kruskal_demo corrected, quicktour filled with kruskal
authorzsuzska
Wed, 20 Jul 2005 22:36:37 +0000
changeset 15781d3a1bcbc874
parent 1577 15098fb5275c
child 1579 ed7da82bbecf
kruskal_demo corrected, quicktour filled with kruskal
demo/kruskal_demo.cc
doc/quicktour.dox
     1.1 --- a/demo/kruskal_demo.cc	Wed Jul 20 16:05:04 2005 +0000
     1.2 +++ b/demo/kruskal_demo.cc	Wed Jul 20 22:36:37 2005 +0000
     1.3 @@ -1,3 +1,26 @@
     1.4 +/* -*- C++ -*-
     1.5 + * demo/kruskal_demo.cc - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +///\ingroup demos
    1.21 +///\file
    1.22 +///\brief Minimum weight spanning tree by Kruskal algorithm (demo).
    1.23 +///
    1.24 +///This demo program shows how to find a minimum weight spannin tree
    1.25 +///of a graph by using the Kruskal algorithm. 
    1.26 +
    1.27  #include <iostream>
    1.28  #include <vector>
    1.29  
    1.30 @@ -17,79 +40,64 @@
    1.31    typedef ListGraph::NodeIt NodeIt;
    1.32    typedef ListGraph::EdgeIt EdgeIt;
    1.33  
    1.34 -  ListGraph G;
    1.35 +  ListGraph g;
    1.36 +  //Make an example graph g.
    1.37 +  Node s=g.addNode();
    1.38 +  Node v1=g.addNode();
    1.39 +  Node v2=g.addNode();
    1.40 +  Node v3=g.addNode();
    1.41 +  Node v4=g.addNode();
    1.42 +  Node t=g.addNode();
    1.43 +  
    1.44 +  Edge e1 = g.addEdge(s, v1);
    1.45 +  Edge e2 = g.addEdge(s, v2);
    1.46 +  Edge e3 = g.addEdge(v1, v2);
    1.47 +  Edge e4 = g.addEdge(v2, v1);
    1.48 +  Edge e5 = g.addEdge(v1, v3);
    1.49 +  Edge e6 = g.addEdge(v3, v2);
    1.50 +  Edge e7 = g.addEdge(v2, v4);
    1.51 +  Edge e8 = g.addEdge(v4, v3);
    1.52 +  Edge e9 = g.addEdge(v3, t);
    1.53 +  Edge e10 = g.addEdge(v4, t);
    1.54  
    1.55 -  Node s=G.addNode();
    1.56 -  Node v1=G.addNode();
    1.57 -  Node v2=G.addNode();
    1.58 -  Node v3=G.addNode();
    1.59 -  Node v4=G.addNode();
    1.60 -  Node t=G.addNode();
    1.61 -  
    1.62 -  Edge e1 = G.addEdge(s, v1);
    1.63 -  Edge e2 = G.addEdge(s, v2);
    1.64 -  Edge e3 = G.addEdge(v1, v2);
    1.65 -  Edge e4 = G.addEdge(v2, v1);
    1.66 -  Edge e5 = G.addEdge(v1, v3);
    1.67 -  Edge e6 = G.addEdge(v3, v2);
    1.68 -  Edge e7 = G.addEdge(v2, v4);
    1.69 -  Edge e8 = G.addEdge(v4, v3);
    1.70 -  Edge e9 = G.addEdge(v3, t);
    1.71 -  Edge e10 = G.addEdge(v4, t);
    1.72 -
    1.73 +  //Make the input and output for the kruskal.
    1.74    typedef ListGraph::EdgeMap<int> ECostMap;
    1.75    typedef ListGraph::EdgeMap<bool> EBoolMap;
    1.76  
    1.77 -  ECostMap edge_cost_map(G, 2);
    1.78 -  EBoolMap tree_map(G);
    1.79 -  
    1.80 +  ECostMap edge_cost_map(g, 2);
    1.81 +  EBoolMap tree_map(g);
    1.82  
    1.83 -  //Test with const map.
    1.84 -  std::cout << "The weight of the minimum spanning tree is " << kruskalEdgeMap(G, ConstMap<ListGraph::Edge,int>(2), tree_map)<<std::endl;
    1.85 +  // Kruskal.
    1.86 +  std::cout << "The weight of the minimum spanning tree by using Kruskal algorithm is " 
    1.87 +	    << kruskal(g, ConstMap<ListGraph::Edge,int>(2), tree_map)<<std::endl;
    1.88  
    1.89 -/*
    1.90 -  ==10,
    1.91 -	"Total cost should be 10");
    1.92 -  //Test with a edge map (filled with uniform costs).
    1.93 -  check(kruskalEdgeMap(G, edge_cost_map, tree_map)==10,
    1.94 -	"Total cost should be 10");
    1.95 -
    1.96 -  edge_cost_map.set(e1, -10);
    1.97 -  edge_cost_map.set(e2, -9);
    1.98 -  edge_cost_map.set(e3, -8);
    1.99 -  edge_cost_map.set(e4, -7);
   1.100 -  edge_cost_map.set(e5, -6);
   1.101 -  edge_cost_map.set(e6, -5);
   1.102 -  edge_cost_map.set(e7, -4);
   1.103 -  edge_cost_map.set(e8, -3);
   1.104 -  edge_cost_map.set(e9, -2);
   1.105 -  edge_cost_map.set(e10, -1);
   1.106 +  //Make another input (non-uniform costs) for the kruskal.
   1.107 +  ECostMap edge_cost_map_2(g);
   1.108 +  edge_cost_map_2.set(e1, -10);
   1.109 +  edge_cost_map_2.set(e2, -9);
   1.110 +  edge_cost_map_2.set(e3, -8);
   1.111 +  edge_cost_map_2.set(e4, -7);
   1.112 +  edge_cost_map_2.set(e5, -6);
   1.113 +  edge_cost_map_2.set(e6, -5);
   1.114 +  edge_cost_map_2.set(e7, -4);
   1.115 +  edge_cost_map_2.set(e8, -3);
   1.116 +  edge_cost_map_2.set(e9, -2);
   1.117 +  edge_cost_map_2.set(e10, -1);
   1.118  
   1.119    vector<Edge> tree_edge_vec;
   1.120  
   1.121 -  //Test with a edge map and inserter.
   1.122 -  check(kruskalEdgeMap_IteratorOut(G, edge_cost_map,
   1.123 -				   back_inserter(tree_edge_vec))
   1.124 -	==-31,
   1.125 -	"Total cost should be -31.");
   1.126 +  //Test with non uniform costs and inserter.
   1.127 +  std::cout << "The weight of the minimum spanning tree with non-uniform costs is " << 
   1.128 +    kruskal(g, edge_cost_map_2, std::back_inserter(tree_edge_vec)) <<std::endl;
   1.129  
   1.130 +  //The vector for the edges of the output tree.
   1.131    tree_edge_vec.clear();
   1.132  
   1.133 -  //The above test could also be coded like this:
   1.134 -  check(kruskal(G,
   1.135 -		makeKruskalMapInput(G, edge_cost_map),
   1.136 -		makeKruskalSequenceOutput(back_inserter(tree_edge_vec)))
   1.137 -	==-31,
   1.138 -	"Total cost should be -31.");
   1.139 +  //Test with makeKruskalSequenceOutput and makeKruskalSequenceOutput.
   1.140  
   1.141 -  check(tree_edge_vec.size()==5,"The tree should have 5 edges.");
   1.142 +  std::cout << "The weight of the minimum spanning tree again is " << 
   1.143 +   kruskal(g,makeKruskalMapInput(g,edge_cost_map_2),makeKruskalSequenceOutput(std::back_inserter(tree_edge_vec)))<< std::endl;
   1.144  
   1.145 -  check(tree_edge_vec[0]==e1 &&
   1.146 -	tree_edge_vec[1]==e2 &&
   1.147 -	tree_edge_vec[2]==e5 &&
   1.148 -	tree_edge_vec[3]==e7 &&
   1.149 -	tree_edge_vec[4]==e9,
   1.150 -	"Wrong tree.");
   1.151 -*/
   1.152 +
   1.153    return 0;
   1.154  }
     2.1 --- a/doc/quicktour.dox	Wed Jul 20 16:05:04 2005 +0000
     2.2 +++ b/doc/quicktour.dox	Wed Jul 20 22:36:37 2005 +0000
     2.3 @@ -141,13 +141,34 @@
     2.4  \ref lemon::Dijkstra "LEMON Dijkstra class".
     2.5  
     2.6  
     2.7 -<li> If you want to design a network and want to minimize the total length
     2.8 -of wires then you might be looking for a <b>minimum spanning tree</b> in
     2.9 -an undirected graph. This can be found using the Kruskal algorithm: the 
    2.10 -function \ref lemon::kruskal "LEMON Kruskal ..." does this job for you.
    2.11 -The following code fragment shows an example:
    2.12 +<li> If you want to design a network and want to minimize the total
    2.13 +length of wires then you might be looking for a <b>minimum spanning
    2.14 +tree</b> in an undirected graph. This can be found using the Kruskal
    2.15 +algorithm: the function \ref lemon::kruskal "LEMON Kruskal " does
    2.16 +this job for you.  After we had a graph \c g and a cost map \c
    2.17 +edge_cost_map , the following code fragment shows an example how to get weight of the minmum spanning tree, if the costs are uniform:
    2.18  
    2.19 -Ide Zsuzska fog irni!
    2.20 +\dontinclude kruskal_demo.cc
    2.21 +\skip std::cout 
    2.22 +\until kruskal
    2.23 +
    2.24 +It gives back a edge bool map, which contains the edges of the tree.
    2.25 +If the costs are non-uniform, for example  the cost is given by \c
    2.26 +edge_cost_map_2 , or the edges of the tree are have to be given in a
    2.27 +vector, then we can give to the kruskal a vector \c tree_edge_vec , instead of
    2.28 +an edge bool map:
    2.29 +
    2.30 +\skip edge_cost_map_2 
    2.31 +\until edge_cost_map_2, std::back_inserter
    2.32 +
    2.33 +And finally the next fragment shows how to use the functions \c makeKruskalMapInput and \c makeKruskalSequenceOutPut:
    2.34 +
    2.35 +\skip makeKruskalSequenceOutput
    2.36 +\until tree_edge_vec
    2.37 +
    2.38 +See the whole program in \ref kruskal_demo.cc.
    2.39 +
    2.40 +
    2.41  
    2.42  <li>Many problems in network optimization can be formalized by means
    2.43  of a linear programming problem (LP problem, for short). In our