Refinements in bipartite matching algorithms
authordeba
Tue, 18 Apr 2006 07:01:55 +0000 (2006-04-18)
changeset 20580b1fc1566fdb
parent 2057 6f84cdb6f4e8
child 2059 ebf3b2962554
Refinements in bipartite matching algorithms
lemon/bipartite_matching.h
test/bipartite_matching_test.cc
     1.1 --- a/lemon/bipartite_matching.h	Fri Apr 14 23:55:36 2006 +0000
     1.2 +++ b/lemon/bipartite_matching.h	Tue Apr 18 07:01:55 2006 +0000
     1.3 @@ -328,7 +328,7 @@
     1.4      ///
     1.5      /// It just initalize the algorithm and then start it.
     1.6      void run() {
     1.7 -      init();
     1.8 +      greedyInit();
     1.9        start();
    1.10      }
    1.11  
    1.12 @@ -349,7 +349,7 @@
    1.13      /// problem what is proof of the optimality of the matching.
    1.14      /// \return The size of the cover set.
    1.15      template <typename CoverMap>
    1.16 -    int coverSet(CoverMap& covering) {
    1.17 +    int coverSet(CoverMap& covering) const {
    1.18  
    1.19        typename Graph::template ANodeMap<bool> areached(*graph, false);
    1.20        typename Graph::template BNodeMap<bool> breached(*graph, false);
    1.21 @@ -403,7 +403,7 @@
    1.22      /// value mapped to the other uedges.
    1.23      /// \return The number of the matching edges.
    1.24      template <typename MatchingMap>
    1.25 -    int quickMatching(MatchingMap& matching) {
    1.26 +    int quickMatching(MatchingMap& matching) const {
    1.27        for (ANodeIt it(*graph); it != INVALID; ++it) {
    1.28          if (anode_matching[it] != INVALID) {
    1.29            matching[anode_matching[it]] = true;
    1.30 @@ -417,7 +417,7 @@
    1.31      /// Set true all matching uedge in the map and the others to false.
    1.32      /// \return The number of the matching edges.
    1.33      template <typename MatchingMap>
    1.34 -    int matching(MatchingMap& matching) {
    1.35 +    int matching(MatchingMap& matching) const {
    1.36        for (UEdgeIt it(*graph); it != INVALID; ++it) {
    1.37          matching[it] = it == anode_matching[graph->aNode(it)];
    1.38        }
    1.39 @@ -428,7 +428,7 @@
    1.40      /// \brief Return true if the given uedge is in the matching.
    1.41      /// 
    1.42      /// It returns true if the given uedge is in the matching.
    1.43 -    bool matchingEdge(const UEdge& edge) {
    1.44 +    bool matchingEdge(const UEdge& edge) const {
    1.45        return anode_matching[graph->aNode(edge)] == edge;
    1.46      }
    1.47  
    1.48 @@ -436,7 +436,7 @@
    1.49      /// 
    1.50      /// Returns the matching edge from the node. If there is not such
    1.51      /// edge it gives back \c INVALID.
    1.52 -    UEdge matchingEdge(const Node& node) {
    1.53 +    UEdge matchingEdge(const Node& node) const {
    1.54        if (graph->aNode(node)) {
    1.55          return anode_matching[node];
    1.56        } else {
    1.57 @@ -463,6 +463,26 @@
    1.58    
    1.59    };
    1.60  
    1.61 +  /// \ingroup matching
    1.62 +  ///
    1.63 +  /// \brief Maximum cardinality bipartite matching
    1.64 +  ///
    1.65 +  /// This function calculates the maximum cardinality matching
    1.66 +  /// in a bipartite graph. It gives back the matching in an undirected
    1.67 +  /// edge map.
    1.68 +  ///
    1.69 +  /// \param graph The bipartite graph.
    1.70 +  /// \retval matching The undirected edge map which will be set to 
    1.71 +  /// the matching.
    1.72 +  /// \return The size of the matching.
    1.73 +  template <typename BpUGraph, typename MatchingMap>
    1.74 +  int maxBipartiteMatching(const BpUGraph& graph, MatchingMap& matching) {
    1.75 +    MaxBipartiteMatching<BpUGraph> bpmatching(graph);
    1.76 +    bpmatching.run();
    1.77 +    bpmatching.matching(matching);
    1.78 +    return bpmatching.matchingSize();
    1.79 +  }
    1.80 +
    1.81    /// \brief Default traits class for weighted bipartite matching algoritms.
    1.82    ///
    1.83    /// Default traits class for weighted bipartite matching algoritms.
    1.84 @@ -701,8 +721,8 @@
    1.85          bnode_matching[it] = INVALID;
    1.86          bnode_potential[it] = 0;
    1.87          for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
    1.88 -          if (-(*weight)[jt] <= bnode_potential[it]) {
    1.89 -            bnode_potential[it] = -(*weight)[jt];
    1.90 +          if ((*weight)[jt] > bnode_potential[it]) {
    1.91 +            bnode_potential[it] = (*weight)[jt];
    1.92            }
    1.93          }
    1.94        }
    1.95 @@ -753,8 +773,8 @@
    1.96          for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
    1.97            if (jt == anode_matching[anode]) continue;
    1.98            Node bnode = graph->bNode(jt);
    1.99 -          Value bvalue = avalue + anode_potential[anode] - 
   1.100 -            bnode_potential[bnode] - (*weight)[jt];
   1.101 +          Value bvalue = avalue  - (*weight)[jt] +
   1.102 +            anode_potential[anode] + bnode_potential[bnode];
   1.103            if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
   1.104              bdist[bnode] = bvalue;
   1.105              bpred[bnode] = jt;
   1.106 @@ -778,8 +798,8 @@
   1.107              }
   1.108            } else {
   1.109              if (bestNode == INVALID || 
   1.110 -                - bvalue - bnode_potential[bnode] > bestValue) {
   1.111 -              bestValue = - bvalue - bnode_potential[bnode];
   1.112 +                bnode_potential[bnode] - bvalue > bestValue) {
   1.113 +              bestValue = bnode_potential[bnode] - bvalue;
   1.114                bestNode = bnode;
   1.115              }
   1.116            }
   1.117 @@ -795,9 +815,9 @@
   1.118  
   1.119        for (BNodeIt it(*graph); it != INVALID; ++it) {
   1.120          if (bpred[it] != INVALID) {
   1.121 -          bnode_potential[it] += bdist[it];
   1.122 +          bnode_potential[it] -= bdist[it];
   1.123          } else {
   1.124 -          bnode_potential[it] += bdistMax;
   1.125 +          bnode_potential[it] -= bdistMax;
   1.126          }
   1.127        }
   1.128        for (ANodeIt it(*graph); it != INVALID; ++it) {
   1.129 @@ -864,12 +884,12 @@
   1.130  
   1.131      /// \brief Gives back the potential in the NodeMap
   1.132      ///
   1.133 -    /// Gives back the potential in the NodeMap. The potential
   1.134 -    /// is feasible if \f$ \pi(a) - \pi(b) - w(ab) = 0 \f$ for
   1.135 -    /// each matching edges and \f$ \pi(a) - \pi(b) - w(ab) \ge 0 \f$
   1.136 -    /// for each edges.
   1.137 +    /// Gives back the potential in the NodeMap. The matching is optimal
   1.138 +    /// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$
   1.139 +    /// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$
   1.140 +    /// for each edges. 
   1.141      template <typename PotentialMap>
   1.142 -    void potential(PotentialMap& potential) {
   1.143 +    void potential(PotentialMap& potential) const {
   1.144        for (ANodeIt it(*graph); it != INVALID; ++it) {
   1.145          potential[it] = anode_potential[it];
   1.146        }
   1.147 @@ -884,7 +904,7 @@
   1.148      /// value mapped to the other uedges.
   1.149      /// \return The number of the matching edges.
   1.150      template <typename MatchingMap>
   1.151 -    int quickMatching(MatchingMap& matching) {
   1.152 +    int quickMatching(MatchingMap& matching) const {
   1.153        for (ANodeIt it(*graph); it != INVALID; ++it) {
   1.154          if (anode_matching[it] != INVALID) {
   1.155            matching[anode_matching[it]] = true;
   1.156 @@ -898,7 +918,7 @@
   1.157      /// Set true all matching uedge in the map and the others to false.
   1.158      /// \return The number of the matching edges.
   1.159      template <typename MatchingMap>
   1.160 -    int matching(MatchingMap& matching) {
   1.161 +    int matching(MatchingMap& matching) const {
   1.162        for (UEdgeIt it(*graph); it != INVALID; ++it) {
   1.163          matching[it] = it == anode_matching[graph->aNode(it)];
   1.164        }
   1.165 @@ -909,7 +929,7 @@
   1.166      /// \brief Return true if the given uedge is in the matching.
   1.167      /// 
   1.168      /// It returns true if the given uedge is in the matching.
   1.169 -    bool matchingEdge(const UEdge& edge) {
   1.170 +    bool matchingEdge(const UEdge& edge) const {
   1.171        return anode_matching[graph->aNode(edge)] == edge;
   1.172      }
   1.173  
   1.174 @@ -917,7 +937,7 @@
   1.175      /// 
   1.176      /// Returns the matching edge from the node. If there is not such
   1.177      /// edge it gives back \c INVALID.
   1.178 -    UEdge matchingEdge(const Node& node) {
   1.179 +    UEdge matchingEdge(const Node& node) const {
   1.180        if (graph->aNode(node)) {
   1.181          return anode_matching[node];
   1.182        } else {
   1.183 @@ -982,6 +1002,55 @@
   1.184    
   1.185    };
   1.186  
   1.187 +  /// \ingroup matching
   1.188 +  ///
   1.189 +  /// \brief Maximum weighted bipartite matching
   1.190 +  ///
   1.191 +  /// This function calculates the maximum weighted matching
   1.192 +  /// in a bipartite graph. It gives back the matching in an undirected
   1.193 +  /// edge map.
   1.194 +  ///
   1.195 +  /// \param graph The bipartite graph.
   1.196 +  /// \param weight The undirected edge map which contains the weights.
   1.197 +  /// \retval matching The undirected edge map which will be set to 
   1.198 +  /// the matching.
   1.199 +  /// \return The value of the matching.
   1.200 +  template <typename BpUGraph, typename WeightMap, typename MatchingMap>
   1.201 +  typename WeightMap::Value 
   1.202 +  maxWeightedBipartiteMatching(const BpUGraph& graph, const WeightMap& weight,
   1.203 +                               MatchingMap& matching) {
   1.204 +    MaxWeightedBipartiteMatching<BpUGraph, WeightMap> 
   1.205 +      bpmatching(graph, weight);
   1.206 +    bpmatching.run();
   1.207 +    bpmatching.matching(matching);
   1.208 +    return bpmatching.matchingValue();
   1.209 +  }
   1.210 +
   1.211 +  /// \ingroup matching
   1.212 +  ///
   1.213 +  /// \brief Maximum weighted maximum cardinality bipartite matching
   1.214 +  ///
   1.215 +  /// This function calculates the maximum weighted of the maximum cardinality
   1.216 +  /// matchings of a bipartite graph. It gives back the matching in an 
   1.217 +  /// undirected edge map.
   1.218 +  ///
   1.219 +  /// \param graph The bipartite graph.
   1.220 +  /// \param weight The undirected edge map which contains the weights.
   1.221 +  /// \retval matching The undirected edge map which will be set to 
   1.222 +  /// the matching.
   1.223 +  /// \return The value of the matching.
   1.224 +  template <typename BpUGraph, typename WeightMap, typename MatchingMap>
   1.225 +  typename WeightMap::Value 
   1.226 +  maxWeightedMaxBipartiteMatching(const BpUGraph& graph, 
   1.227 +                                  const WeightMap& weight,
   1.228 +                                  MatchingMap& matching) {
   1.229 +    MaxWeightedBipartiteMatching<BpUGraph, WeightMap> 
   1.230 +      bpmatching(graph, weight);
   1.231 +    bpmatching.run(true);
   1.232 +    bpmatching.matching(matching);
   1.233 +    return bpmatching.matchingValue();
   1.234 +  }
   1.235 +
   1.236    /// \brief Default traits class for minimum cost bipartite matching
   1.237    /// algoritms.
   1.238    ///
   1.239 @@ -1360,12 +1429,12 @@
   1.240  
   1.241      /// \brief Gives back the potential in the NodeMap
   1.242      ///
   1.243 -    /// Gives back the potential in the NodeMap. The potential
   1.244 -    /// is feasible if \f$ \pi(a) - \pi(b) + w(ab) = 0 \f$ for
   1.245 +    /// Gives back the potential in the NodeMap. The potential is optimal with 
   1.246 +    /// the current number of edges if \f$ \pi(a) - \pi(b) + w(ab) = 0 \f$ for
   1.247      /// each matching edges and \f$ \pi(a) - \pi(b) + w(ab) \ge 0 \f$
   1.248      /// for each edges.
   1.249      template <typename PotentialMap>
   1.250 -    void potential(PotentialMap& potential) {
   1.251 +    void potential(PotentialMap& potential) const {
   1.252        for (ANodeIt it(*graph); it != INVALID; ++it) {
   1.253          potential[it] = anode_potential[it];
   1.254        }
   1.255 @@ -1380,7 +1449,7 @@
   1.256      /// value mapped to the other uedges.
   1.257      /// \return The number of the matching edges.
   1.258      template <typename MatchingMap>
   1.259 -    int quickMatching(MatchingMap& matching) {
   1.260 +    int quickMatching(MatchingMap& matching) const {
   1.261        for (ANodeIt it(*graph); it != INVALID; ++it) {
   1.262          if (anode_matching[it] != INVALID) {
   1.263            matching[anode_matching[it]] = true;
   1.264 @@ -1394,7 +1463,7 @@
   1.265      /// Set true all matching uedge in the map and the others to false.
   1.266      /// \return The number of the matching edges.
   1.267      template <typename MatchingMap>
   1.268 -    int matching(MatchingMap& matching) {
   1.269 +    int matching(MatchingMap& matching) const {
   1.270        for (UEdgeIt it(*graph); it != INVALID; ++it) {
   1.271          matching[it] = it == anode_matching[graph->aNode(it)];
   1.272        }
   1.273 @@ -1405,7 +1474,7 @@
   1.274      /// \brief Return true if the given uedge is in the matching.
   1.275      /// 
   1.276      /// It returns true if the given uedge is in the matching.
   1.277 -    bool matchingEdge(const UEdge& edge) {
   1.278 +    bool matchingEdge(const UEdge& edge) const {
   1.279        return anode_matching[graph->aNode(edge)] == edge;
   1.280      }
   1.281  
   1.282 @@ -1413,7 +1482,7 @@
   1.283      /// 
   1.284      /// Returns the matching edge from the node. If there is not such
   1.285      /// edge it gives back \c INVALID.
   1.286 -    UEdge matchingEdge(const Node& node) {
   1.287 +    UEdge matchingEdge(const Node& node) const {
   1.288        if (graph->aNode(node)) {
   1.289          return anode_matching[node];
   1.290        } else {
   1.291 @@ -1478,6 +1547,31 @@
   1.292    
   1.293    };
   1.294  
   1.295 +  /// \ingroup matching
   1.296 +  ///
   1.297 +  /// \brief Minimum cost maximum cardinality bipartite matching
   1.298 +  ///
   1.299 +  /// This function calculates the minimum cost matching of the maximum 
   1.300 +  /// cardinality matchings of a bipartite graph. It gives back the matching 
   1.301 +  /// in an undirected edge map.
   1.302 +  ///
   1.303 +  /// \param graph The bipartite graph.
   1.304 +  /// \param cost The undirected edge map which contains the costs.
   1.305 +  /// \retval matching The undirected edge map which will be set to 
   1.306 +  /// the matching.
   1.307 +  /// \return The cost of the matching.
   1.308 +  template <typename BpUGraph, typename CostMap, typename MatchingMap>
   1.309 +  typename CostMap::Value 
   1.310 +  minCostMaxBipartiteMatching(const BpUGraph& graph, 
   1.311 +                              const CostMap& cost,
   1.312 +                              MatchingMap& matching) {
   1.313 +    MinCostMaxBipartiteMatching<BpUGraph, CostMap> 
   1.314 +      bpmatching(graph, cost);
   1.315 +    bpmatching.run();
   1.316 +    bpmatching.matching(matching);
   1.317 +    return bpmatching.matchingCost();
   1.318 +  }
   1.319 +
   1.320  }
   1.321  
   1.322  #endif
     2.1 --- a/test/bipartite_matching_test.cc	Fri Apr 14 23:55:36 2006 +0000
     2.2 +++ b/test/bipartite_matching_test.cc	Tue Apr 18 07:01:55 2006 +0000
     2.3 @@ -23,8 +23,8 @@
     2.4    Graph graph;
     2.5    vector<Node> aNodes;
     2.6    vector<Node> bNodes;
     2.7 -  int n = argc > 1 ? atoi(argv[1]) : 100;
     2.8 -  int m = argc > 2 ? atoi(argv[2]) : 100;
     2.9 +  int n = argc > 1 ? atoi(argv[1]) : 10;
    2.10 +  int m = argc > 2 ? atoi(argv[2]) : 10;
    2.11    int e = argc > 3 ? atoi(argv[3]) : (int)((n+m) * log(n+m));
    2.12    int c = argc > 4 ? atoi(argv[4]) : 100;
    2.13  
    2.14 @@ -33,6 +33,7 @@
    2.15    int max_cardinality;
    2.16    int max_weight;
    2.17    int max_cardinality_max_weight;
    2.18 +  int min_cost_matching;
    2.19  
    2.20    for (int i = 0; i < n; ++i) {
    2.21      Node node = graph.addANode();
    2.22 @@ -74,6 +75,21 @@
    2.23    }
    2.24  
    2.25    {
    2.26 +    Graph::UEdgeMap<bool> mm(graph);
    2.27 +
    2.28 +    check(max_cardinality == maxBipartiteMatching(graph, mm),
    2.29 +          "WRONG MATCHING");
    2.30 +    
    2.31 +    for (ANodeIt it(graph); it != INVALID; ++it) {
    2.32 +      int num = 0;
    2.33 +      for (IncEdgeIt jt(graph, it); jt != INVALID; ++jt) {
    2.34 +        if (mm[jt]) ++num;
    2.35 +      }
    2.36 +      check(num <= 1, "INVALID PRIMAL");
    2.37 +    }
    2.38 +  }
    2.39 +
    2.40 +  {
    2.41      MaxBipartiteMatching<Graph> bpmatch(graph);
    2.42  
    2.43      bpmatch.greedyInit();
    2.44 @@ -137,10 +153,10 @@
    2.45        
    2.46        for (UEdgeIt it(graph); it != INVALID; ++it) {
    2.47          if (mm[it]) {
    2.48 -          check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] == 0,
    2.49 +          check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] == 0,
    2.50                  "INVALID DUAL");
    2.51          } else {
    2.52 -          check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] >= 0,
    2.53 +          check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] >= 0,
    2.54                  "INVALID DUAL");
    2.55          }
    2.56        }
    2.57 @@ -159,6 +175,21 @@
    2.58    }
    2.59  
    2.60    {
    2.61 +    Graph::UEdgeMap<bool> mm(graph);
    2.62 +
    2.63 +    check(max_weight == maxWeightedBipartiteMatching(graph, weight, mm),
    2.64 +          "WRONG MATCHING");
    2.65 +    
    2.66 +    for (ANodeIt it(graph); it != INVALID; ++it) {
    2.67 +      int num = 0;
    2.68 +      for (IncEdgeIt jt(graph, it); jt != INVALID; ++jt) {
    2.69 +        if (mm[jt]) ++num;
    2.70 +      }
    2.71 +      check(num <= 1, "INVALID PRIMAL");
    2.72 +    }
    2.73 +  }
    2.74 +
    2.75 +  {
    2.76      MaxWeightedBipartiteMatching<Graph> bpmatch(graph, weight);
    2.77  
    2.78      bpmatch.run();
    2.79 @@ -171,10 +202,10 @@
    2.80      
    2.81      for (UEdgeIt it(graph); it != INVALID; ++it) {
    2.82        if (mm[it]) {
    2.83 -        check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] == 0,
    2.84 +        check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] == 0,
    2.85                "INVALID DUAL");
    2.86        } else {
    2.87 -        check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] >= 0,
    2.88 +        check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] >= 0,
    2.89                "INVALID DUAL");
    2.90        }
    2.91      }
    2.92 @@ -202,10 +233,10 @@
    2.93      
    2.94      for (UEdgeIt it(graph); it != INVALID; ++it) {
    2.95        if (mm[it]) {
    2.96 -        check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] == 0,
    2.97 +        check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] == 0,
    2.98                "INVALID DUAL");
    2.99        } else {
   2.100 -        check(pm[graph.aNode(it)] - weight[it] - pm[graph.bNode(it)] >= 0,
   2.101 +        check(pm[graph.aNode(it)] + pm[graph.bNode(it)] - weight[it] >= 0,
   2.102                "INVALID DUAL");
   2.103        }
   2.104      }
   2.105 @@ -223,9 +254,25 @@
   2.106    }
   2.107  
   2.108    {
   2.109 -    Graph::UEdgeMap<int> cost(graph);
   2.110 +    Graph::UEdgeMap<bool> mm(graph);
   2.111  
   2.112 -    cost = subMap(constMap<UEdge>(c), weight);
   2.113 +    check(max_cardinality_max_weight == 
   2.114 +          maxWeightedMaxBipartiteMatching(graph, weight, mm),
   2.115 +          "WRONG MATCHING");
   2.116 +    
   2.117 +    for (ANodeIt it(graph); it != INVALID; ++it) {
   2.118 +      int num = 0;
   2.119 +      for (IncEdgeIt jt(graph, it); jt != INVALID; ++jt) {
   2.120 +        if (mm[jt]) ++num;
   2.121 +      }
   2.122 +      check(num <= 1, "INVALID PRIMAL");
   2.123 +    }
   2.124 +  }
   2.125 +
   2.126 +  Graph::UEdgeMap<int> cost(graph);
   2.127 +  cost = subMap(constMap<UEdge>(c), weight);
   2.128 +
   2.129 +  {
   2.130  
   2.131      MinCostMaxBipartiteMatching<Graph> bpmatch(graph, cost);
   2.132  
   2.133 @@ -255,11 +302,28 @@
   2.134        check(num <= 1, "INVALID PRIMAL");
   2.135      }
   2.136  
   2.137 +    min_cost_matching = bpmatch.matchingCost();
   2.138      check(max_cardinality == bpmatch.matchingSize(), "WRONG SIZE");
   2.139      check(max_cardinality * c - max_cardinality_max_weight 
   2.140            == bpmatch.matchingCost(), "WRONG SIZE");
   2.141  
   2.142    }
   2.143  
   2.144 +  {
   2.145 +    Graph::UEdgeMap<bool> mm(graph);
   2.146 +
   2.147 +    check(min_cost_matching == 
   2.148 +          minCostMaxBipartiteMatching(graph, cost, mm),
   2.149 +          "WRONG MATCHING");
   2.150 +    
   2.151 +    for (ANodeIt it(graph); it != INVALID; ++it) {
   2.152 +      int num = 0;
   2.153 +      for (IncEdgeIt jt(graph, it); jt != INVALID; ++jt) {
   2.154 +        if (mm[jt]) ++num;
   2.155 +      }
   2.156 +      check(num <= 1, "INVALID PRIMAL");
   2.157 +    }
   2.158 +  }
   2.159 +
   2.160    return 0;
   2.161  }