# HG changeset patch # User jacint # Date 1095083833 0 # Node ID f8549e3f6c5a9b2a951e75ff497062f51cfc73df # Parent eb9587f09b424e82924a0f636f9e49c9cfd60731 preflow last changes diff -r eb9587f09b42 -r f8549e3f6c5a src/hugo/max_flow.h --- a/src/hugo/max_flow.h Mon Sep 13 11:24:35 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,903 +0,0 @@ -// -*- C++ -*- -#ifndef HUGO_MAX_FLOW_H -#define HUGO_MAX_FLOW_H - -#include -#include - -//#include -#include -#include - -/// \file -/// \ingroup flowalgs - -namespace hugo { - - /// \addtogroup flowalgs - /// @{ - - ///Maximum flow algorithms class. - - ///This class provides various algorithms for finding a flow of - ///maximum value in a directed graph. The \e source node, the \e - ///target node, the \e capacity of the edges and the \e starting \e - ///flow value of the edges should be passed to the algorithm through the - ///constructor. It is possible to change these quantities using the - ///functions \ref setSource, \ref setTarget, \ref setCap and - ///\ref setFlow. Before any subsequent runs of any algorithm of - ///the class \ref setFlow should be called. - /// - ///After running an algorithm of the class, the actual flow value - ///can be obtained by calling \ref flowValue(). The minimum - ///value cut can be written into a \c node map of \c bools by - ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes - ///the inclusionwise minimum and maximum of the minimum value - ///cuts, resp.) - /// - ///\param Graph The directed graph type the algorithm runs on. - ///\param Num The number type of the capacities and the flow values. - ///\param CapMap The capacity map type. - ///\param FlowMap The flow map type. - /// - ///\author Marton Makai, Jacint Szabo - template , - typename FlowMap=typename Graph::template EdgeMap > - class MaxFlow { - protected: - typedef typename Graph::Node Node; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::EdgeIt EdgeIt; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::InEdgeIt InEdgeIt; - - typedef typename std::vector VecFirst; - typedef typename Graph::template NodeMap NNMap; - typedef typename std::vector VecNode; - - const Graph* g; - Node s; - Node t; - const CapMap* capacity; - FlowMap* flow; - int n; //the number of nodes of G - // typedef ResGraphWrapper ResGW; - //typedef ExpResGraphWrapper ResGW; - // typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; - // typedef typename ResGW::Edge ResGWEdge; - typedef typename Graph::template NodeMap ReachedMap; - - - //level works as a bool map in augmenting path algorithms and is - //used by bfs for storing reached information. In preflow, it - //shows the levels of nodes. - ReachedMap level; - - //excess is needed only in preflow - typename Graph::template NodeMap excess; - - // constants used for heuristics - static const int H0=20; - static const int H1=1; - - public: - - ///Indicates the property of the starting flow. - - ///Indicates the property of the starting flow. The meanings are as follows: - ///- \c ZERO_FLOW: constant zero flow - ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to - ///the sum of the out-flows in every node except the \e source and - ///the \e target. - ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at - ///least the sum of the out-flows in every node except the \e source. - ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be - ///set to the constant zero flow in the beginning of the algorithm in this case. - enum FlowEnum{ - ZERO_FLOW, - GEN_FLOW, - PRE_FLOW, - NO_FLOW - }; - - enum StatusEnum { - AFTER_NOTHING, - AFTER_AUGMENTING, - AFTER_FAST_AUGMENTING, - AFTER_PRE_FLOW_PHASE_1, - AFTER_PRE_FLOW_PHASE_2 - }; - - /// Do not needle this flag only if necessary. - StatusEnum status; - - // int number_of_augmentations; - - - // template - // class TrickyReachedMap { - // protected: - // IntMap* map; - // int* number_of_augmentations; - // public: - // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : - // map(&_map), number_of_augmentations(&_number_of_augmentations) { } - // void set(const Node& n, bool b) { - // if (b) - // map->set(n, *number_of_augmentations); - // else - // map->set(n, *number_of_augmentations-1); - // } - // bool operator[](const Node& n) const { - // return (*map)[n]==*number_of_augmentations; - // } - // }; - - ///Constructor - - ///\todo Document, please. - /// - MaxFlow(const Graph& _G, Node _s, Node _t, - const CapMap& _capacity, FlowMap& _flow) : - g(&_G), s(_s), t(_t), capacity(&_capacity), - flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), - status(AFTER_NOTHING) { } - - ///Runs a maximum flow algorithm. - - ///Runs a preflow algorithm, which is the fastest maximum flow - ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. - ///\pre The starting flow must be - /// - a constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW, - /// - any map if \c fe is NO_FLOW. - void run(FlowEnum fe=ZERO_FLOW) { - preflow(fe); - } - - - ///Runs a preflow algorithm. - - ///Runs a preflow algorithm. The preflow algorithms provide the - ///fastest way to compute a maximum flow in a directed graph. - ///\pre The starting flow must be - /// - a constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW, - /// - any map if \c fe is NO_FLOW. - /// - ///\todo NO_FLOW should be the default flow. - void preflow(FlowEnum fe) { - preflowPhase1(fe); - preflowPhase2(); - } - // Heuristics: - // 2 phase - // gap - // list 'level_list' on the nodes on level i implemented by hand - // stack 'active' on the active nodes on level i - // runs heuristic 'highest label' for H1*n relabels - // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' - // Parameters H0 and H1 are initialized to 20 and 1. - - ///Runs the first phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs the - ///first phase. After the first phase the maximum flow value and a - ///minimum value cut can already be computed, though a maximum flow - ///is not yet obtained. So after calling this method \ref flowValue - ///and \ref actMinCut gives proper results. - ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not - ///give minimum value cuts unless calling \ref preflowPhase2. - ///\pre The starting flow must be - /// - a constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW, - /// - any map if \c fe is NO_FLOW. - void preflowPhase1(FlowEnum fe) - { - - int heur0=(int)(H0*n); //time while running 'bound decrease' - int heur1=(int)(H1*n); //time while running 'highest label' - int heur=heur1; //starting time interval (#of relabels) - int numrelabel=0; - - bool what_heur=1; - //It is 0 in case 'bound decrease' and 1 in case 'highest label' - - bool end=false; - //Needed for 'bound decrease', true means no active nodes are above bound - //b. - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecFirst first(n, INVALID); - NNMap next(*g, INVALID); //maybe INVALID is not needed - - NNMap left(*g, INVALID); - NNMap right(*g, INVALID); - VecNode level_list(n,INVALID); - //List of the nodes in level i 0 ) { - b=k; - end=true; - } else break; - } - - if ( first[b]==INVALID ) --b; - else { - end=false; - Node w=first[b]; - first[b]=next[w]; - int newlevel=push(w, next, first); - if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list, - left, right, b, k, what_heur); - - ++numrelabel; - if ( numrelabel >= heur ) { - numrelabel=0; - if ( what_heur ) { - what_heur=0; - heur=heur0; - end=false; - } else { - what_heur=1; - heur=heur1; - b=k; - } - } - } - } - - status=AFTER_PRE_FLOW_PHASE_1; - } - - - ///Runs the second phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs - ///the second phase. After calling \ref preflowPhase1 and then - ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, - ///\ref minMinCut and \ref maxMinCut give proper results. - ///\pre \ref preflowPhase1 must be called before. - void preflowPhase2() - { - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - - VecFirst first(n, INVALID); - NNMap next(*g, INVALID); //maybe INVALID is not needed - level.set(s,0); - std::queue bfs_queue; - bfs_queue.push(s); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*g,v); e!=INVALID; ++e) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node u=g->tail(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,first[l]); - first[l]=u; - } - } - } - - for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { - if ( 0 >= (*flow)[e] ) continue; - Node u=g->head(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,first[l]); - first[l]=u; - } - } - } - } - b=n-2; - - while ( true ) { - - if ( b == 0 ) break; - - if ( first[b]==INVALID ) --b; - else { - - Node w=first[b]; - first[b]=next[w]; - int newlevel=push(w,next, first/*active*/); - - //relabel - if ( excess[w] > 0 ) { - level.set(w,++newlevel); - next.set(w,first[newlevel]); - first[newlevel]=w; - b=newlevel; - } - } - } // while(true) - - status=AFTER_PRE_FLOW_PHASE_2; - } - - - /// Returns the value of the maximum flow. - - /// Returns the excess of the target node \ref t. - /// After running \ref preflowPhase1, this is the value of - /// the maximum flow. - /// It can be called already after running \ref preflowPhase1. - Num flowValue() const { - // Num a=0; - // for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; - // for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; - // return a; - return excess[t]; - //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan - } - - - ///Returns a minimum value cut after calling \ref preflowPhase1. - - ///After the first phase of the preflow algorithm the maximum flow - ///value and a minimum value cut can already be computed. This - ///method can be called after running \ref preflowPhase1 for - ///obtaining a minimum value cut. - /// \warning Gives proper result only right after calling \ref - /// preflowPhase1. - /// \todo We have to make some status variable which shows the - /// actual state - /// of the class. This enables us to determine which methods are valid - /// for MinCut computation - template - void actMinCut(_CutMap& M) const { - switch (status) { - case AFTER_PRE_FLOW_PHASE_1: - for(NodeIt v(*g); v!=INVALID; ++v) { - if (level[v] < n) { - M.set(v, false); - } else { - M.set(v, true); - } - } - break; - case AFTER_PRE_FLOW_PHASE_2: - case AFTER_NOTHING: - case AFTER_AUGMENTING: - case AFTER_FAST_AUGMENTING: - minMinCut(M); - break; - } - } - - ///Returns the inclusionwise minimum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise minimum. It is computed by processing - ///a bfs from the source node \c s in the residual graph. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void minMinCut(_CutMap& M) const { - std::queue queue; - - M.set(s,true); - queue.push(s); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { - Node v=g->head(e); - if (!M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, true); - } - } - - for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { - Node v=g->tail(e); - if (!M[v] && (*flow)[e] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - } - - ///Returns the inclusionwise maximum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise maximum. It is computed by processing a - ///backward bfs from the target node \c t in the residual graph. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void maxMinCut(_CutMap& M) const { - - for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); - - std::queue queue; - - M.set(t,false); - queue.push(t); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { - Node v=g->tail(e); - if (M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, false); - } - } - - for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { - Node v=g->head(e); - if (M[v] && (*flow)[e] > 0 ) { - queue.push(v); - M.set(v, false); - } - } - } - } - - ///Returns a minimum value cut. - - ///Sets \c M to the characteristic vector of a minimum value cut. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void minCut(CutMap& M) const { minMinCut(M); } - - ///Sets the source node to \c _s. - - ///Sets the source node to \c _s. - /// - void setSource(Node _s) { s=_s; status=AFTER_NOTHING; } - - ///Sets the target node to \c _t. - - ///Sets the target node to \c _t. - /// - void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; } - - /// Sets the edge map of the capacities to _cap. - - /// Sets the edge map of the capacities to _cap. - /// - void setCap(const CapMap& _cap) - { capacity=&_cap; status=AFTER_NOTHING; } - - /// Sets the edge map of the flows to _flow. - - /// Sets the edge map of the flows to _flow. - /// - void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } - - - private: - - int push(Node w, NNMap& next, VecFirst& first) { - - int lev=level[w]; - Num exc=excess[w]; - int newlevel=n; //bound on the next level of w - - for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { - if ( (*flow)[e] >= (*capacity)[e] ) continue; - Node v=g->head(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - next.set(v,first[level[v]]); - first[level[v]]=v; - } - - Num cap=(*capacity)[e]; - Num flo=(*flow)[e]; - Num remcap=cap-flo; - - if ( remcap >= exc ) { //A nonsaturating push. - - flow->set(e, flo+exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - - } else { //A saturating push. - flow->set(e, cap); - excess.set(v, excess[v]+remcap); - exc-=remcap; - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for out edges wv - - if ( exc > 0 ) { - for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { - - if( (*flow)[e] <= 0 ) continue; - Node v=g->tail(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - next.set(v,first[level[v]]); - first[level[v]]=v; - } - - Num flo=(*flow)[e]; - - if ( flo >= exc ) { //A nonsaturating push. - - flow->set(e, flo-exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - } else { //A saturating push. - - excess.set(v, excess[v]+flo); - exc-=flo; - flow->set(e,0); - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for in edges vw - - } // if w still has excess after the out edge for cycle - - excess.set(w, exc); - - return newlevel; - } - - - - void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, - VecNode& level_list, NNMap& left, NNMap& right) - { - switch (fe) { //setting excess - case NO_FLOW: - for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); - for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); - break; - case ZERO_FLOW: - for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); - break; - case GEN_FLOW: - for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); - { - Num exc=0; - for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; - for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; - excess.set(t,exc); - } - break; - default: - break; - } - - for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); - //setting each node to level n - - std::queue bfs_queue; - - - switch (fe) { - case NO_FLOW: //flow is already set to const zero - case ZERO_FLOW: - //Reverse_bfs from t, to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { - Node w=g->tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) - { - Num c=(*capacity)[e]; - if ( c <= 0 ) continue; - Node w=g->head(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) //putting into the stack - { - next.set(w,first[level[w]]); - first[level[w]]=w; - } - flow->set(e, c); - excess.set(w, excess[w]+c); - } - } - break; - case GEN_FLOW: - //Reverse_bfs from t in the residual graph, - //to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node w=g->tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - - for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { - if ( 0 >= (*flow)[e] ) continue; - Node w=g->head(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - for(OutEdgeIt e(*g,s); e!=INVALID; ++e) - { - Num rem=(*capacity)[e]-(*flow)[e]; - if ( rem <= 0 ) continue; - Node w=g->head(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) //putting into the stack - { - next.set(w,first[level[w]]); - first[level[w]]=w; - } - flow->set(e, (*capacity)[e]); - excess.set(w, excess[w]+rem); - } - } - - for(InEdgeIt e(*g,s); e!=INVALID; ++e) - { - if ( (*flow)[e] <= 0 ) continue; - Node w=g->tail(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) - { - next.set(w,first[level[w]]); - first[level[w]]=w; - } - excess.set(w, excess[w]+(*flow)[e]); - flow->set(e, 0); - } - } - break; - case PRE_FLOW: - //Reverse_bfs from t in the residual graph, - //to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node w=g->tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - - for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { - if ( 0 >= (*flow)[e] ) continue; - Node w=g->head(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - } - - - //the starting flow - for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { - Num rem=(*capacity)[e]-(*flow)[e]; - if ( rem <= 0 ) continue; - Node w=g->head(e); - if ( level[w] < n ) { - flow->set(e, (*capacity)[e]); - excess.set(w, excess[w]+rem); - } - } - - for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { - if ( (*flow)[e] <= 0 ) continue; - Node w=g->tail(e); - if ( level[w] < n ) { - excess.set(w, excess[w]+(*flow)[e]); - flow->set(e, 0); - } - } - - //computing the excess - for(NodeIt w(*g); w!=INVALID; ++w) { - Num exc=0; - - for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) exc+=(*flow)[e]; - for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) exc-=(*flow)[e]; - - excess.set(w,exc); - - //putting the active nodes into the stack - int lev=level[w]; - if ( exc > 0 && lev < n && Node(w) != t ) - ///\bug if ( exc > 0 && lev < n && w != t ) temporarily for working with wrappers. - { - next.set(w,first[lev]); - first[lev]=w; - } - } - break; - } //switch - } //preflowPreproc - - - void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, - VecNode& level_list, NNMap& left, - NNMap& right, int& b, int& k, bool what_heur ) - { - - int lev=level[w]; - - Node right_n=right[w]; - Node left_n=left[w]; - - //unlacing starts - if ( right_n!=INVALID ) { - if ( left_n!=INVALID ) { - right.set(left_n, right_n); - left.set(right_n, left_n); - } else { - level_list[lev]=right_n; - left.set(right_n, INVALID); - } - } else { - if ( left_n!=INVALID ) { - right.set(left_n, INVALID); - } else { - level_list[lev]=INVALID; - } - } - //unlacing ends - - if ( level_list[lev]==INVALID ) { - - //gapping starts - for (int i=lev; i!=k ; ) { - Node v=level_list[++i]; - while ( v!=INVALID ) { - level.set(v,n); - v=right[v]; - } - level_list[i]=INVALID; - if ( !what_heur ) first[i]=INVALID; - } - - level.set(w,n); - b=lev-1; - k=b; - //gapping ends - - } else { - - if ( newlevel == n ) level.set(w,n); - else { - level.set(w,++newlevel); - next.set(w,first[newlevel]); - first[newlevel]=w; - if ( what_heur ) b=newlevel; - if ( k < newlevel ) ++k; //now k=newlevel - Node z=level_list[newlevel]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - left.set(w,INVALID); - level_list[newlevel]=w; - } - } - } //relabel - - void printexcess() {//// - std::cout << "Excesses:" <id(v)) << ":" << excess[v]<id(v)) << ":" << level[v]<id(v)) << ":" << level[v]< +#include + +#include +#include + +/// \file +/// \ingroup flowalgs + +namespace hugo { + + /// \addtogroup flowalgs + /// @{ + + ///Preflow algorithms class. + + ///This class provides an implementation of the \e preflow \e + ///algorithm producing a flow of maximum value in a directed + ///graph. The preflow algorithms are the fastest max flow algorithms + ///up-to-date. The \e source node, the \e target node, the \e + ///capacity of the edges and the \e starting \e flow value of the + ///edges should be passed to the algorithm through the + ///constructor. It is possible to change these quantities using the + ///functions \ref setSource, \ref setTarget, \ref setCap and \ref + ///setFlow. + /// + ///After running \c phase1 or \c preflow, the actual flow + ///value can be obtained by calling \ref flowValue(). The minimum + ///value cut can be written into a \c node map of \c bools by + ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes + ///the inclusionwise minimum and maximum of the minimum value cuts, + ///resp.) + /// + ///\param Graph The directed graph type the algorithm runs on. + ///\param Num The number type of the capacities and the flow values. + ///\param CapMap The capacity map type. + ///\param FlowMap The flow map type. + /// + ///\author Jacint Szabo + template , + typename FlowMap=typename Graph::template EdgeMap > + class Preflow { + protected: + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::EdgeIt EdgeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + typedef typename Graph::template NodeMap NNMap; + typedef typename std::vector VecNode; + + const Graph* g; + Node s; + Node t; + const CapMap* capacity; + FlowMap* flow; + int n; //the number of nodes of G + + typename Graph::template NodeMap level; + typename Graph::template NodeMap excess; + + // constants used for heuristics + static const int H0=20; + static const int H1=1; + + public: + + ///Indicates the property of the starting flow map. + + ///Indicates the property of the starting flow map. The meanings are as follows: + ///- \c ZERO_FLOW: constant zero flow + ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to + ///the sum of the out-flows in every node except the \e source and + ///the \e target. + ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at + ///least the sum of the out-flows in every node except the \e source. + ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be + ///set to the constant zero flow in the beginning of the algorithm in this case. + /// + enum FlowEnum{ + NO_FLOW, + ZERO_FLOW, + GEN_FLOW, + PRE_FLOW + }; + + ///Indicates the state of the preflow algorithm. + + ///Indicates the state of the preflow algorithm. The meanings are as follows: + ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state. + ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 + ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() + /// + enum StatusEnum { + AFTER_NOTHING, + AFTER_PREFLOW_PHASE_1, + AFTER_PREFLOW_PHASE_2 + }; + + protected: + FlowEnum flow_prop; + StatusEnum status; // Do not needle this flag only if necessary. + + public: + ///The constructor of the class. + + ///The constructor of the class. + ///\param _G The directed graph the algorithm runs on. + ///\param _s The source node. + ///\param _t The target node. + ///\param _capacity The capacity of the edges. + ///\param _flow The flow of the edges. + ///Except the graph, all of these parameters can be reset by + ///calling \ref setSource, \ref setTarget, \ref setCap and \ref + ///setFlow, resp. + Preflow(const Graph& _G, Node _s, Node _t, + const CapMap& _capacity, FlowMap& _flow) : + g(&_G), s(_s), t(_t), capacity(&_capacity), + flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), + flow_prop(NO_FLOW), status(AFTER_NOTHING) { } + + + + ///Runs the preflow algorithm. + + ///Runs the preflow algorithm. + void run() { + phase1(flow_prop); + phase2(); + } + + ///Runs the preflow algorithm. + + ///Runs the preflow algorithm. + ///\pre The starting flow map must be + /// - a constant zero flow if \c fp is \c ZERO_FLOW, + /// - an arbitrary flow if \c fp is \c GEN_FLOW, + /// - an arbitrary preflow if \c fp is \c PRE_FLOW, + /// - any map if \c fp is NO_FLOW. + ///If the starting flow map is a flow or a preflow then + ///the algorithm terminates faster. + void run(FlowEnum fp) { + flow_prop=fp; + run(); + } + + ///Runs the first phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs the + ///first phase. After the first phase the maximum flow value and a + ///minimum value cut can already be computed, though a maximum flow + ///is not yet obtained. So after calling this method \ref flowValue + ///and \ref minCut gives proper results. + ///\warning: \ref minMinCut and \ref maxMinCut do not + ///give minimum value cuts unless calling \ref phase2. + ///\pre The starting flow must be + /// - a constant zero flow if \c fp is \c ZERO_FLOW, + /// - an arbitary flow if \c fp is \c GEN_FLOW, + /// - an arbitary preflow if \c fp is \c PRE_FLOW, + /// - any map if \c fp is NO_FLOW. + void phase1(FlowEnum fp) + { + flow_prop=fp; + phase1(); + } + + + ///Runs the first phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs the + ///first phase. After the first phase the maximum flow value and a + ///minimum value cut can already be computed, though a maximum flow + ///is not yet obtained. So after calling this method \ref flowValue + ///and \ref actMinCut gives proper results. + ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not + ///give minimum value cuts unless calling \ref phase2. + void phase1() + { + int heur0=(int)(H0*n); //time while running 'bound decrease' + int heur1=(int)(H1*n); //time while running 'highest label' + int heur=heur1; //starting time interval (#of relabels) + int numrelabel=0; + + bool what_heur=1; + //It is 0 in case 'bound decrease' and 1 in case 'highest label' + + bool end=false; + //Needed for 'bound decrease', true means no active + //nodes are above bound b. + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecNode first(n, INVALID); + NNMap next(*g, INVALID); + + NNMap left(*g, INVALID); + NNMap right(*g, INVALID); + VecNode level_list(n,INVALID); + //List of the nodes in level i 0 ) { + b=k; + end=true; + } else break; + } + + if ( first[b]==INVALID ) --b; + else { + end=false; + Node w=first[b]; + first[b]=next[w]; + int newlevel=push(w, next, first); + if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, + left, right, b, k, what_heur); + + ++numrelabel; + if ( numrelabel >= heur ) { + numrelabel=0; + if ( what_heur ) { + what_heur=0; + heur=heur0; + end=false; + } else { + what_heur=1; + heur=heur1; + b=k; + } + } + } + } + flow_prop=PRE_FLOW; + status=AFTER_PREFLOW_PHASE_1; + } + // Heuristics: + // 2 phase + // gap + // list 'level_list' on the nodes on level i implemented by hand + // stack 'active' on the active nodes on level i + // runs heuristic 'highest label' for H1*n relabels + // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' + // Parameters H0 and H1 are initialized to 20 and 1. + + + ///Runs the second phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs + ///the second phase. After calling \ref phase1 and then + ///\ref phase2 the methods \ref flowValue, \ref minCut, + ///\ref minMinCut and \ref maxMinCut give proper results. + ///\pre \ref phase1 must be called before. + void phase2() + { + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + + VecNode first(n, INVALID); + NNMap next(*g, INVALID); + level.set(s,0); + std::queue bfs_queue; + bfs_queue.push(s); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v); e!=INVALID; ++e) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node u=g->tail(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) { + next.set(u,first[l]); + first[l]=u; + } + } + } + + for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { + if ( 0 >= (*flow)[e] ) continue; + Node u=g->head(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) { + next.set(u,first[l]); + first[l]=u; + } + } + } + } + b=n-2; + + while ( true ) { + + if ( b == 0 ) break; + if ( first[b]==INVALID ) --b; + else { + Node w=first[b]; + first[b]=next[w]; + int newlevel=push(w,next, first); + + //relabel + if ( excess[w] > 0 ) { + level.set(w,++newlevel); + next.set(w,first[newlevel]); + first[newlevel]=w; + b=newlevel; + } + } + } // while(true) + flow_prop=GEN_FLOW; + status=AFTER_PREFLOW_PHASE_2; + } + + /// Returns the value of the maximum flow. + + /// Returns the value of the maximum flow by returning the excess + /// of the target node \ref t. This value equals to the value of + /// the maximum flow already after running \ref phase1. + Num flowValue() const { + return excess[t]; + } + + + ///Returns a minimum value cut. + + ///Sets \c M to the characteristic vector of a minimum value + ///cut. This method can be called both after running \ref + ///phase1 and \ref phase2. It is much faster after + ///\ref phase1. \pre M should be a node map of bools. \pre + ///If \ref mincut is called after \ref phase2 then M should + ///be initialized to false. + template + void minCut(_CutMap& M) const { + switch ( status ) { + case AFTER_PREFLOW_PHASE_1: + for(NodeIt v(*g); v!=INVALID; ++v) { + if (level[v] < n) { + M.set(v, false); + } else { + M.set(v, true); + } + } + break; + case AFTER_PREFLOW_PHASE_2: + minMinCut(M); + break; + case AFTER_NOTHING: + break; + } + } + + ///Returns the inclusionwise minimum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise minimum. It is computed by processing a + ///bfs from the source node \c s in the residual graph. \pre M + ///should be a node map of bools initialized to false. \pre \ref + ///phase2 should already be run. + template + void minMinCut(_CutMap& M) const { + + std::queue queue; + M.set(s,true); + queue.push(s); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->head(e); + if (!M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, true); + } + } + + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->tail(e); + if (!M[v] && (*flow)[e] > 0 ) { + queue.push(v); + M.set(v, true); + } + } + } + } + + ///Returns the inclusionwise maximum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise maximum. It is computed by processing a + ///backward bfs from the target node \c t in the residual graph. + ///\pre \ref phase2() or preflow() should already be run. + template + void maxMinCut(_CutMap& M) const { + + for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); + + std::queue queue; + + M.set(t,false); + queue.push(t); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->tail(e); + if (M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, false); + } + } + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->head(e); + if (M[v] && (*flow)[e] > 0 ) { + queue.push(v); + M.set(v, false); + } + } + } + } + + ///Sets the source node to \c _s. + + ///Sets the source node to \c _s. + /// + void setSource(Node _s) { + s=_s; + if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; + status=AFTER_NOTHING; + } + + ///Sets the target node to \c _t. + + ///Sets the target node to \c _t. + /// + void setTarget(Node _t) { + t=_t; + if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; + status=AFTER_NOTHING; + } + + /// Sets the edge map of the capacities to _cap. + + /// Sets the edge map of the capacities to _cap. + /// + void setCap(const CapMap& _cap) { + capacity=&_cap; + status=AFTER_NOTHING; + } + + /// Sets the edge map of the flows to _flow. + + /// Sets the edge map of the flows to _flow. + /// + void setFlow(FlowMap& _flow) { + flow=&_flow; + flow_prop=NO_FLOW; + status=AFTER_NOTHING; + } + + + private: + + int push(Node w, NNMap& next, VecNode& first) { + + int lev=level[w]; + Num exc=excess[w]; + int newlevel=n; //bound on the next level of w + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + if ( (*flow)[e] >= (*capacity)[e] ) continue; + Node v=g->head(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + next.set(v,first[level[v]]); + first[level[v]]=v; + } + + Num cap=(*capacity)[e]; + Num flo=(*flow)[e]; + Num remcap=cap-flo; + + if ( remcap >= exc ) { //A nonsaturating push. + + flow->set(e, flo+exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + + } else { //A saturating push. + flow->set(e, cap); + excess.set(v, excess[v]+remcap); + exc-=remcap; + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for out edges wv + + if ( exc > 0 ) { + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + + if( (*flow)[e] <= 0 ) continue; + Node v=g->tail(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + next.set(v,first[level[v]]); + first[level[v]]=v; + } + + Num flo=(*flow)[e]; + + if ( flo >= exc ) { //A nonsaturating push. + + flow->set(e, flo-exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + } else { //A saturating push. + + excess.set(v, excess[v]+flo); + exc-=flo; + flow->set(e,0); + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for in edges vw + + } // if w still has excess after the out edge for cycle + + excess.set(w, exc); + + return newlevel; + } + + + + void preflowPreproc(VecNode& first, NNMap& next, + VecNode& level_list, NNMap& left, NNMap& right) + { + for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); + std::queue bfs_queue; + + if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { + //Reverse_bfs from t in the residual graph, + //to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + + for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { + if ( 0 >= (*flow)[e] ) continue; + Node w=g->head(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + } //while + } //if + + + switch (flow_prop) { + case NO_FLOW: + for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); + case ZERO_FLOW: + for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); + + //Reverse_bfs from t, to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + } + + //the starting flow + for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { + Num c=(*capacity)[e]; + if ( c <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { //putting into the stack + next.set(w,first[level[w]]); + first[level[w]]=w; + } + flow->set(e, c); + excess.set(w, excess[w]+c); + } + } + break; + + case GEN_FLOW: + for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); + { + Num exc=0; + for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; + for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; + excess.set(t,exc); + } + + //the starting flow + for(OutEdgeIt e(*g,s); e!=INVALID; ++e) { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { //putting into the stack + next.set(w,first[level[w]]); + first[level[w]]=w; + } + flow->set(e, (*capacity)[e]); + excess.set(w, excess[w]+rem); + } + } + + for(InEdgeIt e(*g,s); e!=INVALID; ++e) { + if ( (*flow)[e] <= 0 ) continue; + Node w=g->tail(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { + next.set(w,first[level[w]]); + first[level[w]]=w; + } + excess.set(w, excess[w]+(*flow)[e]); + flow->set(e, 0); + } + } + break; + + case PRE_FLOW: + //the starting flow + for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) flow->set(e, (*capacity)[e]); + } + + for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { + if ( (*flow)[e] <= 0 ) continue; + Node w=g->tail(e); + if ( level[w] < n ) flow->set(e, 0); + } + + //computing the excess + for(NodeIt w(*g); w!=INVALID; ++w) { + Num exc=0; + for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e]; + for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e]; + excess.set(w,exc); + + //putting the active nodes into the stack + int lev=level[w]; + if ( exc > 0 && lev < n && Node(w) != t ) { + next.set(w,first[lev]); + first[lev]=w; + } + } + break; + } //switch + } //preflowPreproc + + + void relabel(Node w, int newlevel, VecNode& first, NNMap& next, + VecNode& level_list, NNMap& left, + NNMap& right, int& b, int& k, bool what_heur ) + { + + int lev=level[w]; + + Node right_n=right[w]; + Node left_n=left[w]; + + //unlacing starts + if ( right_n!=INVALID ) { + if ( left_n!=INVALID ) { + right.set(left_n, right_n); + left.set(right_n, left_n); + } else { + level_list[lev]=right_n; + left.set(right_n, INVALID); + } + } else { + if ( left_n!=INVALID ) { + right.set(left_n, INVALID); + } else { + level_list[lev]=INVALID; + } + } + //unlacing ends + + if ( level_list[lev]==INVALID ) { + + //gapping starts + for (int i=lev; i!=k ; ) { + Node v=level_list[++i]; + while ( v!=INVALID ) { + level.set(v,n); + v=right[v]; + } + level_list[i]=INVALID; + if ( !what_heur ) first[i]=INVALID; + } + + level.set(w,n); + b=lev-1; + k=b; + //gapping ends + + } else { + + if ( newlevel == n ) level.set(w,n); + else { + level.set(w,++newlevel); + next.set(w,first[newlevel]); + first[newlevel]=w; + if ( what_heur ) b=newlevel; + if ( k < newlevel ) ++k; //now k=newlevel + Node z=level_list[newlevel]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + left.set(w,INVALID); + level_list[newlevel]=w; + } + } + } //relabel + + }; +} //namespace hugo + +#endif //HUGO_PREFLOW_H + + + +