Some corrections.
authorathos
Fri, 08 Sep 2006 15:51:32 +0000
changeset 22132c094dfa176d
parent 2212 0ad3835449f8
child 2214 a886e48e0d91
Some corrections.
lemon/mip_glpk.cc
test/mip_test.cc
     1.1 --- a/lemon/mip_glpk.cc	Fri Sep 08 08:55:07 2006 +0000
     1.2 +++ b/lemon/mip_glpk.cc	Fri Sep 08 15:51:32 2006 +0000
     1.3 @@ -57,40 +57,50 @@
     1.4    
     1.5    LpGlpk::SolveExitStatus MipGlpk::_solve(){
     1.6      int result = lpx_simplex(lp);
     1.7 -    result = lpx_integer(lp);
     1.8 -    switch (result){
     1.9 -      case LPX_E_OBJLL:
    1.10 -      case LPX_E_OBJUL:
    1.11 -      case LPX_E_ITLIM:
    1.12 -      case LPX_E_TMLIM:
    1.13 +    //
    1.14 +    if (lpx_get_status(lp)==LPX_OPT){
    1.15 +      //Maybe we could try the routine lpx_intopt(lp), a revised
    1.16 +      //version of lpx_integer
    1.17 +      result = lpx_integer(lp);
    1.18 +      switch (result){
    1.19        case LPX_E_OK:
    1.20 -        return SOLVED;
    1.21 +	return SOLVED;
    1.22        default:
    1.23 -        return UNSOLVED;
    1.24 +	return UNSOLVED;
    1.25 +      }
    1.26 +      
    1.27      }
    1.28 +    return UNSOLVED;
    1.29    }
    1.30  
    1.31  
    1.32    LpGlpk::SolutionStatus MipGlpk::_getMipStatus(){
    1.33  
    1.34 -    //Meg kell nezni: ha az LP is infinite, akkor ez is, ha az is
    1.35 -    //infeasible, akkor ez is, de ez lehet maskepp is infeasible.
    1.36 -    int stat=  lpx_mip_status(lp);
    1.37 -    switch (stat) {
    1.38 -    case LPX_I_UNDEF://Undefined (no solve has been run yet)
    1.39 -      return UNDEFINED;
    1.40 -   case LPX_I_NOFEAS://There is no feasible integral solution (primal, I guess)
    1.41 -      return INFEASIBLE;
    1.42 -//     case LPX_UNBND://Unbounded
    1.43 -//       return INFINITE;
    1.44 -    case LPX_I_FEAS://Feasible
    1.45 -      return FEASIBLE;
    1.46 -    case LPX_I_OPT://Feasible
    1.47 -      return OPTIMAL;
    1.48 -    default:
    1.49 +    if (lpx_get_status(lp)==LPX_OPT){
    1.50 +      //Meg kell nezni: ha az LP is infinite, akkor ez is, ha az is
    1.51 +      //infeasible, akkor ez is, de ez lehet maskepp is infeasible.
    1.52 +      int stat=  lpx_mip_status(lp);
    1.53 +      
    1.54 +      switch (stat) {
    1.55 +      case LPX_I_UNDEF://Undefined (no solve has been run yet)
    1.56 +	return UNDEFINED;
    1.57 +      case LPX_I_NOFEAS://There is no feasible integral solution
    1.58 +	return INFEASIBLE;
    1.59 +	//     case LPX_UNBND://Unbounded
    1.60 +	//       return INFINITE;
    1.61 +      case LPX_I_FEAS://Feasible
    1.62 +	return FEASIBLE;
    1.63 +      case LPX_I_OPT://Feasible
    1.64 +	return OPTIMAL;
    1.65 +      default:
    1.66        return UNDEFINED; //to avoid gcc warning
    1.67        //FIXME error
    1.68 +      }
    1.69      }
    1.70 +    else 
    1.71 +      return UNDEFINED; //Maybe we could refine this: what does the LP
    1.72 +			//relaxation look like
    1.73 +      
    1.74    }  
    1.75  
    1.76    MipGlpk::Value MipGlpk::_getPrimal(int i){
     2.1 --- a/test/mip_test.cc	Fri Sep 08 08:55:07 2006 +0000
     2.2 +++ b/test/mip_test.cc	Fri Sep 08 15:51:32 2006 +0000
     2.3 @@ -12,7 +12,7 @@
     2.4    buf << "Primalstatus should be: " << int(stat)<<" and it is "<<int(lp.primalStatus());
     2.5  
     2.6    //  itoa(stat,buf1, 10);
     2.7 -  check(lp.primalStatus()==stat, buf.str());
     2.8 +  check(lp.mipStatus()==stat, buf.str());
     2.9  
    2.10    if (stat ==  LpSolverBase::OPTIMAL) {
    2.11      std::ostringstream buf;
    2.12 @@ -35,6 +35,19 @@
    2.13  
    2.14  
    2.15  
    2.16 +
    2.17 +
    2.18 +
    2.19 +  //Objective function
    2.20 +  mip.setObj(x1);
    2.21 +
    2.22 +  mip.max();
    2.23 +
    2.24 +
    2.25 +  //Unconstrained optimization
    2.26 +  mip.solve();
    2.27 +  //Check it out!
    2.28 +
    2.29    //Constraints
    2.30    mip.addRow(2*x1+x2 <=2);  
    2.31    mip.addRow(x1-2*x2 <=0);  
    2.32 @@ -44,14 +57,8 @@
    2.33  
    2.34  
    2.35  
    2.36 -  //Objective function
    2.37 -  mip.setObj(x1);
    2.38 -
    2.39 -  mip.max();
    2.40 -
    2.41 -
    2.42    //Maximization of x1
    2.43 -  //over the triangle with vertices
    2.44 +  //over the triangle with vertices 
    2.45    double expected_opt=4.0/5.0;
    2.46    solveAndCheck(mip, Mip::OPTIMAL, expected_opt);
    2.47