename Graph::EdgeMap capacity; T value; - Graph::NodeMap mincutvector; + typename Graph::NodeMap mincutvector; public: preflow_push_hl(Graph& _G, NodeIt _s, NodeIt _t, - Graph::EdgeMap& _capacity) : + typename Graph::EdgeMap& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { } @@ -68,8 +68,8 @@ */ void run() { - Graph::NodeMap level(G); //level of Node - Graph::NodeMap excess(G); //excess of Node + typename Graph::NodeMap level(G); //level of Node + typename Graph::NodeMap excess(G); //excess of Node int n=G.nodeNum(); //number of Nodes int b=n; @@ -82,7 +82,7 @@ /*Reverse_bfs from t, to find the starting level.*/ - reverse_bfs bfs(G, t); + reverse_bfs bfs(G, t); bfs.run(); for(EachNodeIt v=G.template first(); v.valid(); ++v) { level.set(v, bfs.dist(v)); @@ -268,7 +268,7 @@ Returns the maximum flow x found by the algorithm. */ - EdgeMap allflow() { + typename Graph::EdgeMap allflow() { return flow; } @@ -278,7 +278,7 @@ Returns a minimum cut by using a reverse bfs from t in the residual graph. */ - NodeMap mincut() { + typename Graph::NodeMap mincut() { std::queue queue; @@ -310,8 +310,6 @@ return mincutvector; } - - }; }//namespace marci #endif diff -r 69b2d279c8f0 -r ecc1171307be src/work/jacint/preflow_push_max_flow.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/preflow_push_max_flow.h Mon Feb 16 16:15:58 2004 +0000 @@ -0,0 +1,313 @@ +/* +preflow_push_max_flow_h +by jacint. +Runs a preflow push algorithm with the modification, +that we do not push on Nodes with level at least n. +Moreover, if a level gets empty, we.set all Nodes above that +level to level n. Hence, in the end, we arrive at a maximum preflow +with value of a max flow value. An empty level gives a minimum cut. + +Member functions: + +void run() : runs the algorithm + + The following functions should be used after run() was already run. + +T maxflow() : returns the value of a maximum flow + +NodeMap mincut(): returns a + characteristic vector of a minimum cut. +*/ + +#ifndef PREFLOW_PUSH_MAX_FLOW_H +#define PREFLOW_PUSH_MAX_FLOW_H + +#include +#include +#include + +#include +#include + + +namespace marci { + + template + class preflow_push_max_flow { + + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::EachNodeIt EachNodeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + Graph& G; + NodeIt s; + NodeIt t; + typename Graph::EdgeMap& capacity; + T value; + typename Graph::NodeMap mincutvector; + + + + public: + + preflow_push_max_flow(Graph& _G, NodeIt _s, NodeIt _t, typename Graph::EdgeMap& _capacity) : G(_G), s(_s), t(_t), capacity(_capacity), mincutvector(_G, false) { } + + + /* + The run() function runs a modified version of the highest label preflow-push, which only + finds a maximum preflow, hence giving the value of a maximum flow. + */ + void run() { + + typename Graph::EdgeMap flow(G, 0); //the flow value, 0 everywhere + typename Graph::NodeMap level(G); //level of Node + typename Graph::NodeMap excess(G); //excess of Node + + int n=G.nodeNum(); //number of Nodes + int b=n-2; + /*b is a bound on the highest level of an active Node. In the beginning it is at most n-2.*/ + + std::vector numb(n); //The number of Nodes on level i < n. + + std::vector > stack(2*n-1); //Stack of the active Nodes in level i. + + + + /*Reverse_bfs from t, to find the starting level.*/ + + reverse_bfs bfs(G, t); + bfs.run(); + for(EachNodeIt v=G.template first(); v.valid(); ++v) + { + int dist=bfs.dist(v); + level.set(v, dist); + ++numb[dist]; + } + + /*The level of s is fixed to n*/ + level.set(s,n); + + + /* Starting flow. It is everywhere 0 at the moment. */ + + for(OutEdgeIt i=G.template first(s); i.valid(); ++i) + { + NodeIt w=G.head(i); + flow.set(i, capacity.get(i)); + stack[bfs.dist(w)].push(w); + excess.set(w, capacity.get(i)); + } + + + /* + End of preprocessing + */ + + + + + /* + Push/relabel on the highest level active Nodes. + */ + + /*While there exists an active Node.*/ + while (b) { + + /*We decrease the bound if there is no active Node of level b.*/ + if (stack[b].empty()) { + --b; + } else { + + NodeIt w=stack[b].top(); //w is the highest label active Node. + stack[b].pop(); //We delete w from the stack. + + int newlevel=2*n-2; //In newlevel we maintain the next level of w. + + for(OutEdgeIt e=G.template first(w); e.valid(); ++e) { + NodeIt v=G.head(e); + /*e is the Edge wv.*/ + + if (flow.get(e) excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.set(e, flow.get(e)+excess.get(w)); + excess.set(v, excess.get(v)+excess.get(w)); + excess.set(w,0); + //std::cout << w << " " << v <<" elore elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + excess.set(v, excess.get(v)+capacity.get(e)-flow.get(e)); + excess.set(w, excess.get(w)-capacity.get(e)+flow.get(e)); + flow.set(e, capacity.get(e)); + //std::cout << w <<" " << v <<" elore elen sat pump " << std::endl; + if (excess.get(w)==0) break; + /*If w is not active any more, then we go on to the next Node.*/ + + } // if (capacity.get(e)-flow.get(e) > excess.get(w)) + } // if (level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + + } //if (flow.get(e)(w); e.valid(); ++e) { + NodeIt v=G.tail(e); + /*e is the Edge vw.*/ + + if (excess.get(w)==0) break; + /*It may happen, that w became inactive in the first 'for' cycle.*/ + + if(flow.get(e)>0) { + /*e is an Edge of the residual graph */ + + if(level.get(w)==level.get(v)+1) { + /*Push is allowed now*/ + + if (flow.get(e) > excess.get(w)) { + /*A nonsaturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.set(e, flow.get(e)-excess.get(w)); + excess.set(v, excess.get(v)+excess.get(w)); + excess.set(w,0); + //std::cout << v << " " << w << " vissza elen nonsat pump " << std::endl; + break; + } else { + /*A saturating push.*/ + + if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); + /*v becomes active.*/ + + flow.set(e,0); + excess.set(v, excess.get(v)+flow.get(e)); + excess.set(w, excess.get(w)-flow.get(e)); + //std::cout << v <<" " << w << " vissza elen sat pump " << std::endl; + if (excess.get(w)==0) { break;} + } //if (flow.get(e) > excess.get(v)) + } //if(level.get(w)==level.get(v)+1) + + else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);} + //std::cout << "Leveldecrease of Node " << w << " to " << newlevel << std::endl; + + } //if (flow.get(e)>0) + + } //for in-Edge + + + + + /* + Relabel + */ + if (excess.get(w)>0) { + /*Now newlevel <= n*/ + + int l=level.get(w); //l is the old level of w. + --numb[l]; + + if (newlevel == n) { + level.set(w,n); + + } else { + + if (numb[l]) { + /*If the level of w remains nonempty.*/ + + level.set(w,++newlevel); + ++numb[newlevel]; + stack[newlevel].push(w); + b=newlevel; + } else { + /*If the level of w gets empty.*/ + + for (EachNodeIt v=G.template first(); v.valid() ; ++v) { + if (level.get(v) >= l ) { + level.set(v,n); + } + } + + for (int i=l+1 ; i!=n ; ++i) numb[i]=0; + } //if (numb[l]) + + } // if (newlevel = n) + + } // if (excess.get(w)>0) + + + } //else + + } //while(b) + + value=excess.get(t); + /*Max flow value.*/ + + + + /* + We find an empty level, e. The Nodes above this level give + a minimum cut. + */ + + int e=1; + + while(e) { + if(numb[e]) ++e; + else break; + } + for (EachNodeIt v=G.template first(); v.valid(); ++v) { + if (level.get(v) > e) mincutvector.set(v, true); + } + + + } // void run() + + + + /* + Returns the maximum value of a flow. + */ + + T maxflow() { + return value; + } + + + + /* + Returns a minimum cut. + */ + + typename Graph::NodeMap mincut() { + return mincutvector; + } + + + }; +}//namespace marci +#endif + + + + + diff -r 69b2d279c8f0 -r ecc1171307be src/work/jacint/reverse_bfs.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/work/jacint/reverse_bfs.h Mon Feb 16 16:15:58 2004 +0000 @@ -0,0 +1,89 @@ +/* +reverse_bfs +by jacint +Performs a bfs on the out Edges. It does not count predecessors, +only the distances, but one can easily modify it to know the pred as well. + +Constructor: + +reverse_bfs(Graph& G, NodeIt t) + + + +Member functions: + +void run(): runs a reverse bfs from t + + The following function should be used after run() was already run. + +int dist(NodeIt v) : returns the distance from v to t. It is the number of nodes if t is not reachable from v. + +*/ +#ifndef REVERSE_BFS_H +#define REVERSE_BFS_H + +#include +#include + + +namespace marci { + + template + class reverse_bfs { + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::EachNodeIt EachNodeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + + Graph& G; + NodeIt t; + typename Graph::NodeMap distance; + + + public : + + /* + The distance of the Nodes is n, except t for which it is 0. + */ + reverse_bfs(Graph& _G, NodeIt _t) : G(_G), t(_t), distance(G, G.nodeNum()) { + distance.set(t,0); + } + + void run() { + + typename Graph::NodeMap reached(G, false); + reached.set(t, true); + + std::queue bfs_queue; + bfs_queue.push(t); + + while (!bfs_queue.empty()) { + + NodeIt v=bfs_queue.front(); + bfs_queue.pop(); + + for(InEdgeIt e=G.template first(v); e.valid(); ++e) { + NodeIt w=G.tail(e); + if (!reached.get(w)) { + bfs_queue.push(w); + distance.set(w, distance.get(v)+1); + reached.set(w, true); + } + } + } + } + + + + int dist(NodeIt v) { + return distance.get(v); + } + + + }; + +} // namespace marci + +#endif //REVERSE_BFS_HH + + diff -r 69b2d279c8f0 -r ecc1171307be src/work/jacint/reverse_bfs.hh --- a/src/work/jacint/reverse_bfs.hh Mon Feb 16 15:57:59 2004 +0000 +++ b/src/work/jacint/reverse_bfs.hh Mon Feb 16 16:15:58 2004 +0000 @@ -1,12 +1,12 @@ /* reverse_bfs by jacint -Performs a bfs on the out edges. It does not count predecessors, +Performs a bfs on the out Edges. It does not count predecessors, only the distances, but one can easily modify it to know the pred as well. Constructor: -reverse_bfs(graph_type& G, node_iterator t) +reverse_bfs(graph_type& G, NodeIt t) @@ -16,7 +16,7 @@ The following function should be used after run() was already run. -int dist(node_iterator v) : returns the distance from v to t. It is the number of nodes if t is not reachable from v. +int dist(NodeIt v) : returns the distance from v to t. It is the number of Nodes if t is not reachable from v. */ #ifndef REVERSE_BFS_HH @@ -25,7 +25,7 @@ #include #include -#include +#include @@ -33,42 +33,42 @@ template class reverse_bfs { - typedef typename graph_traits::node_iterator node_iterator; - //typedef typename graph_traits::edge_iterator edge_iterator; - typedef typename graph_traits::each_node_iterator each_node_iterator; - typedef typename graph_traits::in_edge_iterator in_edge_iterator; + typedef typename graph_traits::NodeIt NodeIt; + //typedef typename graph_traits::EdgeIt EdgeIt; + typedef typename graph_traits::EachNodeIt EachNodeIt; + typedef typename graph_traits::InEdgeIt InEdgeIt; graph_type& G; - node_iterator t; -// node_property_vector pred; - node_property_vector distance; + NodeIt t; +// NodeMap pred; + NodeMap distance; public : /* - The distance of the nodes is n, except t for which it is 0. + The distance of the Nodes is n, except t for which it is 0. */ - reverse_bfs(graph_type& _G, node_iterator _t) : G(_G), t(_t), distance(G, number_of(G.first_node())) { + reverse_bfs(graph_type& _G, NodeIt _t) : G(_G), t(_t), distance(G, number_of(G.first_Node())) { distance.put(t,0); } void run() { - node_property_vector reached(G, false); + NodeMap reached(G, false); reached.put(t, true); - std::queue bfs_queue; + std::queue bfs_queue; bfs_queue.push(t); while (!bfs_queue.empty()) { - node_iterator v=bfs_queue.front(); + NodeIt v=bfs_queue.front(); bfs_queue.pop(); - for(in_edge_iterator e=G.first_in_edge(v); e.valid(); ++e) { - node_iterator w=G.tail(e); + for(InEdgeIt e=G.template first(v); e.valid(); ++e) { + NodeIt w=G.tail(e); if (!reached.get(w)) { bfs_queue.push(w); distance.put(w, distance.get(v)+1); @@ -80,7 +80,7 @@ - int dist(node_iterator v) { + int dist(NodeIt v) { return distance.get(v); }