Some shortest path algorithms
authordeba
Mon, 03 Oct 2005 10:20:56 +0000
changeset 169929428f7b8b66
parent 1698 755cdc461ddd
child 1700 30fe294ac801
Some shortest path algorithms
All-pair-shortest path algorithms without function interface
we may need it
lemon/belmann_ford.h
lemon/floyd_warshall.h
lemon/johnson.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/belmann_ford.h	Mon Oct 03 10:20:56 2005 +0000
     1.3 @@ -0,0 +1,784 @@
     1.4 +/* -*- C++ -*-
     1.5 + * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_BELMANN_FORD_H
    1.21 +#define LEMON_BELMANN_FORD_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +/// \file
    1.25 +/// \brief BelmannFord algorithm.
    1.26 +///
    1.27 +/// \todo getPath() should be implemented! (also for BFS and DFS)
    1.28 +
    1.29 +#include <lemon/list_graph.h>
    1.30 +#include <lemon/invalid.h>
    1.31 +#include <lemon/error.h>
    1.32 +#include <lemon/maps.h>
    1.33 +
    1.34 +#include <limits>
    1.35 +
    1.36 +namespace lemon {
    1.37 +
    1.38 +  /// \brief Default OperationTraits for the BelmannFord algorithm class.
    1.39 +  ///  
    1.40 +  /// It defines all computational operations and constants which are
    1.41 +  /// used in the belmann ford algorithm. The default implementation
    1.42 +  /// is based on the numeric_limits class. If the numeric type does not
    1.43 +  /// have infinity value then the maximum value is used as extremal
    1.44 +  /// infinity value.
    1.45 +  template <
    1.46 +    typename Value, 
    1.47 +    bool has_infinity = std::numeric_limits<Value>::has_infinity>
    1.48 +  struct BelmannFordDefaultOperationTraits {
    1.49 +    /// \brief Gives back the zero value of the type.
    1.50 +    static Value zero() {
    1.51 +      return static_cast<Value>(0);
    1.52 +    }
    1.53 +    /// \brief Gives back the positive infinity value of the type.
    1.54 +    static Value infinity() {
    1.55 +      return std::numeric_limits<Value>::infinity();
    1.56 +    }
    1.57 +    /// \brief Gives back the sum of the given two elements.
    1.58 +    static Value plus(const Value& left, const Value& right) {
    1.59 +      return left + right;
    1.60 +    }
    1.61 +    /// \brief Gives back true only if the first value less than the second.
    1.62 +    static bool less(const Value& left, const Value& right) {
    1.63 +      return left < right;
    1.64 +    }
    1.65 +  };
    1.66 +
    1.67 +  template <typename Value>
    1.68 +  struct BelmannFordDefaultOperationTraits<Value, false> {
    1.69 +    static Value zero() {
    1.70 +      return static_cast<Value>(0);
    1.71 +    }
    1.72 +    static Value infinity() {
    1.73 +      return std::numeric_limits<Value>::max();
    1.74 +    }
    1.75 +    static Value plus(const Value& left, const Value& right) {
    1.76 +      if (left == infinity() || right == infinity()) return infinity();
    1.77 +      return left + right;
    1.78 +    }
    1.79 +    static bool less(const Value& left, const Value& right) {
    1.80 +      return left < right;
    1.81 +    }
    1.82 +  };
    1.83 +  
    1.84 +  /// \brief Default traits class of BelmannFord class.
    1.85 +  ///
    1.86 +  /// Default traits class of BelmannFord class.
    1.87 +  /// \param _Graph Graph type.
    1.88 +  /// \param _LegthMap Type of length map.
    1.89 +  template<class _Graph, class _LengthMap>
    1.90 +  struct BelmannFordDefaultTraits {
    1.91 +    /// The graph type the algorithm runs on. 
    1.92 +    typedef _Graph Graph;
    1.93 +
    1.94 +    /// \brief The type of the map that stores the edge lengths.
    1.95 +    ///
    1.96 +    /// The type of the map that stores the edge lengths.
    1.97 +    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    1.98 +    typedef _LengthMap LengthMap;
    1.99 +
   1.100 +    // The type of the length of the edges.
   1.101 +    typedef typename _LengthMap::Value Value;
   1.102 +
   1.103 +    /// \brief Operation traits for belmann-ford algorithm.
   1.104 +    ///
   1.105 +    /// It defines the infinity type on the given Value type
   1.106 +    /// and the used operation.
   1.107 +    /// \see BelmannFordDefaultOperationTraits
   1.108 +    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   1.109 + 
   1.110 +    /// \brief The type of the map that stores the last edges of the 
   1.111 +    /// shortest paths.
   1.112 +    /// 
   1.113 +    /// The type of the map that stores the last
   1.114 +    /// edges of the shortest paths.
   1.115 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.116 +    ///
   1.117 +    typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
   1.118 +
   1.119 +    /// \brief Instantiates a PredMap.
   1.120 +    /// 
   1.121 +    /// This function instantiates a \ref PredMap. 
   1.122 +    /// \param G is the graph, to which we would like to define the PredMap.
   1.123 +    /// \todo The graph alone may be insufficient for the initialization
   1.124 +    static PredMap *createPredMap(const _Graph& graph) {
   1.125 +      return new PredMap(graph);
   1.126 +    }
   1.127 +
   1.128 +    /// \brief The type of the map that stores the dists of the nodes.
   1.129 +    ///
   1.130 +    /// The type of the map that stores the dists of the nodes.
   1.131 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.132 +    ///
   1.133 +    typedef typename Graph::template NodeMap<typename _LengthMap::Value> 
   1.134 +    DistMap;
   1.135 +
   1.136 +    /// \brief Instantiates a DistMap.
   1.137 +    ///
   1.138 +    /// This function instantiates a \ref DistMap. 
   1.139 +    /// \param G is the graph, to which we would like to define the 
   1.140 +    /// \ref DistMap
   1.141 +    static DistMap *createDistMap(const _Graph& graph) {
   1.142 +      return new DistMap(graph);
   1.143 +    }
   1.144 +
   1.145 +  };
   1.146 +  
   1.147 +  /// \brief BelmannFord algorithm class.
   1.148 +  ///
   1.149 +  /// \ingroup flowalgs
   1.150 +  /// This class provides an efficient implementation of \c BelmannFord 
   1.151 +  /// algorithm. The edge lengths are passed to the algorithm using a
   1.152 +  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   1.153 +  /// kind of length.
   1.154 +  ///
   1.155 +  /// The type of the length is determined by the
   1.156 +  /// \ref concept::ReadMap::Value "Value" of the length map.
   1.157 +  ///
   1.158 +  /// \param _Graph The graph type the algorithm runs on. The default value
   1.159 +  /// is \ref ListGraph. The value of _Graph is not used directly by
   1.160 +  /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
   1.161 +  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   1.162 +  /// edges. The default map type is \ref concept::StaticGraph::EdgeMap 
   1.163 +  /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly 
   1.164 +  /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.  
   1.165 +  /// \param _Traits Traits class to set various data types used by the 
   1.166 +  /// algorithm.  The default traits class is \ref BelmannFordDefaultTraits
   1.167 +  /// "BelmannFordDefaultTraits<_Graph,_LengthMap>".  See \ref
   1.168 +  /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
   1.169 +  /// class.
   1.170 +  ///
   1.171 +  /// \author Balazs Dezso
   1.172 +
   1.173 +  template <typename _Graph=ListGraph,
   1.174 +	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   1.175 +	    typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
   1.176 +  class BelmannFord {
   1.177 +  public:
   1.178 +    
   1.179 +    /// \brief \ref Exception for uninitialized parameters.
   1.180 +    ///
   1.181 +    /// This error represents problems in the initialization
   1.182 +    /// of the parameters of the algorithms.
   1.183 +
   1.184 +    class UninitializedParameter : public lemon::UninitializedParameter {
   1.185 +    public:
   1.186 +      virtual const char* exceptionName() const {
   1.187 +	return "lemon::BelmannFord::UninitializedParameter";
   1.188 +      }
   1.189 +    };
   1.190 +
   1.191 +    typedef _Traits Traits;
   1.192 +    ///The type of the underlying graph.
   1.193 +    typedef typename _Traits::Graph Graph;
   1.194 +
   1.195 +    typedef typename Graph::Node Node;
   1.196 +    typedef typename Graph::NodeIt NodeIt;
   1.197 +    typedef typename Graph::Edge Edge;
   1.198 +    typedef typename Graph::EdgeIt EdgeIt;
   1.199 +    
   1.200 +    /// \brief The type of the length of the edges.
   1.201 +    typedef typename _Traits::LengthMap::Value Value;
   1.202 +    /// \brief The type of the map that stores the edge lengths.
   1.203 +    typedef typename _Traits::LengthMap LengthMap;
   1.204 +    /// \brief The type of the map that stores the last
   1.205 +    /// edges of the shortest paths.
   1.206 +    typedef typename _Traits::PredMap PredMap;
   1.207 +    /// \brief The type of the map that stores the dists of the nodes.
   1.208 +    typedef typename _Traits::DistMap DistMap;
   1.209 +    /// \brief The operation traits.
   1.210 +    typedef typename _Traits::OperationTraits OperationTraits;
   1.211 +  private:
   1.212 +    /// Pointer to the underlying graph.
   1.213 +    const Graph *graph;
   1.214 +    /// Pointer to the length map
   1.215 +    const LengthMap *length;
   1.216 +    ///Pointer to the map of predecessors edges.
   1.217 +    PredMap *_pred;
   1.218 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   1.219 +    bool local_pred;
   1.220 +    ///Pointer to the map of distances.
   1.221 +    DistMap *_dist;
   1.222 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   1.223 +    bool local_dist;
   1.224 +
   1.225 +    /// Creates the maps if necessary.
   1.226 +    void create_maps() {
   1.227 +      if(!_pred) {
   1.228 +	local_pred = true;
   1.229 +	_pred = Traits::createPredMap(*graph);
   1.230 +      }
   1.231 +      if(!_dist) {
   1.232 +	local_dist = true;
   1.233 +	_dist = Traits::createDistMap(*graph);
   1.234 +      }
   1.235 +    }
   1.236 +    
   1.237 +  public :
   1.238 + 
   1.239 +    /// \name Named template parameters
   1.240 +
   1.241 +    ///@{
   1.242 +
   1.243 +    template <class T>
   1.244 +    struct DefPredMapTraits : public Traits {
   1.245 +      typedef T PredMap;
   1.246 +      static PredMap *createPredMap(const Graph& graph) {
   1.247 +	throw UninitializedParameter();
   1.248 +      }
   1.249 +    };
   1.250 +
   1.251 +    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   1.252 +    /// type
   1.253 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   1.254 +    ///
   1.255 +    template <class T>
   1.256 +    class DefPredMap 
   1.257 +      : public BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > {};
   1.258 +    
   1.259 +    template <class T>
   1.260 +    struct DefDistMapTraits : public Traits {
   1.261 +      typedef T DistMap;
   1.262 +      static DistMap *createDistMap(const Graph& graph) {
   1.263 +	throw UninitializedParameter();
   1.264 +      }
   1.265 +    };
   1.266 +
   1.267 +    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   1.268 +    /// type
   1.269 +    ///
   1.270 +    /// \ref named-templ-param "Named parameter" for setting DistMap type
   1.271 +    ///
   1.272 +    template <class T>
   1.273 +    class DefDistMap 
   1.274 +      : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {};
   1.275 +    
   1.276 +    template <class T>
   1.277 +    struct DefOperationTraitsTraits : public Traits {
   1.278 +      typedef T OperationTraits;
   1.279 +    };
   1.280 +    
   1.281 +    /// \brief \ref named-templ-param "Named parameter" for setting 
   1.282 +    /// OperationTraits type
   1.283 +    ///
   1.284 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   1.285 +    template <class T>
   1.286 +    class DefOperationTraits
   1.287 +      : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   1.288 +    public:
   1.289 +      typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
   1.290 +      BelmannFord;
   1.291 +    };
   1.292 +    
   1.293 +    ///@}
   1.294 +
   1.295 +  public:      
   1.296 +    
   1.297 +    /// \brief Constructor.
   1.298 +    ///
   1.299 +    /// \param _graph the graph the algorithm will run on.
   1.300 +    /// \param _length the length map used by the algorithm.
   1.301 +    BelmannFord(const Graph& _graph, const LengthMap& _length) :
   1.302 +      graph(&_graph), length(&_length),
   1.303 +      _pred(0), local_pred(false),
   1.304 +      _dist(0), local_dist(false) {}
   1.305 +    
   1.306 +    ///Destructor.
   1.307 +    ~BelmannFord() {
   1.308 +      if(local_pred) delete _pred;
   1.309 +      if(local_dist) delete _dist;
   1.310 +    }
   1.311 +
   1.312 +    /// \brief Sets the length map.
   1.313 +    ///
   1.314 +    /// Sets the length map.
   1.315 +    /// \return \c (*this)
   1.316 +    BelmannFord &lengthMap(const LengthMap &m) {
   1.317 +      length = &m;
   1.318 +      return *this;
   1.319 +    }
   1.320 +
   1.321 +    /// \brief Sets the map storing the predecessor edges.
   1.322 +    ///
   1.323 +    /// Sets the map storing the predecessor edges.
   1.324 +    /// If you don't use this function before calling \ref run(),
   1.325 +    /// it will allocate one. The destuctor deallocates this
   1.326 +    /// automatically allocated map, of course.
   1.327 +    /// \return \c (*this)
   1.328 +    BelmannFord &predMap(PredMap &m) {
   1.329 +      if(local_pred) {
   1.330 +	delete _pred;
   1.331 +	local_pred=false;
   1.332 +      }
   1.333 +      _pred = &m;
   1.334 +      return *this;
   1.335 +    }
   1.336 +
   1.337 +    /// \brief Sets the map storing the distances calculated by the algorithm.
   1.338 +    ///
   1.339 +    /// Sets the map storing the distances calculated by the algorithm.
   1.340 +    /// If you don't use this function before calling \ref run(),
   1.341 +    /// it will allocate one. The destuctor deallocates this
   1.342 +    /// automatically allocated map, of course.
   1.343 +    /// \return \c (*this)
   1.344 +    BelmannFord &distMap(DistMap &m) {
   1.345 +      if(local_dist) {
   1.346 +	delete _dist;
   1.347 +	local_dist=false;
   1.348 +      }
   1.349 +      _dist = &m;
   1.350 +      return *this;
   1.351 +    }
   1.352 +
   1.353 +    /// \name Execution control
   1.354 +    /// The simplest way to execute the algorithm is to use
   1.355 +    /// one of the member functions called \c run(...).
   1.356 +    /// \n
   1.357 +    /// If you need more control on the execution,
   1.358 +    /// first you must call \ref init(), then you can add several source nodes
   1.359 +    /// with \ref addSource().
   1.360 +    /// Finally \ref start() will perform the actual path
   1.361 +    /// computation.
   1.362 +
   1.363 +    ///@{
   1.364 +
   1.365 +    /// \brief Initializes the internal data structures.
   1.366 +    /// 
   1.367 +    /// Initializes the internal data structures.
   1.368 +    void init() {
   1.369 +      create_maps();
   1.370 +      for (NodeIt it(*graph); it != INVALID; ++it) {
   1.371 +	_pred->set(it, INVALID);
   1.372 +	_dist->set(it, OperationTraits::infinity());
   1.373 +      }
   1.374 +    }
   1.375 +    
   1.376 +    /// \brief Adds a new source node.
   1.377 +    ///
   1.378 +    /// The optional second parameter is the initial distance of the node.
   1.379 +    /// It just sets the distance of the node to the given value.
   1.380 +    void addSource(Node source, Value dst = OperationTraits::zero()) {
   1.381 +      _dist->set(source, dst);
   1.382 +    }
   1.383 +
   1.384 +    /// \brief Executes the algorithm.
   1.385 +    ///
   1.386 +    /// \pre init() must be called and at least one node should be added
   1.387 +    /// with addSource() before using this function.
   1.388 +    ///
   1.389 +    /// This method runs the %BelmannFord algorithm from the root node(s)
   1.390 +    /// in order to compute the shortest path to each node. The algorithm 
   1.391 +    /// computes 
   1.392 +    /// - The shortest path tree.
   1.393 +    /// - The distance of each node from the root(s).
   1.394 +    void start() {
   1.395 +      bool ready = false;
   1.396 +      while (!ready) {
   1.397 +	ready = true;
   1.398 +	for (EdgeIt it(*graph); it != INVALID; ++it) {
   1.399 +	  Node source = graph->source(it);
   1.400 +	  Node target = graph->target(it);
   1.401 +	  Value relaxed = 
   1.402 +	    OperationTraits::plus((*_dist)[source], (*length)[it]);
   1.403 +	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   1.404 +	    _pred->set(target, it);
   1.405 +	    _dist->set(target, relaxed);
   1.406 +	    ready = false; 
   1.407 +	  }
   1.408 +	}
   1.409 +      }
   1.410 +    }
   1.411 +    
   1.412 +    /// \brief Runs %BelmannFord algorithm from node \c s.
   1.413 +    ///    
   1.414 +    /// This method runs the %BelmannFord algorithm from a root node \c s
   1.415 +    /// in order to compute the shortest path to each node. The algorithm 
   1.416 +    /// computes
   1.417 +    /// - The shortest path tree.
   1.418 +    /// - The distance of each node from the root.
   1.419 +    ///
   1.420 +    /// \note d.run(s) is just a shortcut of the following code.
   1.421 +    /// \code
   1.422 +    ///  d.init();
   1.423 +    ///  d.addSource(s);
   1.424 +    ///  d.start();
   1.425 +    /// \endcode
   1.426 +    void run(Node s) {
   1.427 +      init();
   1.428 +      addSource(s);
   1.429 +      start();
   1.430 +    }
   1.431 +    
   1.432 +    ///@}
   1.433 +
   1.434 +    /// \name Query Functions
   1.435 +    /// The result of the %BelmannFord algorithm can be obtained using these
   1.436 +    /// functions.\n
   1.437 +    /// Before the use of these functions,
   1.438 +    /// either run() or start() must be called.
   1.439 +    
   1.440 +    ///@{
   1.441 +
   1.442 +    /// \brief Copies the shortest path to \c t into \c p
   1.443 +    ///    
   1.444 +    /// This function copies the shortest path to \c t into \c p.
   1.445 +    /// If it \c t is a source itself or unreachable, then it does not
   1.446 +    /// alter \c p.
   1.447 +    /// \todo Is it the right way to handle unreachable nodes?
   1.448 +    /// \return Returns \c true if a path to \c t was actually copied to \c p,
   1.449 +    /// \c false otherwise.
   1.450 +    /// \sa DirPath
   1.451 +    template <typename Path>
   1.452 +    bool getPath(Path &p, Node t) {
   1.453 +      if(reached(t)) {
   1.454 +	p.clear();
   1.455 +	typename Path::Builder b(p);
   1.456 +	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
   1.457 +	  b.pushFront(pred(t));
   1.458 +	b.commit();
   1.459 +	return true;
   1.460 +      }
   1.461 +      return false;
   1.462 +    }
   1.463 +	  
   1.464 +    /// \brief The distance of a node from the root.
   1.465 +    ///
   1.466 +    /// Returns the distance of a node from the root.
   1.467 +    /// \pre \ref run() must be called before using this function.
   1.468 +    /// \warning If node \c v in unreachable from the root the return value
   1.469 +    /// of this funcion is undefined.
   1.470 +    Value dist(Node v) const { return (*_dist)[v]; }
   1.471 +
   1.472 +    /// \brief Returns the 'previous edge' of the shortest path tree.
   1.473 +    ///
   1.474 +    /// For a node \c v it returns the 'previous edge' of the shortest path 
   1.475 +    /// tree, i.e. it returns the last edge of a shortest path from the root 
   1.476 +    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
   1.477 +    /// if \c v=s. The shortest path tree used here is equal to the shortest 
   1.478 +    /// path tree used in \ref predNode(). 
   1.479 +    /// \pre \ref run() must be called before using
   1.480 +    /// this function.
   1.481 +    /// \todo predEdge could be a better name.
   1.482 +    Edge pred(Node v) const { return (*_pred)[v]; }
   1.483 +
   1.484 +    /// \brief Returns the 'previous node' of the shortest path tree.
   1.485 +    ///
   1.486 +    /// For a node \c v it returns the 'previous node' of the shortest path 
   1.487 +    /// tree, i.e. it returns the last but one node from a shortest path from 
   1.488 +    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
   1.489 +    /// or if \c v=s. The shortest path tree used here is equal to the 
   1.490 +    /// shortest path tree used in \ref pred().  \pre \ref run() must be 
   1.491 +    /// called before using this function.
   1.492 +    Node predNode(Node v) const { 
   1.493 +      return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); 
   1.494 +    }
   1.495 +    
   1.496 +    /// \brief Returns a reference to the NodeMap of distances.
   1.497 +    ///
   1.498 +    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.499 +    /// be called before using this function.
   1.500 +    const DistMap &distMap() const { return *_dist;}
   1.501 + 
   1.502 +    /// \brief Returns a reference to the shortest path tree map.
   1.503 +    ///
   1.504 +    /// Returns a reference to the NodeMap of the edges of the
   1.505 +    /// shortest path tree.
   1.506 +    /// \pre \ref run() must be called before using this function.
   1.507 +    const PredMap &predMap() const { return *_pred; }
   1.508 + 
   1.509 +    /// \brief Checks if a node is reachable from the root.
   1.510 +    ///
   1.511 +    /// Returns \c true if \c v is reachable from the root.
   1.512 +    /// \pre \ref run() must be called before using this function.
   1.513 +    ///
   1.514 +    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
   1.515 +    
   1.516 +    ///@}
   1.517 +  };
   1.518 + 
   1.519 +  /// \brief Default traits class of BelmannFord function.
   1.520 +  ///
   1.521 +  /// Default traits class of BelmannFord function.
   1.522 +  /// \param _Graph Graph type.
   1.523 +  /// \param _LengthMap Type of length map.
   1.524 +  template <typename _Graph, typename _LengthMap>
   1.525 +  struct BelmannFordWizardDefaultTraits {
   1.526 +    /// \brief The graph type the algorithm runs on. 
   1.527 +    typedef _Graph Graph;
   1.528 +
   1.529 +    /// \brief The type of the map that stores the edge lengths.
   1.530 +    ///
   1.531 +    /// The type of the map that stores the edge lengths.
   1.532 +    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
   1.533 +    typedef _LengthMap LengthMap;
   1.534 +
   1.535 +    /// \brief The value type of the length map.
   1.536 +    typedef typename _LengthMap::Value Value;
   1.537 +
   1.538 +    /// \brief Operation traits for belmann-ford algorithm.
   1.539 +    ///
   1.540 +    /// It defines the infinity type on the given Value type
   1.541 +    /// and the used operation.
   1.542 +    /// \see BelmannFordDefaultOperationTraits
   1.543 +    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   1.544 +
   1.545 +    /// \brief The type of the map that stores the last
   1.546 +    /// edges of the shortest paths.
   1.547 +    /// 
   1.548 +    /// The type of the map that stores the last
   1.549 +    /// edges of the shortest paths.
   1.550 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.551 +    typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
   1.552 +
   1.553 +    /// \brief Instantiates a PredMap.
   1.554 +    /// 
   1.555 +    /// This function instantiates a \ref PredMap. 
   1.556 +    static PredMap *createPredMap(const _Graph &) {
   1.557 +      return new PredMap();
   1.558 +    }
   1.559 +    /// \brief The type of the map that stores the dists of the nodes.
   1.560 +    ///
   1.561 +    /// The type of the map that stores the dists of the nodes.
   1.562 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.563 +    typedef NullMap<typename Graph::Node, Value> DistMap;
   1.564 +    /// \brief Instantiates a DistMap.
   1.565 +    ///
   1.566 +    /// This function instantiates a \ref DistMap. 
   1.567 +    static DistMap *createDistMap(const _Graph &) {
   1.568 +      return new DistMap();
   1.569 +    }
   1.570 +  };
   1.571 +  
   1.572 +  /// \brief Default traits used by \ref BelmannFordWizard
   1.573 +  ///
   1.574 +  /// To make it easier to use BelmannFord algorithm
   1.575 +  /// we have created a wizard class.
   1.576 +  /// This \ref BelmannFordWizard class needs default traits,
   1.577 +  /// as well as the \ref BelmannFord class.
   1.578 +  /// The \ref BelmannFordWizardBase is a class to be the default traits of the
   1.579 +  /// \ref BelmannFordWizard class.
   1.580 +  /// \todo More named parameters are required...
   1.581 +  template<class _Graph,class _LengthMap>
   1.582 +  class BelmannFordWizardBase 
   1.583 +    : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
   1.584 +
   1.585 +    typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
   1.586 +  protected:
   1.587 +    /// Type of the nodes in the graph.
   1.588 +    typedef typename Base::Graph::Node Node;
   1.589 +
   1.590 +    /// Pointer to the underlying graph.
   1.591 +    void *_graph;
   1.592 +    /// Pointer to the length map
   1.593 +    void *_length;
   1.594 +    ///Pointer to the map of predecessors edges.
   1.595 +    void *_pred;
   1.596 +    ///Pointer to the map of distances.
   1.597 +    void *_dist;
   1.598 +    ///Pointer to the source node.
   1.599 +    Node _source;
   1.600 +
   1.601 +    public:
   1.602 +    /// Constructor.
   1.603 +    
   1.604 +    /// This constructor does not require parameters, therefore it initiates
   1.605 +    /// all of the attributes to default values (0, INVALID).
   1.606 +    BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
   1.607 +			   _dist(0), _source(INVALID) {}
   1.608 +
   1.609 +    /// Constructor.
   1.610 +    
   1.611 +    /// This constructor requires some parameters,
   1.612 +    /// listed in the parameters list.
   1.613 +    /// Others are initiated to 0.
   1.614 +    /// \param graph is the initial value of  \ref _graph
   1.615 +    /// \param length is the initial value of  \ref _length
   1.616 +    /// \param source is the initial value of  \ref _source
   1.617 +    BelmannFordWizardBase(const _Graph& graph, 
   1.618 +			  const _LengthMap& length, 
   1.619 +			  Node source = INVALID) :
   1.620 +      _graph((void *)&graph), _length((void *)&length), _pred(0),
   1.621 +      _dist(0), _source(source) {}
   1.622 +
   1.623 +  };
   1.624 +  
   1.625 +  /// A class to make the usage of BelmannFord algorithm easier
   1.626 +
   1.627 +  /// This class is created to make it easier to use BelmannFord algorithm.
   1.628 +  /// It uses the functions and features of the plain \ref BelmannFord,
   1.629 +  /// but it is much simpler to use it.
   1.630 +  ///
   1.631 +  /// Simplicity means that the way to change the types defined
   1.632 +  /// in the traits class is based on functions that returns the new class
   1.633 +  /// and not on templatable built-in classes.
   1.634 +  /// When using the plain \ref BelmannFord
   1.635 +  /// the new class with the modified type comes from
   1.636 +  /// the original class by using the ::
   1.637 +  /// operator. In the case of \ref BelmannFordWizard only
   1.638 +  /// a function have to be called and it will
   1.639 +  /// return the needed class.
   1.640 +  ///
   1.641 +  /// It does not have own \ref run method. When its \ref run method is called
   1.642 +  /// it initiates a plain \ref BelmannFord class, and calls the \ref 
   1.643 +  /// BelmannFord::run method of it.
   1.644 +  template<class _Traits>
   1.645 +  class BelmannFordWizard : public _Traits {
   1.646 +    typedef _Traits Base;
   1.647 +
   1.648 +    ///The type of the underlying graph.
   1.649 +    typedef typename _Traits::Graph Graph;
   1.650 +
   1.651 +    typedef typename Graph::Node Node;
   1.652 +    typedef typename Graph::NodeIt NodeIt;
   1.653 +    typedef typename Graph::Edge Edge;
   1.654 +    typedef typename Graph::OutEdgeIt EdgeIt;
   1.655 +    
   1.656 +    ///The type of the map that stores the edge lengths.
   1.657 +    typedef typename _Traits::LengthMap LengthMap;
   1.658 +
   1.659 +    ///The type of the length of the edges.
   1.660 +    typedef typename LengthMap::Value Value;
   1.661 +
   1.662 +    ///\brief The type of the map that stores the last
   1.663 +    ///edges of the shortest paths.
   1.664 +    typedef typename _Traits::PredMap PredMap;
   1.665 +
   1.666 +    ///The type of the map that stores the dists of the nodes.
   1.667 +    typedef typename _Traits::DistMap DistMap;
   1.668 +
   1.669 +  public:
   1.670 +    /// Constructor.
   1.671 +    BelmannFordWizard() : _Traits() {}
   1.672 +
   1.673 +    /// \brief Constructor that requires parameters.
   1.674 +    ///
   1.675 +    /// Constructor that requires parameters.
   1.676 +    /// These parameters will be the default values for the traits class.
   1.677 +    BelmannFordWizard(const Graph& graph, const LengthMap& length, 
   1.678 +		      Node source = INVALID) 
   1.679 +      : _Traits(graph, length, source) {}
   1.680 +
   1.681 +    /// \brief Copy constructor
   1.682 +    BelmannFordWizard(const _Traits &b) : _Traits(b) {}
   1.683 +
   1.684 +    ~BelmannFordWizard() {}
   1.685 +
   1.686 +    /// \brief Runs BelmannFord algorithm from a given node.
   1.687 +    ///    
   1.688 +    /// Runs BelmannFord algorithm from a given node.
   1.689 +    /// The node can be given by the \ref source function.
   1.690 +    void run() {
   1.691 +      if(Base::_source == INVALID) throw UninitializedParameter();
   1.692 +      BelmannFord<Graph,LengthMap,_Traits> 
   1.693 +	bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
   1.694 +      if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
   1.695 +      if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
   1.696 +      bf.run(Base::_source);
   1.697 +    }
   1.698 +
   1.699 +    /// \brief Runs BelmannFord algorithm from the given node.
   1.700 +    ///
   1.701 +    /// Runs BelmannFord algorithm from the given node.
   1.702 +    /// \param s is the given source.
   1.703 +    void run(Node source) {
   1.704 +      Base::_source = source;
   1.705 +      run();
   1.706 +    }
   1.707 +
   1.708 +    template<class T>
   1.709 +    struct DefPredMapBase : public Base {
   1.710 +      typedef T PredMap;
   1.711 +      static PredMap *createPredMap(const Graph &) { return 0; };
   1.712 +      DefPredMapBase(const _Traits &b) : _Traits(b) {}
   1.713 +    };
   1.714 +    
   1.715 +    ///\brief \ref named-templ-param "Named parameter"
   1.716 +    ///function for setting PredMap type
   1.717 +    ///
   1.718 +    /// \ref named-templ-param "Named parameter"
   1.719 +    ///function for setting PredMap type
   1.720 +    ///
   1.721 +    template<class T>
   1.722 +    BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) 
   1.723 +    {
   1.724 +      Base::_pred=(void *)&t;
   1.725 +      return BelmannFordWizard<DefPredMapBase<T> >(*this);
   1.726 +    }
   1.727 +    
   1.728 +    template<class T>
   1.729 +    struct DefDistMapBase : public Base {
   1.730 +      typedef T DistMap;
   1.731 +      static DistMap *createDistMap(const Graph &) { return 0; };
   1.732 +      DefDistMapBase(const _Traits &b) : _Traits(b) {}
   1.733 +    };
   1.734 +    
   1.735 +    ///\brief \ref named-templ-param "Named parameter"
   1.736 +    ///function for setting DistMap type
   1.737 +    ///
   1.738 +    /// \ref named-templ-param "Named parameter"
   1.739 +    ///function for setting DistMap type
   1.740 +    ///
   1.741 +    template<class T>
   1.742 +    BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
   1.743 +      Base::_dist=(void *)&t;
   1.744 +      return BelmannFordWizard<DefDistMapBase<T> >(*this);
   1.745 +    }
   1.746 +    
   1.747 +    /// \brief Sets the source node, from which the BelmannFord algorithm runs.
   1.748 +    ///
   1.749 +    /// Sets the source node, from which the BelmannFord algorithm runs.
   1.750 +    /// \param s is the source node.
   1.751 +    BelmannFordWizard<_Traits>& source(Node source) {
   1.752 +      Base::_source = source;
   1.753 +      return *this;
   1.754 +    }
   1.755 +    
   1.756 +  };
   1.757 +  
   1.758 +  /// \brief Function type interface for BelmannFord algorithm.
   1.759 +  ///
   1.760 +  /// \ingroup flowalgs
   1.761 +  /// Function type interface for BelmannFord algorithm.
   1.762 +  ///
   1.763 +  /// This function also has several \ref named-templ-func-param 
   1.764 +  /// "named parameters", they are declared as the members of class 
   1.765 +  /// \ref BelmannFordWizard.
   1.766 +  /// The following
   1.767 +  /// example shows how to use these parameters.
   1.768 +  /// \code
   1.769 +  /// belmannford(g,length,source).predMap(preds).run();
   1.770 +  /// \endcode
   1.771 +  /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
   1.772 +  /// to the end of the parameter list.
   1.773 +  /// \sa BelmannFordWizard
   1.774 +  /// \sa BelmannFord
   1.775 +  template<class _Graph, class _LengthMap>
   1.776 +  BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   1.777 +  belmannFord(const _Graph& graph,
   1.778 +	      const _LengthMap& length, 
   1.779 +	      typename _Graph::Node source = INVALID) {
   1.780 +    return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   1.781 +      (graph, length, source);
   1.782 +  }
   1.783 +
   1.784 +} //END OF NAMESPACE LEMON
   1.785 +
   1.786 +#endif
   1.787 +
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/floyd_warshall.h	Mon Oct 03 10:20:56 2005 +0000
     2.3 @@ -0,0 +1,525 @@
     2.4 +/* -*- C++ -*-
     2.5 + * lemon/floyd_warshall.h - Part of LEMON, a generic C++ optimization library
     2.6 + *
     2.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     2.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     2.9 + *
    2.10 + * Permission to use, modify and distribute this software is granted
    2.11 + * provided that this copyright notice appears in all copies. For
    2.12 + * precise terms see the accompanying LICENSE file.
    2.13 + *
    2.14 + * This software is provided "AS IS" with no warranty of any kind,
    2.15 + * express or implied, and with no claim as to its suitability for any
    2.16 + * purpose.
    2.17 + *
    2.18 + */
    2.19 +
    2.20 +#ifndef LEMON_FLOYD_WARSHALL_H
    2.21 +#define LEMON_FLOYD_WARSHALL_H
    2.22 +
    2.23 +///\ingroup flowalgs
    2.24 +/// \file
    2.25 +/// \brief FloydWarshall algorithm.
    2.26 +///
    2.27 +/// \todo getPath() should be implemented! (also for BFS and DFS)
    2.28 +
    2.29 +#include <lemon/list_graph.h>
    2.30 +#include <lemon/graph_utils.h>
    2.31 +#include <lemon/invalid.h>
    2.32 +#include <lemon/error.h>
    2.33 +#include <lemon/maps.h>
    2.34 +
    2.35 +#include <limits>
    2.36 +
    2.37 +namespace lemon {
    2.38 +
    2.39 +  /// \brief Default OperationTraits for the FloydWarshall algorithm class.
    2.40 +  ///  
    2.41 +  /// It defines all computational operations and constants which are
    2.42 +  /// used in the Floyd-Warshall algorithm. The default implementation
    2.43 +  /// is based on the numeric_limits class. If the numeric type does not
    2.44 +  /// have infinity value then the maximum value is used as extremal
    2.45 +  /// infinity value.
    2.46 +  template <
    2.47 +    typename Value, 
    2.48 +    bool has_infinity = std::numeric_limits<Value>::has_infinity>
    2.49 +  struct FloydWarshallDefaultOperationTraits {
    2.50 +    /// \brief Gives back the zero value of the type.
    2.51 +    static Value zero() {
    2.52 +      return static_cast<Value>(0);
    2.53 +    }
    2.54 +    /// \brief Gives back the positive infinity value of the type.
    2.55 +    static Value infinity() {
    2.56 +      return std::numeric_limits<Value>::infinity();
    2.57 +    }
    2.58 +    /// \brief Gives back the sum of the given two elements.
    2.59 +    static Value plus(const Value& left, const Value& right) {
    2.60 +      return left + right;
    2.61 +    }
    2.62 +    /// \brief Gives back true only if the first value less than the second.
    2.63 +    static bool less(const Value& left, const Value& right) {
    2.64 +      return left < right;
    2.65 +    }
    2.66 +  };
    2.67 +
    2.68 +  template <typename Value>
    2.69 +  struct FloydWarshallDefaultOperationTraits<Value, false> {
    2.70 +    static Value zero() {
    2.71 +      return static_cast<Value>(0);
    2.72 +    }
    2.73 +    static Value infinity() {
    2.74 +      return std::numeric_limits<Value>::max();
    2.75 +    }
    2.76 +    static Value plus(const Value& left, const Value& right) {
    2.77 +      if (left == infinity() || right == infinity()) return infinity();
    2.78 +      return left + right;
    2.79 +    }
    2.80 +    static bool less(const Value& left, const Value& right) {
    2.81 +      return left < right;
    2.82 +    }
    2.83 +  };
    2.84 +  
    2.85 +  /// \brief Default traits class of FloydWarshall class.
    2.86 +  ///
    2.87 +  /// Default traits class of FloydWarshall class.
    2.88 +  /// \param _Graph Graph type.
    2.89 +  /// \param _LegthMap Type of length map.
    2.90 +  template<class _Graph, class _LengthMap>
    2.91 +  struct FloydWarshallDefaultTraits {
    2.92 +    /// The graph type the algorithm runs on. 
    2.93 +    typedef _Graph Graph;
    2.94 +
    2.95 +    /// \brief The type of the map that stores the edge lengths.
    2.96 +    ///
    2.97 +    /// The type of the map that stores the edge lengths.
    2.98 +    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    2.99 +    typedef _LengthMap LengthMap;
   2.100 +
   2.101 +    // The type of the length of the edges.
   2.102 +    typedef typename _LengthMap::Value Value;
   2.103 +
   2.104 +    /// \brief Operation traits for belmann-ford algorithm.
   2.105 +    ///
   2.106 +    /// It defines the infinity type on the given Value type
   2.107 +    /// and the used operation.
   2.108 +    /// \see FloydWarshallDefaultOperationTraits
   2.109 +    typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
   2.110 + 
   2.111 +    /// \brief The type of the map that stores the last edges of the 
   2.112 +    /// shortest paths.
   2.113 +    /// 
   2.114 +    /// The type of the map that stores the last
   2.115 +    /// edges of the shortest paths.
   2.116 +    /// It must be a matrix map with \c Graph::Edge value type.
   2.117 +    ///
   2.118 +    typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   2.119 +
   2.120 +    /// \brief Instantiates a PredMap.
   2.121 +    /// 
   2.122 +    /// This function instantiates a \ref PredMap. 
   2.123 +    /// \param G is the graph, to which we would like to define the PredMap.
   2.124 +    /// \todo The graph alone may be insufficient for the initialization
   2.125 +    static PredMap *createPredMap(const _Graph& graph) {
   2.126 +      return new PredMap(graph);
   2.127 +    }
   2.128 +
   2.129 +    /// \brief The type of the map that stores the dists of the nodes.
   2.130 +    ///
   2.131 +    /// The type of the map that stores the dists of the nodes.
   2.132 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   2.133 +    ///
   2.134 +    typedef NodeMatrixMap<Graph, Value> DistMap;
   2.135 +
   2.136 +    /// \brief Instantiates a DistMap.
   2.137 +    ///
   2.138 +    /// This function instantiates a \ref DistMap. 
   2.139 +    /// \param G is the graph, to which we would like to define the 
   2.140 +    /// \ref DistMap
   2.141 +    static DistMap *createDistMap(const _Graph& graph) {
   2.142 +      return new DistMap(graph);
   2.143 +    }
   2.144 +
   2.145 +  };
   2.146 +  
   2.147 +  /// \brief FloydWarshall algorithm class.
   2.148 +  ///
   2.149 +  /// \ingroup flowalgs
   2.150 +  /// This class provides an efficient implementation of \c FloydWarshall 
   2.151 +  /// algorithm. The edge lengths are passed to the algorithm using a
   2.152 +  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   2.153 +  /// kind of length.
   2.154 +  ///
   2.155 +  /// The type of the length is determined by the
   2.156 +  /// \ref concept::ReadMap::Value "Value" of the length map.
   2.157 +  ///
   2.158 +  /// \param _Graph The graph type the algorithm runs on. The default value
   2.159 +  /// is \ref ListGraph. The value of _Graph is not used directly by
   2.160 +  /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
   2.161 +  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   2.162 +  /// edges. It is read once for each edge, so the map may involve in
   2.163 +  /// relatively time consuming process to compute the edge length if
   2.164 +  /// it is necessary. The default map type is \ref
   2.165 +  /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   2.166 +  /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
   2.167 +  /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
   2.168 +  /// various data types used by the algorithm.  The default traits
   2.169 +  /// class is \ref FloydWarshallDefaultTraits
   2.170 +  /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
   2.171 +  /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
   2.172 +  /// traits class.
   2.173 +  ///
   2.174 +  /// \author Balazs Dezso
   2.175 +
   2.176 +
   2.177 +  template <typename _Graph=ListGraph,
   2.178 +	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   2.179 +	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
   2.180 +  class FloydWarshall {
   2.181 +  public:
   2.182 +    
   2.183 +    /// \brief \ref Exception for uninitialized parameters.
   2.184 +    ///
   2.185 +    /// This error represents problems in the initialization
   2.186 +    /// of the parameters of the algorithms.
   2.187 +
   2.188 +    class UninitializedParameter : public lemon::UninitializedParameter {
   2.189 +    public:
   2.190 +      virtual const char* exceptionName() const {
   2.191 +	return "lemon::FloydWarshall::UninitializedParameter";
   2.192 +      }
   2.193 +    };
   2.194 +
   2.195 +    typedef _Traits Traits;
   2.196 +    ///The type of the underlying graph.
   2.197 +    typedef typename _Traits::Graph Graph;
   2.198 +
   2.199 +    typedef typename Graph::Node Node;
   2.200 +    typedef typename Graph::NodeIt NodeIt;
   2.201 +    typedef typename Graph::Edge Edge;
   2.202 +    typedef typename Graph::EdgeIt EdgeIt;
   2.203 +    
   2.204 +    /// \brief The type of the length of the edges.
   2.205 +    typedef typename _Traits::LengthMap::Value Value;
   2.206 +    /// \brief The type of the map that stores the edge lengths.
   2.207 +    typedef typename _Traits::LengthMap LengthMap;
   2.208 +    /// \brief The type of the map that stores the last
   2.209 +    /// edges of the shortest paths. The type of the PredMap
   2.210 +    /// is a matrix map for Edges
   2.211 +    typedef typename _Traits::PredMap PredMap;
   2.212 +    /// \brief The type of the map that stores the dists of the nodes.
   2.213 +    /// The type of the DistMap is a matrix map for Values
   2.214 +    typedef typename _Traits::DistMap DistMap;
   2.215 +    /// \brief The operation traits.
   2.216 +    typedef typename _Traits::OperationTraits OperationTraits;
   2.217 +  private:
   2.218 +    /// Pointer to the underlying graph.
   2.219 +    const Graph *graph;
   2.220 +    /// Pointer to the length map
   2.221 +    const LengthMap *length;
   2.222 +    ///Pointer to the map of predecessors edges.
   2.223 +    PredMap *_pred;
   2.224 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   2.225 +    bool local_pred;
   2.226 +    ///Pointer to the map of distances.
   2.227 +    DistMap *_dist;
   2.228 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   2.229 +    bool local_dist;
   2.230 +
   2.231 +    /// Creates the maps if necessary.
   2.232 +    void create_maps() {
   2.233 +      if(!_pred) {
   2.234 +	local_pred = true;
   2.235 +	_pred = Traits::createPredMap(*graph);
   2.236 +      }
   2.237 +      if(!_dist) {
   2.238 +	local_dist = true;
   2.239 +	_dist = Traits::createDistMap(*graph);
   2.240 +      }
   2.241 +    }
   2.242 +    
   2.243 +  public :
   2.244 + 
   2.245 +    /// \name Named template parameters
   2.246 +
   2.247 +    ///@{
   2.248 +
   2.249 +    template <class T>
   2.250 +    struct DefPredMapTraits : public Traits {
   2.251 +      typedef T PredMap;
   2.252 +      static PredMap *createPredMap(const Graph& graph) {
   2.253 +	throw UninitializedParameter();
   2.254 +      }
   2.255 +    };
   2.256 +
   2.257 +    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   2.258 +    /// type
   2.259 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   2.260 +    ///
   2.261 +    template <class T>
   2.262 +    class DefPredMap 
   2.263 +      : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {};
   2.264 +    
   2.265 +    template <class T>
   2.266 +    struct DefDistMapTraits : public Traits {
   2.267 +      typedef T DistMap;
   2.268 +      static DistMap *createDistMap(const Graph& graph) {
   2.269 +	throw UninitializedParameter();
   2.270 +      }
   2.271 +    };
   2.272 +    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   2.273 +    /// type
   2.274 +    ///
   2.275 +    /// \ref named-templ-param "Named parameter" for setting DistMap type
   2.276 +    ///
   2.277 +    template <class T>
   2.278 +    class DefDistMap 
   2.279 +      : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {};
   2.280 +    
   2.281 +    template <class T>
   2.282 +    struct DefOperationTraitsTraits : public Traits {
   2.283 +      typedef T OperationTraits;
   2.284 +    };
   2.285 +    
   2.286 +    /// \brief \ref named-templ-param "Named parameter" for setting 
   2.287 +    /// OperationTraits type
   2.288 +    ///
   2.289 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   2.290 +    template <class T>
   2.291 +    class DefOperationTraits
   2.292 +      : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   2.293 +    };
   2.294 +    
   2.295 +    ///@}
   2.296 +
   2.297 +  public:      
   2.298 +    
   2.299 +    /// \brief Constructor.
   2.300 +    ///
   2.301 +    /// \param _graph the graph the algorithm will run on.
   2.302 +    /// \param _length the length map used by the algorithm.
   2.303 +    FloydWarshall(const Graph& _graph, const LengthMap& _length) :
   2.304 +      graph(&_graph), length(&_length),
   2.305 +      _pred(0), local_pred(false),
   2.306 +      _dist(0), local_dist(false) {}
   2.307 +    
   2.308 +    ///Destructor.
   2.309 +    ~FloydWarshall() {
   2.310 +      if(local_pred) delete _pred;
   2.311 +      if(local_dist) delete _dist;
   2.312 +    }
   2.313 +
   2.314 +    /// \brief Sets the length map.
   2.315 +    ///
   2.316 +    /// Sets the length map.
   2.317 +    /// \return \c (*this)
   2.318 +    FloydWarshall &lengthMap(const LengthMap &m) {
   2.319 +      length = &m;
   2.320 +      return *this;
   2.321 +    }
   2.322 +
   2.323 +    /// \brief Sets the map storing the predecessor edges.
   2.324 +    ///
   2.325 +    /// Sets the map storing the predecessor edges.
   2.326 +    /// If you don't use this function before calling \ref run(),
   2.327 +    /// it will allocate one. The destuctor deallocates this
   2.328 +    /// automatically allocated map, of course.
   2.329 +    /// \return \c (*this)
   2.330 +    FloydWarshall &predMap(PredMap &m) {
   2.331 +      if(local_pred) {
   2.332 +	delete _pred;
   2.333 +	local_pred=false;
   2.334 +      }
   2.335 +      _pred = &m;
   2.336 +      return *this;
   2.337 +    }
   2.338 +
   2.339 +    /// \brief Sets the map storing the distances calculated by the algorithm.
   2.340 +    ///
   2.341 +    /// Sets the map storing the distances calculated by the algorithm.
   2.342 +    /// If you don't use this function before calling \ref run(),
   2.343 +    /// it will allocate one. The destuctor deallocates this
   2.344 +    /// automatically allocated map, of course.
   2.345 +    /// \return \c (*this)
   2.346 +    FloydWarshall &distMap(DistMap &m) {
   2.347 +      if(local_dist) {
   2.348 +	delete _dist;
   2.349 +	local_dist=false;
   2.350 +      }
   2.351 +      _dist = &m;
   2.352 +      return *this;
   2.353 +    }
   2.354 +
   2.355 +    ///\name Execution control
   2.356 +    /// The simplest way to execute the algorithm is to use
   2.357 +    /// one of the member functions called \c run(...).
   2.358 +    /// \n
   2.359 +    /// If you need more control on the execution,
   2.360 +    /// Finally \ref start() will perform the actual path
   2.361 +    /// computation.
   2.362 +
   2.363 +    ///@{
   2.364 +
   2.365 +    /// \brief Initializes the internal data structures.
   2.366 +    /// 
   2.367 +    /// Initializes the internal data structures.
   2.368 +    void init() {
   2.369 +      create_maps();
   2.370 +      for (NodeIt it(*graph); it != INVALID; ++it) {
   2.371 +	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   2.372 +	  _pred->set(it, jt, INVALID);
   2.373 +	  _dist->set(it, jt, it == jt ? 
   2.374 +		     OperationTraits::zero() : OperationTraits::infinity());
   2.375 +	}
   2.376 +      }
   2.377 +      for (EdgeIt it(*graph); it != INVALID; ++it) {
   2.378 +	Node source = graph->source(it);
   2.379 +	Node target = graph->target(it);	
   2.380 +	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
   2.381 +	  _dist->set(source, target, (*length)[it]);
   2.382 +	  _pred->set(source, target, it);
   2.383 +	}
   2.384 +      }
   2.385 +    }
   2.386 +    
   2.387 +    /// \brief Executes the algorithm.
   2.388 +    ///
   2.389 +    /// This method runs the %FloydWarshall algorithm in order to compute 
   2.390 +    /// the shortest path to each node pairs. The algorithm 
   2.391 +    /// computes 
   2.392 +    /// - The shortest path tree for each node.
   2.393 +    /// - The distance between each node pairs.
   2.394 +    void start() {
   2.395 +      for (NodeIt kt(*graph); kt != INVALID; ++kt) {
   2.396 +	for (NodeIt it(*graph); it != INVALID; ++it) {
   2.397 +	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   2.398 +	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
   2.399 +						  (*_dist)(kt, jt));
   2.400 +	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
   2.401 +	      _dist->set(it, jt, relaxed);
   2.402 +	      _pred->set(it, jt, (*_pred)(kt, jt));
   2.403 +	    }
   2.404 +	  }
   2.405 +	}
   2.406 +      }
   2.407 +    }
   2.408 +    
   2.409 +    /// \brief Runs %FloydWarshall algorithm.
   2.410 +    ///    
   2.411 +    /// This method runs the %FloydWarshall algorithm from a each node
   2.412 +    /// in order to compute the shortest path to each node pairs. 
   2.413 +    /// The algorithm computes
   2.414 +    /// - The shortest path tree for each node.
   2.415 +    /// - The distance between each node pairs.
   2.416 +    ///
   2.417 +    /// \note d.run(s) is just a shortcut of the following code.
   2.418 +    /// \code
   2.419 +    ///  d.init();
   2.420 +    ///  d.start();
   2.421 +    /// \endcode
   2.422 +    void run() {
   2.423 +      init();
   2.424 +      start();
   2.425 +    }
   2.426 +    
   2.427 +    ///@}
   2.428 +
   2.429 +    /// \name Query Functions
   2.430 +    /// The result of the %FloydWarshall algorithm can be obtained using these
   2.431 +    /// functions.\n
   2.432 +    /// Before the use of these functions,
   2.433 +    /// either run() or start() must be called.
   2.434 +    
   2.435 +    ///@{
   2.436 +
   2.437 +    /// \brief Copies the shortest path to \c t into \c p
   2.438 +    ///    
   2.439 +    /// This function copies the shortest path to \c t into \c p.
   2.440 +    /// If it \c t is a source itself or unreachable, then it does not
   2.441 +    /// alter \c p.
   2.442 +    /// \todo Is it the right way to handle unreachable nodes?
   2.443 +    /// \return Returns \c true if a path to \c t was actually copied to \c p,
   2.444 +    /// \c false otherwise.
   2.445 +    /// \sa DirPath
   2.446 +    template <typename Path>
   2.447 +    bool getPath(Path &p, Node source, Node target) {
   2.448 +      if (connected(source, target)) {
   2.449 +	p.clear();
   2.450 +	typename Path::Builder b(target);
   2.451 +	for(b.setStartNode(target); pred(source, target) != INVALID;
   2.452 +	    target = predNode(target)) {
   2.453 +	  b.pushFront(pred(source, target));
   2.454 +	}
   2.455 +	b.commit();
   2.456 +	return true;
   2.457 +      }
   2.458 +      return false;
   2.459 +    }
   2.460 +	  
   2.461 +    /// \brief The distance between two nodes.
   2.462 +    ///
   2.463 +    /// Returns the distance between two nodes.
   2.464 +    /// \pre \ref run() must be called before using this function.
   2.465 +    /// \warning If node \c v in unreachable from the root the return value
   2.466 +    /// of this funcion is undefined.
   2.467 +    Value dist(Node source, Node target) const { 
   2.468 +      return (*_dist)(source, target); 
   2.469 +    }
   2.470 +
   2.471 +    /// \brief Returns the 'previous edge' of the shortest path tree.
   2.472 +    ///
   2.473 +    /// For the node \c node it returns the 'previous edge' of the shortest 
   2.474 +    /// path tree to direction of the node \c root 
   2.475 +    /// i.e. it returns the last edge of a shortest path from the node \c root 
   2.476 +    /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   2.477 +    /// or if \c node=root. The shortest path tree used here is equal to the 
   2.478 +    /// shortest path tree used in \ref predNode(). 
   2.479 +    /// \pre \ref run() must be called before using this function.
   2.480 +    /// \todo predEdge could be a better name.
   2.481 +    Edge pred(Node root, Node node) const { 
   2.482 +      return (*_pred)(root, node); 
   2.483 +    }
   2.484 +
   2.485 +    /// \brief Returns the 'previous node' of the shortest path tree.
   2.486 +    ///
   2.487 +    /// For a node \c node it returns the 'previous node' of the shortest path 
   2.488 +    /// tree to direction of the node \c root, i.e. it returns the last but 
   2.489 +    /// one node from a shortest path from the \c root to \c node. It is 
   2.490 +    /// INVALID if \c node is unreachable from the root or if \c node=root. 
   2.491 +    /// The shortest path tree used here is equal to the 
   2.492 +    /// shortest path tree used in \ref pred().  
   2.493 +    /// \pre \ref run() must be called before using this function.
   2.494 +    Node predNode(Node root, Node node) const { 
   2.495 +      return (*_pred)(root, node) == INVALID ? 
   2.496 +      INVALID : graph->source((*_pred)(root, node)); 
   2.497 +    }
   2.498 +    
   2.499 +    /// \brief Returns a reference to the matrix node map of distances.
   2.500 +    ///
   2.501 +    /// Returns a reference to the matrix node map of distances. 
   2.502 +    ///
   2.503 +    /// \pre \ref run() must be called before using this function.
   2.504 +    const DistMap &distMap() const { return *_dist;}
   2.505 + 
   2.506 +    /// \brief Returns a reference to the shortest path tree map.
   2.507 +    ///
   2.508 +    /// Returns a reference to the matrix node map of the edges of the
   2.509 +    /// shortest path tree.
   2.510 +    /// \pre \ref run() must be called before using this function.
   2.511 +    const PredMap &predMap() const { return *_pred;}
   2.512 + 
   2.513 +    /// \brief Checks if a node is reachable from the root.
   2.514 +    ///
   2.515 +    /// Returns \c true if \c v is reachable from the root.
   2.516 +    /// \pre \ref run() must be called before using this function.
   2.517 +    ///
   2.518 +    bool connected(Node source, Node target) { 
   2.519 +      return (*_dist)(source, target) != OperationTraits::infinity(); 
   2.520 +    }
   2.521 +    
   2.522 +    ///@}
   2.523 +  };
   2.524 + 
   2.525 +} //END OF NAMESPACE LEMON
   2.526 +
   2.527 +#endif
   2.528 +
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/lemon/johnson.h	Mon Oct 03 10:20:56 2005 +0000
     3.3 @@ -0,0 +1,547 @@
     3.4 +/* -*- C++ -*-
     3.5 + * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3.6 + *
     3.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     3.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     3.9 + *
    3.10 + * Permission to use, modify and distribute this software is granted
    3.11 + * provided that this copyright notice appears in all copies. For
    3.12 + * precise terms see the accompanying LICENSE file.
    3.13 + *
    3.14 + * This software is provided "AS IS" with no warranty of any kind,
    3.15 + * express or implied, and with no claim as to its suitability for any
    3.16 + * purpose.
    3.17 + *
    3.18 + */
    3.19 +
    3.20 +#ifndef LEMON_JOHNSON_H
    3.21 +#define LEMON_JOHNSON_H
    3.22 +
    3.23 +///\ingroup flowalgs
    3.24 +/// \file
    3.25 +/// \brief Johnson algorithm.
    3.26 +///
    3.27 +
    3.28 +#include <lemon/list_graph.h>
    3.29 +#include <lemon/graph_utils.h>
    3.30 +#include <lemon/dfs.h>
    3.31 +#include <lemon/dijkstra.h>
    3.32 +#include <lemon/belmann_ford.h>
    3.33 +#include <lemon/invalid.h>
    3.34 +#include <lemon/error.h>
    3.35 +#include <lemon/maps.h>
    3.36 +
    3.37 +#include <limits>
    3.38 +
    3.39 +namespace lemon {
    3.40 +
    3.41 +  /// \brief Default OperationTraits for the Johnson algorithm class.
    3.42 +  ///  
    3.43 +  /// It defines all computational operations and constants which are
    3.44 +  /// used in the Floyd-Warshall algorithm. The default implementation
    3.45 +  /// is based on the numeric_limits class. If the numeric type does not
    3.46 +  /// have infinity value then the maximum value is used as extremal
    3.47 +  /// infinity value.
    3.48 +  template <
    3.49 +    typename Value, 
    3.50 +    bool has_infinity = std::numeric_limits<Value>::has_infinity>
    3.51 +  struct JohnsonDefaultOperationTraits {
    3.52 +    /// \brief Gives back the zero value of the type.
    3.53 +    static Value zero() {
    3.54 +      return static_cast<Value>(0);
    3.55 +    }
    3.56 +    /// \brief Gives back the positive infinity value of the type.
    3.57 +    static Value infinity() {
    3.58 +      return std::numeric_limits<Value>::infinity();
    3.59 +    }
    3.60 +    /// \brief Gives back the sum of the given two elements.
    3.61 +    static Value plus(const Value& left, const Value& right) {
    3.62 +      return left + right;
    3.63 +    }
    3.64 +    /// \brief Gives back true only if the first value less than the second.
    3.65 +    static bool less(const Value& left, const Value& right) {
    3.66 +      return left < right;
    3.67 +    }
    3.68 +  };
    3.69 +
    3.70 +  template <typename Value>
    3.71 +  struct JohnsonDefaultOperationTraits<Value, false> {
    3.72 +    static Value zero() {
    3.73 +      return static_cast<Value>(0);
    3.74 +    }
    3.75 +    static Value infinity() {
    3.76 +      return std::numeric_limits<Value>::max();
    3.77 +    }
    3.78 +    static Value plus(const Value& left, const Value& right) {
    3.79 +      if (left == infinity() || right == infinity()) return infinity();
    3.80 +      return left + right;
    3.81 +    }
    3.82 +    static bool less(const Value& left, const Value& right) {
    3.83 +      return left < right;
    3.84 +    }
    3.85 +  };
    3.86 +  
    3.87 +  /// \brief Default traits class of Johnson class.
    3.88 +  ///
    3.89 +  /// Default traits class of Johnson class.
    3.90 +  /// \param _Graph Graph type.
    3.91 +  /// \param _LegthMap Type of length map.
    3.92 +  template<class _Graph, class _LengthMap>
    3.93 +  struct JohnsonDefaultTraits {
    3.94 +    /// The graph type the algorithm runs on. 
    3.95 +    typedef _Graph Graph;
    3.96 +
    3.97 +    /// \brief The type of the map that stores the edge lengths.
    3.98 +    ///
    3.99 +    /// The type of the map that stores the edge lengths.
   3.100 +    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
   3.101 +    typedef _LengthMap LengthMap;
   3.102 +
   3.103 +    // The type of the length of the edges.
   3.104 +    typedef typename _LengthMap::Value Value;
   3.105 +
   3.106 +    /// \brief Operation traits for belmann-ford algorithm.
   3.107 +    ///
   3.108 +    /// It defines the infinity type on the given Value type
   3.109 +    /// and the used operation.
   3.110 +    /// \see JohnsonDefaultOperationTraits
   3.111 +    typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   3.112 + 
   3.113 +    /// \brief The type of the map that stores the last edges of the 
   3.114 +    /// shortest paths.
   3.115 +    /// 
   3.116 +    /// The type of the map that stores the last
   3.117 +    /// edges of the shortest paths.
   3.118 +    /// It must be a matrix map with \c Graph::Edge value type.
   3.119 +    ///
   3.120 +    typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   3.121 +
   3.122 +    /// \brief Instantiates a PredMap.
   3.123 +    /// 
   3.124 +    /// This function instantiates a \ref PredMap. 
   3.125 +    /// \param G is the graph, to which we would like to define the PredMap.
   3.126 +    /// \todo The graph alone may be insufficient for the initialization
   3.127 +    static PredMap *createPredMap(const _Graph& graph) {
   3.128 +      return new PredMap(graph);
   3.129 +    }
   3.130 +
   3.131 +    /// \brief The type of the map that stores the dists of the nodes.
   3.132 +    ///
   3.133 +    /// The type of the map that stores the dists of the nodes.
   3.134 +    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   3.135 +    ///
   3.136 +    typedef NodeMatrixMap<Graph, Value> DistMap;
   3.137 +
   3.138 +    /// \brief Instantiates a DistMap.
   3.139 +    ///
   3.140 +    /// This function instantiates a \ref DistMap. 
   3.141 +    /// \param G is the graph, to which we would like to define the 
   3.142 +    /// \ref DistMap
   3.143 +    static DistMap *createDistMap(const _Graph& graph) {
   3.144 +      return new DistMap(graph);
   3.145 +    }
   3.146 +
   3.147 +  };
   3.148 +
   3.149 +  /// \brief Johnson algorithm class.
   3.150 +  ///
   3.151 +  /// \ingroup flowalgs
   3.152 +  /// This class provides an efficient implementation of \c Johnson 
   3.153 +  /// algorithm. The edge lengths are passed to the algorithm using a
   3.154 +  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   3.155 +  /// kind of length.
   3.156 +  ///
   3.157 +  /// The type of the length is determined by the
   3.158 +  /// \ref concept::ReadMap::Value "Value" of the length map.
   3.159 +  ///
   3.160 +  /// \param _Graph The graph type the algorithm runs on. The default value
   3.161 +  /// is \ref ListGraph. The value of _Graph is not used directly by
   3.162 +  /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   3.163 +  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   3.164 +  /// edges. It is read once for each edge, so the map may involve in
   3.165 +  /// relatively time consuming process to compute the edge length if
   3.166 +  /// it is necessary. The default map type is \ref
   3.167 +  /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   3.168 +  /// of _LengthMap is not used directly by Johnson, it is only passed 
   3.169 +  /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   3.170 +  /// various data types used by the algorithm.  The default traits
   3.171 +  /// class is \ref JohnsonDefaultTraits
   3.172 +  /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   3.173 +  /// JohnsonDefaultTraits for the documentation of a Johnson traits
   3.174 +  /// class.
   3.175 +  ///
   3.176 +  /// \author Balazs Dezso
   3.177 +
   3.178 +  template <typename _Graph=ListGraph,
   3.179 +	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   3.180 +	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   3.181 +  class Johnson {
   3.182 +  public:
   3.183 +    
   3.184 +    /// \brief \ref Exception for uninitialized parameters.
   3.185 +    ///
   3.186 +    /// This error represents problems in the initialization
   3.187 +    /// of the parameters of the algorithms.
   3.188 +
   3.189 +    class UninitializedParameter : public lemon::UninitializedParameter {
   3.190 +    public:
   3.191 +      virtual const char* exceptionName() const {
   3.192 +	return "lemon::Johnson::UninitializedParameter";
   3.193 +      }
   3.194 +    };
   3.195 +
   3.196 +    typedef _Traits Traits;
   3.197 +    ///The type of the underlying graph.
   3.198 +    typedef typename _Traits::Graph Graph;
   3.199 +
   3.200 +    typedef typename Graph::Node Node;
   3.201 +    typedef typename Graph::NodeIt NodeIt;
   3.202 +    typedef typename Graph::Edge Edge;
   3.203 +    typedef typename Graph::EdgeIt EdgeIt;
   3.204 +    
   3.205 +    /// \brief The type of the length of the edges.
   3.206 +    typedef typename _Traits::LengthMap::Value Value;
   3.207 +    /// \brief The type of the map that stores the edge lengths.
   3.208 +    typedef typename _Traits::LengthMap LengthMap;
   3.209 +    /// \brief The type of the map that stores the last
   3.210 +    /// edges of the shortest paths. The type of the PredMap
   3.211 +    /// is a matrix map for Edges
   3.212 +    typedef typename _Traits::PredMap PredMap;
   3.213 +    /// \brief The type of the map that stores the dists of the nodes.
   3.214 +    /// The type of the DistMap is a matrix map for Values
   3.215 +    typedef typename _Traits::DistMap DistMap;
   3.216 +    /// \brief The operation traits.
   3.217 +    typedef typename _Traits::OperationTraits OperationTraits;
   3.218 +  private:
   3.219 +    /// Pointer to the underlying graph.
   3.220 +    const Graph *graph;
   3.221 +    /// Pointer to the length map
   3.222 +    const LengthMap *length;
   3.223 +    ///Pointer to the map of predecessors edges.
   3.224 +    PredMap *_pred;
   3.225 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   3.226 +    bool local_pred;
   3.227 +    ///Pointer to the map of distances.
   3.228 +    DistMap *_dist;
   3.229 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   3.230 +    bool local_dist;
   3.231 +
   3.232 +    /// Creates the maps if necessary.
   3.233 +    void create_maps() {
   3.234 +      if(!_pred) {
   3.235 +	local_pred = true;
   3.236 +	_pred = Traits::createPredMap(*graph);
   3.237 +      }
   3.238 +      if(!_dist) {
   3.239 +	local_dist = true;
   3.240 +	_dist = Traits::createDistMap(*graph);
   3.241 +      }
   3.242 +    }
   3.243 +    
   3.244 +  public :
   3.245 + 
   3.246 +    /// \name Named template parameters
   3.247 +
   3.248 +    ///@{
   3.249 +
   3.250 +    template <class T>
   3.251 +    struct DefPredMapTraits : public Traits {
   3.252 +      typedef T PredMap;
   3.253 +      static PredMap *createPredMap(const Graph& graph) {
   3.254 +	throw UninitializedParameter();
   3.255 +      }
   3.256 +    };
   3.257 +
   3.258 +    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   3.259 +    /// type
   3.260 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   3.261 +    ///
   3.262 +    template <class T>
   3.263 +    class DefPredMap 
   3.264 +      : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {};
   3.265 +    
   3.266 +    template <class T>
   3.267 +    struct DefDistMapTraits : public Traits {
   3.268 +      typedef T DistMap;
   3.269 +      static DistMap *createDistMap(const Graph& graph) {
   3.270 +	throw UninitializedParameter();
   3.271 +      }
   3.272 +    };
   3.273 +    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   3.274 +    /// type
   3.275 +    ///
   3.276 +    /// \ref named-templ-param "Named parameter" for setting DistMap type
   3.277 +    ///
   3.278 +    template <class T>
   3.279 +    class DefDistMap 
   3.280 +      : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {};
   3.281 +    
   3.282 +    template <class T>
   3.283 +    struct DefOperationTraitsTraits : public Traits {
   3.284 +      typedef T OperationTraits;
   3.285 +    };
   3.286 +    
   3.287 +    /// \brief \ref named-templ-param "Named parameter" for setting 
   3.288 +    /// OperationTraits type
   3.289 +    ///
   3.290 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   3.291 +    template <class T>
   3.292 +    class DefOperationTraits
   3.293 +      : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {};
   3.294 +    
   3.295 +    ///@}
   3.296 +
   3.297 +  public:      
   3.298 +    
   3.299 +    /// \brief Constructor.
   3.300 +    ///
   3.301 +    /// \param _graph the graph the algorithm will run on.
   3.302 +    /// \param _length the length map used by the algorithm.
   3.303 +    Johnson(const Graph& _graph, const LengthMap& _length) :
   3.304 +      graph(&_graph), length(&_length),
   3.305 +      _pred(0), local_pred(false),
   3.306 +      _dist(0), local_dist(false) {}
   3.307 +    
   3.308 +    ///Destructor.
   3.309 +    ~Johnson() {
   3.310 +      if(local_pred) delete _pred;
   3.311 +      if(local_dist) delete _dist;
   3.312 +    }
   3.313 +
   3.314 +    /// \brief Sets the length map.
   3.315 +    ///
   3.316 +    /// Sets the length map.
   3.317 +    /// \return \c (*this)
   3.318 +    Johnson &lengthMap(const LengthMap &m) {
   3.319 +      length = &m;
   3.320 +      return *this;
   3.321 +    }
   3.322 +
   3.323 +    /// \brief Sets the map storing the predecessor edges.
   3.324 +    ///
   3.325 +    /// Sets the map storing the predecessor edges.
   3.326 +    /// If you don't use this function before calling \ref run(),
   3.327 +    /// it will allocate one. The destuctor deallocates this
   3.328 +    /// automatically allocated map, of course.
   3.329 +    /// \return \c (*this)
   3.330 +    Johnson &predMap(PredMap &m) {
   3.331 +      if(local_pred) {
   3.332 +	delete _pred;
   3.333 +	local_pred=false;
   3.334 +      }
   3.335 +      _pred = &m;
   3.336 +      return *this;
   3.337 +    }
   3.338 +
   3.339 +    /// \brief Sets the map storing the distances calculated by the algorithm.
   3.340 +    ///
   3.341 +    /// Sets the map storing the distances calculated by the algorithm.
   3.342 +    /// If you don't use this function before calling \ref run(),
   3.343 +    /// it will allocate one. The destuctor deallocates this
   3.344 +    /// automatically allocated map, of course.
   3.345 +    /// \return \c (*this)
   3.346 +    Johnson &distMap(DistMap &m) {
   3.347 +      if(local_dist) {
   3.348 +	delete _dist;
   3.349 +	local_dist=false;
   3.350 +      }
   3.351 +      _dist = &m;
   3.352 +      return *this;
   3.353 +    }
   3.354 +
   3.355 +    ///\name Execution control
   3.356 +    /// The simplest way to execute the algorithm is to use
   3.357 +    /// one of the member functions called \c run(...).
   3.358 +    /// \n
   3.359 +    /// If you need more control on the execution,
   3.360 +    /// Finally \ref start() will perform the actual path
   3.361 +    /// computation.
   3.362 +
   3.363 +    ///@{
   3.364 +
   3.365 +    /// \brief Initializes the internal data structures.
   3.366 +    /// 
   3.367 +    /// Initializes the internal data structures.
   3.368 +    void init() {
   3.369 +      create_maps();
   3.370 +    }
   3.371 +    
   3.372 +    /// \brief Executes the algorithm.
   3.373 +    ///
   3.374 +    /// This method runs the %Johnson algorithm in order to compute 
   3.375 +    /// the shortest path to each node pairs. The algorithm 
   3.376 +    /// computes 
   3.377 +    /// - The shortest path tree for each node.
   3.378 +    /// - The distance between each node pairs.
   3.379 +    void start() {
   3.380 +      typename BelmannFord<Graph, LengthMap>::
   3.381 +      template DefOperationTraits<OperationTraits>::
   3.382 +      BelmannFord belmannford(*graph, *length);
   3.383 +      
   3.384 +      belmannford.init();
   3.385 +
   3.386 +      typename Graph::template NodeMap<bool> initial(*graph, false);
   3.387 +
   3.388 +      {
   3.389 +	Dfs<Graph> dfs(*graph);
   3.390 +
   3.391 +	dfs.init();
   3.392 +	for (NodeIt it(*graph); it != INVALID; ++it) {
   3.393 +	  if (!dfs.reached(it)) {
   3.394 +	    dfs.addSource(it);
   3.395 +	    while (!dfs.emptyQueue()) {
   3.396 +	      Edge edge = dfs.processNextEdge();
   3.397 +	      initial.set(graph->target(edge), false);
   3.398 +	    }
   3.399 +	    initial.set(it, true);
   3.400 +	  }
   3.401 +	}
   3.402 +	for (NodeIt it(*graph); it != INVALID; ++it) {
   3.403 +	  if (initial[it]) {
   3.404 +	    belmannford.addSource(it);
   3.405 +	  }
   3.406 +	}
   3.407 +      }
   3.408 +
   3.409 +      belmannford.start();
   3.410 +
   3.411 +      for (NodeIt it(*graph); it != INVALID; ++it) {
   3.412 +	typedef PotentialDifferenceMap<Graph, 
   3.413 +	  typename BelmannFord<Graph, LengthMap>::DistMap> PotDiffMap;
   3.414 +	PotDiffMap potdiff(*graph, belmannford.distMap());
   3.415 +	typedef SubMap<LengthMap, PotDiffMap> ShiftLengthMap;
   3.416 +	ShiftLengthMap shiftlen(*length, potdiff);
   3.417 +	Dijkstra<Graph, ShiftLengthMap> dijkstra(*graph, shiftlen); 
   3.418 +	dijkstra.run(it);
   3.419 +	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   3.420 +	  if (dijkstra.reached(jt)) {
   3.421 +	    _dist->set(it, jt, dijkstra.dist(jt) + 
   3.422 +		       belmannford.dist(jt) - belmannford.dist(it));
   3.423 +	    _pred->set(it, jt, dijkstra.pred(jt));
   3.424 +	  } else {
   3.425 +	    _dist->set(it, jt, OperationTraits::infinity());
   3.426 +	    _pred->set(it, jt, INVALID);
   3.427 +	  }
   3.428 +	}
   3.429 +      }
   3.430 +    }
   3.431 +    
   3.432 +    /// \brief Runs %Johnson algorithm.
   3.433 +    ///    
   3.434 +    /// This method runs the %Johnson algorithm from a each node
   3.435 +    /// in order to compute the shortest path to each node pairs. 
   3.436 +    /// The algorithm computes
   3.437 +    /// - The shortest path tree for each node.
   3.438 +    /// - The distance between each node pairs.
   3.439 +    ///
   3.440 +    /// \note d.run(s) is just a shortcut of the following code.
   3.441 +    /// \code
   3.442 +    ///  d.init();
   3.443 +    ///  d.start();
   3.444 +    /// \endcode
   3.445 +    void run() {
   3.446 +      init();
   3.447 +      start();
   3.448 +    }
   3.449 +    
   3.450 +    ///@}
   3.451 +
   3.452 +    /// \name Query Functions
   3.453 +    /// The result of the %Johnson algorithm can be obtained using these
   3.454 +    /// functions.\n
   3.455 +    /// Before the use of these functions,
   3.456 +    /// either run() or start() must be called.
   3.457 +    
   3.458 +    ///@{
   3.459 +
   3.460 +    /// \brief Copies the shortest path to \c t into \c p
   3.461 +    ///    
   3.462 +    /// This function copies the shortest path to \c t into \c p.
   3.463 +    /// If it \c t is a source itself or unreachable, then it does not
   3.464 +    /// alter \c p.
   3.465 +    /// \todo Is it the right way to handle unreachable nodes?
   3.466 +    /// \return Returns \c true if a path to \c t was actually copied to \c p,
   3.467 +    /// \c false otherwise.
   3.468 +    /// \sa DirPath
   3.469 +    template <typename Path>
   3.470 +    bool getPath(Path &p, Node source, Node target) {
   3.471 +      if (connected(source, target)) {
   3.472 +	p.clear();
   3.473 +	typename Path::Builder b(target);
   3.474 +	for(b.setStartNode(target); pred(source, target) != INVALID;
   3.475 +	    target = predNode(target)) {
   3.476 +	  b.pushFront(pred(source, target));
   3.477 +	}
   3.478 +	b.commit();
   3.479 +	return true;
   3.480 +      }
   3.481 +      return false;
   3.482 +    }
   3.483 +	  
   3.484 +    /// \brief The distance between two nodes.
   3.485 +    ///
   3.486 +    /// Returns the distance between two nodes.
   3.487 +    /// \pre \ref run() must be called before using this function.
   3.488 +    /// \warning If node \c v in unreachable from the root the return value
   3.489 +    /// of this funcion is undefined.
   3.490 +    Value dist(Node source, Node target) const { 
   3.491 +      return (*_dist)(source, target); 
   3.492 +    }
   3.493 +
   3.494 +    /// \brief Returns the 'previous edge' of the shortest path tree.
   3.495 +    ///
   3.496 +    /// For the node \c node it returns the 'previous edge' of the shortest 
   3.497 +    /// path tree to direction of the node \c root 
   3.498 +    /// i.e. it returns the last edge of a shortest path from the node \c root 
   3.499 +    /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   3.500 +    /// or if \c node=root. The shortest path tree used here is equal to the 
   3.501 +    /// shortest path tree used in \ref predNode(). 
   3.502 +    /// \pre \ref run() must be called before using this function.
   3.503 +    /// \todo predEdge could be a better name.
   3.504 +    Edge pred(Node root, Node node) const { 
   3.505 +      return (*_pred)(root, node); 
   3.506 +    }
   3.507 +
   3.508 +    /// \brief Returns the 'previous node' of the shortest path tree.
   3.509 +    ///
   3.510 +    /// For a node \c node it returns the 'previous node' of the shortest path 
   3.511 +    /// tree to direction of the node \c root, i.e. it returns the last but 
   3.512 +    /// one node from a shortest path from the \c root to \c node. It is 
   3.513 +    /// INVALID if \c node is unreachable from the root or if \c node=root. 
   3.514 +    /// The shortest path tree used here is equal to the 
   3.515 +    /// shortest path tree used in \ref pred().  
   3.516 +    /// \pre \ref run() must be called before using this function.
   3.517 +    Node predNode(Node root, Node node) const { 
   3.518 +      return (*_pred)(root, node) == INVALID ? 
   3.519 +      INVALID : graph->source((*_pred)(root, node)); 
   3.520 +    }
   3.521 +    
   3.522 +    /// \brief Returns a reference to the matrix node map of distances.
   3.523 +    ///
   3.524 +    /// Returns a reference to the matrix node map of distances. 
   3.525 +    ///
   3.526 +    /// \pre \ref run() must be called before using this function.
   3.527 +    const DistMap &distMap() const { return *_dist;}
   3.528 + 
   3.529 +    /// \brief Returns a reference to the shortest path tree map.
   3.530 +    ///
   3.531 +    /// Returns a reference to the matrix node map of the edges of the
   3.532 +    /// shortest path tree.
   3.533 +    /// \pre \ref run() must be called before using this function.
   3.534 +    const PredMap &predMap() const { return *_pred;}
   3.535 + 
   3.536 +    /// \brief Checks if a node is reachable from the root.
   3.537 +    ///
   3.538 +    /// Returns \c true if \c v is reachable from the root.
   3.539 +    /// \pre \ref run() must be called before using this function.
   3.540 +    ///
   3.541 +    bool connected(Node source, Node target) { 
   3.542 +      return (*_dist)(source, target) != OperationTraits::infinity(); 
   3.543 +    }
   3.544 +    
   3.545 +    ///@}
   3.546 +  };
   3.547 + 
   3.548 +} //END OF NAMESPACE LEMON
   3.549 +
   3.550 +#endif