Delaunay triangulation
authordeba
Tue, 05 Jun 2007 11:49:19 +0000
changeset 2447260ce674cc65
parent 2446 dd20d76eed13
child 2448 ab899ae3505f
Delaunay triangulation
Faster geometric minimum spanning tree
tools/lgf-gen.cc
     1.1 --- a/tools/lgf-gen.cc	Tue Jun 05 10:59:16 2007 +0000
     1.2 +++ b/tools/lgf-gen.cc	Tue Jun 05 11:49:19 2007 +0000
     1.3 @@ -29,7 +29,7 @@
     1.4  #include <lemon/euler.h>
     1.5  #include <cmath>
     1.6  #include <algorithm>
     1.7 -#include <lemon/unionfind.h>
     1.8 +#include <lemon/kruskal.h>
     1.9  #include <lemon/time_measure.h>
    1.10  
    1.11  using namespace lemon;
    1.12 @@ -146,32 +146,279 @@
    1.13  
    1.14  std::vector<UEdge> edges;
    1.15  
    1.16 -void triangle()
    1.17 -{
    1.18 +namespace _delaunay_bits {
    1.19 +
    1.20 +  struct Part {
    1.21 +    int prev, curr, next;
    1.22 +
    1.23 +    Part(int p, int c, int n) : prev(p), curr(c), next(n) {} 
    1.24 +  };
    1.25 +
    1.26 +  inline std::ostream& operator<<(std::ostream& os, const Part& part) {
    1.27 +    os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
    1.28 +    return os;
    1.29 +  }
    1.30 +
    1.31 +  inline double circle_point(const Point& p, const Point& q, const Point& r) {
    1.32 +    double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
    1.33 +    if (a == 0) return std::numeric_limits<double>::quiet_NaN();
    1.34 +
    1.35 +    double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
    1.36 +      (q.x * q.x + q.y * q.y) * (r.y - p.y) +
    1.37 +      (r.x * r.x + r.y * r.y) * (p.y - q.y);
    1.38 +
    1.39 +    double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
    1.40 +      (q.x * q.x + q.y * q.y) * (r.x - p.x) +
    1.41 +      (r.x * r.x + r.y * r.y) * (p.x - q.x);
    1.42 +
    1.43 +    double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
    1.44 +      (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
    1.45 +      (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
    1.46 +
    1.47 +    return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a);
    1.48 +  }
    1.49 +
    1.50 +  inline bool circle_form(const Point& p, const Point& q, const Point& r) {
    1.51 +    return rot90(q - p) * (r - q) < 0.0;
    1.52 +  }
    1.53 +
    1.54 +  inline double intersection(const Point& p, const Point& q, double sx) {
    1.55 +    const double epsilon = 1e-8;
    1.56 +
    1.57 +    if (p.x == q.x) return (p.y + q.y) / 2.0;
    1.58 +
    1.59 +    if (sx < p.x + epsilon) return p.y;
    1.60 +    if (sx < q.x + epsilon) return q.y;
    1.61 +    
    1.62 +    double a = q.x - p.x;
    1.63 +    double b = (q.x - sx) * p.y - (p.x - sx) * q.y;    
    1.64 +    double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
    1.65 +    return (b - sqrt(d)) / a;
    1.66 +  }
    1.67 +
    1.68 +  struct YLess {
    1.69 +
    1.70 +
    1.71 +    YLess(const std::vector<Point>& points, double& sweep) 
    1.72 +      : _points(points), _sweep(sweep) {}
    1.73 +
    1.74 +    bool operator()(const Part& l, const Part& r) const {
    1.75 +      const double epsilon = 1e-8;
    1.76 +
    1.77 +      //      std::cerr << l << " vs " << r << std::endl;
    1.78 +      double lbx = l.prev != -1 ?
    1.79 +	intersection(_points[l.prev], _points[l.curr], _sweep) :
    1.80 +	- std::numeric_limits<double>::infinity();
    1.81 +      double rbx = r.prev != -1 ?
    1.82 +	intersection(_points[r.prev], _points[r.curr], _sweep) :
    1.83 +	- std::numeric_limits<double>::infinity();
    1.84 +      double lex = l.next != -1 ?
    1.85 +	intersection(_points[l.curr], _points[l.next], _sweep) :
    1.86 +	std::numeric_limits<double>::infinity();
    1.87 +      double rex = r.next != -1 ?
    1.88 +	intersection(_points[r.curr], _points[r.next], _sweep) :
    1.89 +	std::numeric_limits<double>::infinity();
    1.90 +
    1.91 +      if (lbx > lex) std::swap(lbx, lex);
    1.92 +      if (rbx > rex) std::swap(rbx, rex);
    1.93 +
    1.94 +      if (lex < epsilon + rex && lbx + epsilon < rex) return true;
    1.95 +      if (rex < epsilon + lex && rbx + epsilon < lex) return false;
    1.96 +      return lex < rex;
    1.97 +    }
    1.98 +    
    1.99 +    const std::vector<Point>& _points;
   1.100 +    double& _sweep;
   1.101 +  };
   1.102 +  
   1.103 +  struct BeachIt;
   1.104 +  
   1.105 +  typedef std::multimap<double, BeachIt> SpikeHeap;
   1.106 +
   1.107 +  typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
   1.108 +
   1.109 +  struct BeachIt {
   1.110 +    Beach::iterator it;
   1.111 +
   1.112 +    BeachIt(Beach::iterator iter) : it(iter) {}
   1.113 +  };
   1.114 +
   1.115 +}
   1.116 +
   1.117 +inline void delaunay() {
   1.118    Counter cnt("Number of edges added: ");
   1.119 -  std::vector<Pedge> pedges;
   1.120 -  for(NodeIt n(g);n!=INVALID;++n) 
   1.121 -    for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
   1.122 +  
   1.123 +  using namespace _delaunay_bits;
   1.124 +
   1.125 +  typedef _delaunay_bits::Part Part;
   1.126 +  typedef std::vector<std::pair<double, int> > SiteHeap;
   1.127 +
   1.128 +
   1.129 +  std::vector<Point> points;
   1.130 +  std::vector<Node> nodes;
   1.131 +
   1.132 +  for (NodeIt it(g); it != INVALID; ++it) {
   1.133 +    nodes.push_back(it);
   1.134 +    points.push_back(coords[it]);
   1.135 +  }
   1.136 +
   1.137 +  SiteHeap siteheap(points.size());
   1.138 +
   1.139 +  double sweep;
   1.140 +
   1.141 +
   1.142 +  for (int i = 0; i < int(siteheap.size()); ++i) {
   1.143 +    siteheap[i] = std::make_pair(points[i].x, i);
   1.144 +  }
   1.145 +  
   1.146 +  std::sort(siteheap.begin(), siteheap.end());
   1.147 +  sweep = siteheap.front().first;
   1.148 +  
   1.149 +  YLess yless(points, sweep);
   1.150 +  Beach beach(yless);
   1.151 +
   1.152 +  SpikeHeap spikeheap;
   1.153 +
   1.154 +  std::set<std::pair<int, int> > edges;
   1.155 +
   1.156 +  beach.insert(std::make_pair(Part(-1, siteheap[0].second, -1), 
   1.157 +			      spikeheap.end()));
   1.158 +  int siteindex = 1;
   1.159 +
   1.160 +  while (siteindex < int(points.size()) || !spikeheap.empty()) {
   1.161 +
   1.162 +    SpikeHeap::iterator spit = spikeheap.begin();
   1.163 +
   1.164 +    if (siteindex < int(points.size()) && 
   1.165 +	(spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
   1.166 +      int site = siteheap[siteindex].second;
   1.167 +      sweep = siteheap[siteindex].first;
   1.168 +          
   1.169 +      Beach::iterator bit = beach.upper_bound(Part(site, site, site));
   1.170 +      
   1.171 +      if (bit->second != spikeheap.end()) {
   1.172 +	spikeheap.erase(bit->second);	
   1.173 +      }
   1.174 +
   1.175 +      int prev = bit->first.prev;
   1.176 +      int curr = bit->first.curr;
   1.177 +      int next = bit->first.next;
   1.178 +
   1.179 +      beach.erase(bit);
   1.180 +      
   1.181 +      SpikeHeap::iterator pit = spikeheap.end();
   1.182 +      if (prev != -1 && 
   1.183 +	  circle_form(points[prev], points[curr], points[site])) {
   1.184 +	double x = circle_point(points[prev], points[curr], points[site]);
   1.185 +	pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   1.186 +	pit->second.it =
   1.187 +	  beach.insert(std::make_pair(Part(prev, curr, site), pit));
   1.188 +      } else {
   1.189 +	beach.insert(std::make_pair(Part(prev, curr, site), pit));
   1.190 +      }
   1.191 +
   1.192 +      beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
   1.193 +      
   1.194 +      SpikeHeap::iterator nit = spikeheap.end();
   1.195 +      if (next != -1 && 
   1.196 +	  circle_form(points[site], points[curr],points[next])) {
   1.197 +	double x = circle_point(points[site], points[curr], points[next]);
   1.198 +	nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   1.199 +	nit->second.it =
   1.200 +	  beach.insert(std::make_pair(Part(site, curr, next), nit));
   1.201 +      } else {
   1.202 +	beach.insert(std::make_pair(Part(site, curr, next), nit));
   1.203 +      }
   1.204 +      
   1.205 +      ++siteindex;
   1.206 +    } else {
   1.207 +      sweep = spit->first;      
   1.208 +
   1.209 +      Beach::iterator bit = spit->second.it;
   1.210 +
   1.211 +      int prev = bit->first.prev;
   1.212 +      int curr = bit->first.curr;
   1.213 +      int next = bit->first.next;
   1.214 +
   1.215        {
   1.216 -	Pedge p;
   1.217 -	p.a=n;
   1.218 -	p.b=m;
   1.219 -	p.len=(coords[m]-coords[n]).normSquare();
   1.220 -	pedges.push_back(p);
   1.221 +	std::pair<int, int> edge;
   1.222 +
   1.223 +	edge = prev < curr ? 
   1.224 +	  std::make_pair(prev, curr) : std::make_pair(curr, prev);
   1.225 +	
   1.226 +	if (edges.find(edge) == edges.end()) {
   1.227 +	  edges.insert(edge);
   1.228 +	  g.addEdge(nodes[prev], nodes[curr]);
   1.229 +	  ++cnt;
   1.230 +	}
   1.231 +
   1.232 +	edge = curr < next ? 
   1.233 +	  std::make_pair(curr, next) : std::make_pair(next, curr);
   1.234 +	
   1.235 +	if (edges.find(edge) == edges.end()) {
   1.236 +	  edges.insert(edge);
   1.237 +	  g.addEdge(nodes[curr], nodes[next]);
   1.238 +	  ++cnt;
   1.239 +	}
   1.240        }
   1.241 -  std::sort(pedges.begin(),pedges.end(),pedgeLess);
   1.242 -  for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
   1.243 -    {
   1.244 -      Line li(pi->a,pi->b);
   1.245 -      UEdgeIt e(g);
   1.246 -      for(;e!=INVALID && !cross(e,li);++e) ;
   1.247 -      UEdge ne;
   1.248 -      if(e==INVALID) {
   1.249 -	ne=g.addEdge(pi->a,pi->b);
   1.250 -	edges.push_back(ne);
   1.251 -	cnt++;
   1.252 +      
   1.253 +      Beach::iterator pbit = bit; --pbit;
   1.254 +      int ppv = pbit->first.prev;
   1.255 +      Beach::iterator nbit = bit; ++nbit;
   1.256 +      int nnt = nbit->first.next;
   1.257 +
   1.258 +      if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
   1.259 +      if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
   1.260 +      if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
   1.261 +
   1.262 +      beach.erase(nbit);
   1.263 +      beach.erase(bit);
   1.264 +      beach.erase(pbit);
   1.265 +
   1.266 +      SpikeHeap::iterator pit = spikeheap.end();
   1.267 +      if (ppv != -1 && ppv != next && 
   1.268 +	  circle_form(points[ppv], points[prev], points[next])) {
   1.269 +	double x = circle_point(points[ppv], points[prev], points[next]);
   1.270 +	if (x < sweep) x = sweep;
   1.271 +	pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   1.272 +	pit->second.it =
   1.273 +	  beach.insert(std::make_pair(Part(ppv, prev, next), pit));
   1.274 +      } else {
   1.275 +	beach.insert(std::make_pair(Part(ppv, prev, next), pit));
   1.276        }
   1.277 +
   1.278 +      SpikeHeap::iterator nit = spikeheap.end();
   1.279 +      if (nnt != -1 && prev != nnt &&
   1.280 +	  circle_form(points[prev], points[next], points[nnt])) {
   1.281 +	double x = circle_point(points[prev], points[next], points[nnt]);
   1.282 +	if (x < sweep) x = sweep;
   1.283 +	nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
   1.284 +	nit->second.it =
   1.285 +	  beach.insert(std::make_pair(Part(prev, next, nnt), nit));
   1.286 +      } else {
   1.287 +	beach.insert(std::make_pair(Part(prev, next, nnt), nit));
   1.288 +      }
   1.289 +      
   1.290      }
   1.291 +  }
   1.292 +
   1.293 +  for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
   1.294 +    int curr = it->first.curr;
   1.295 +    int next = it->first.next;
   1.296 +
   1.297 +    if (next == -1) continue;
   1.298 +
   1.299 +    std::pair<int, int> edge;
   1.300 +
   1.301 +    edge = curr < next ? 
   1.302 +      std::make_pair(curr, next) : std::make_pair(next, curr);
   1.303 +    
   1.304 +    if (edges.find(edge) == edges.end()) {
   1.305 +      edges.insert(edge);
   1.306 +      g.addEdge(nodes[curr], nodes[next]);
   1.307 +      ++cnt;
   1.308 +    }
   1.309 +  }
   1.310  }
   1.311  
   1.312  void sparse(int d) 
   1.313 @@ -245,44 +492,43 @@
   1.314      }
   1.315  }
   1.316  
   1.317 +template <typename UGraph, typename CoordMap>
   1.318 +class LengthSquareMap {
   1.319 +public:
   1.320 +  typedef typename UGraph::UEdge Key;
   1.321 +  typedef typename CoordMap::Value::Value Value;
   1.322 +
   1.323 +  LengthSquareMap(const UGraph& ugraph, const CoordMap& coords)
   1.324 +    : _ugraph(ugraph), _coords(coords) {}
   1.325 +
   1.326 +  Value operator[](const Key& key) const {
   1.327 +    return (_coords[_ugraph.target(key)] -
   1.328 +	    _coords[_ugraph.source(key)]).normSquare();
   1.329 +  }
   1.330 +
   1.331 +private:
   1.332 +
   1.333 +  const UGraph& _ugraph;
   1.334 +  const CoordMap& _coords;
   1.335 +};
   1.336 +
   1.337  void minTree() {
   1.338 -  int en=0;
   1.339 -  int pr=0;
   1.340    std::vector<Pedge> pedges;
   1.341    Timer T;
   1.342 -  std::cout << T.realTime() << "s: Setting up the edges...\n";
   1.343 -  for(NodeIt n(g);n!=INVALID;++n) 
   1.344 -    {
   1.345 -      for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
   1.346 -	{
   1.347 -	  Pedge p;
   1.348 -	  p.a=n;
   1.349 -	  p.b=m;
   1.350 -	  p.len=(coords[m]-coords[n]).normSquare();
   1.351 -	  pedges.push_back(p);
   1.352 -	}
   1.353 -      if(progress && en>=pr*double(N)/100) 
   1.354 -	{
   1.355 -	  std::cout << pr << "%  \r" << std::flush;
   1.356 -	  pr++;
   1.357 -	}
   1.358 -    }
   1.359 -  std::cout << T.realTime() << "s: Sorting the edges...\n";
   1.360 -  std::sort(pedges.begin(),pedges.end(),pedgeLess);
   1.361 -  std::cout << T.realTime() << "s: Creating the tree...\n";
   1.362 -  ListUGraph::NodeMap<int> comp(g);
   1.363 -  UnionFind<ListUGraph::NodeMap<int> > uf(comp);
   1.364 -  for (NodeIt it(g); it != INVALID; ++it)
   1.365 -    uf.insert(it);  
   1.366 -  for(std::vector<Pedge>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
   1.367 -    {
   1.368 -      if ( uf.join(pi->a,pi->b) ) {
   1.369 -	g.addEdge(pi->a,pi->b);
   1.370 -	en++;
   1.371 -	if(en>=N-1)
   1.372 -	  break;
   1.373 -      }
   1.374 -    }
   1.375 +  std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
   1.376 +  delaunay();
   1.377 +  std::cout << T.realTime() << "s: Calculating spanning tree...\n";
   1.378 +  LengthSquareMap<ListUGraph, ListUGraph::NodeMap<Point> > ls(g, coords);
   1.379 +  ListUGraph::UEdgeMap<bool> tree(g);
   1.380 +  kruskal(g, ls, tree);
   1.381 +  std::cout << T.realTime() << "s: Removing non tree edges...\n";
   1.382 +  std::vector<UEdge> remove;
   1.383 +  for (UEdgeIt e(g); e != INVALID; ++e) {
   1.384 +    if (!tree[e]) remove.push_back(e);
   1.385 +  }
   1.386 +  for(int i = 0; i < int(remove.size()); ++i) {
   1.387 +    g.erase(remove[i]);
   1.388 +  }
   1.389    std::cout << T.realTime() << "s: Done\n";
   1.390  }
   1.391  
   1.392 @@ -408,9 +654,27 @@
   1.393      .optionGroup("alg","tsp")
   1.394      .boolOption("tsp2", "Create a TSP tour (tree based)")
   1.395      .optionGroup("alg","tsp2")
   1.396 +    .boolOption("dela", "Delaunay triangulation graph")
   1.397 +    .optionGroup("alg","dela")
   1.398      .onlyOneGroup("alg")
   1.399 +    .boolOption("rand", "Use time seed for random number generator")
   1.400 +    .optionGroup("rand", "rand")
   1.401 +    .intOption("seed", "Random seed", -1)
   1.402 +    .optionGroup("rand", "seed")
   1.403 +    .onlyOneGroup("rand")
   1.404      .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
   1.405      .run();
   1.406 +
   1.407 +  if (ap["rand"]) {
   1.408 +    int seed = time(0);
   1.409 +    std::cout << "Random number seed: " << seed << std::endl;
   1.410 +    rnd = Random(seed);
   1.411 +  }
   1.412 +  if (ap.given("seed")) {
   1.413 +    int seed = ap["seed"];
   1.414 +    std::cout << "Random number seed: " << seed << std::endl;
   1.415 +    rnd = Random(seed);
   1.416 +  }
   1.417    
   1.418    std::string prefix;
   1.419    switch(ap.files().size()) 
   1.420 @@ -463,6 +727,10 @@
   1.421  	    std::sqrt(sizes[s]/sum_sizes);
   1.422  	}
   1.423      }
   1.424 +
   1.425 +//   for (ListUGraph::NodeIt n(g); n != INVALID; ++n) {
   1.426 +//     std::cerr << coords[n] << std::endl;
   1.427 +//   }
   1.428    
   1.429    if(ap["tsp"]) {
   1.430      tsp();
   1.431 @@ -482,6 +750,9 @@
   1.432    else if(ap["tree"]) {
   1.433      minTree();
   1.434    }
   1.435 +  else if(ap["dela"]) {
   1.436 +    delaunay();
   1.437 +  }
   1.438    
   1.439  
   1.440    std::cout << "Number of nodes    : " << countNodes(g) << std::endl;