1.1 --- a/lemon/csp.h Mon Feb 19 19:55:13 2007 +0000
1.2 +++ b/lemon/csp.h Tue Feb 20 12:55:37 2007 +0000
1.3 @@ -38,7 +38,13 @@
1.4
1.5 ///Algorithms for the Resource Constrained Shortest Path Problem
1.6
1.7 - ///\e
1.8 + ///The Resource Constrained Shortest (Least Cost) Path problem is the
1.9 + ///following. We are given a directed graph with two additive weightings
1.10 + ///on the edges, referred as \e cost and \e delay. In addition,
1.11 + ///a source and a destination node \e s and \e t and a delay
1.12 + ///constraint \e D is given. A path \e p is called \e feasible
1.13 + ///if <em>delay(p)\<=D</em>. Then, the task is to find the least cost
1.14 + ///feasible path.
1.15 ///
1.16 template<class Graph,
1.17 class CM=typename Graph:: template EdgeMap<double>,
2.1 --- a/lemon/elevator.h Mon Feb 19 19:55:13 2007 +0000
2.2 +++ b/lemon/elevator.h Tue Feb 20 12:55:37 2007 +0000
2.3 @@ -146,6 +146,9 @@
2.4 }
2.5
2.6 ///Activate item \c i.
2.7 +
2.8 + ///Activate item \c i.
2.9 + ///\pre Item \c i shouldn't be active before.
2.10 void activate(Item i)
2.11 {
2.12 const int l=_level[i];
2.13 @@ -154,6 +157,9 @@
2.14 }
2.15
2.16 ///Deactivate item \c i.
2.17 +
2.18 + ///Deactivate item \c i.
2.19 + ///\pre Item \c i must be active before.
2.20 void deactivate(Item i)
2.21 {
2.22 swap(_where[i],_last_active[_level[i]]--);