path.h by Misi, committed by Peter. There is DirPath usw. in it.
authorhegyi
Wed, 08 Sep 2004 11:49:09 +0000
changeset 8193623e8dbce49
parent 818 2b687ca1a08b
child 820 a9b6a7f73895
path.h by Misi, committed by Peter. There is DirPath usw. in it.
src/hugo/path.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/hugo/path.h	Wed Sep 08 11:49:09 2004 +0000
     1.3 @@ -0,0 +1,1174 @@
     1.4 +// -*- c++ -*- //
     1.5 +
     1.6 +/**
     1.7 +@defgroup paths Path Structures
     1.8 +@ingroup datas
     1.9 +\brief Path structures implemented in Hugo.
    1.10 +
    1.11 +Hugolib provides flexible data structures
    1.12 +to work with paths.
    1.13 +
    1.14 +All of them have the same interface, especially they can be built or extended
    1.15 +using a standard Builder subclass. This make is easy to have e.g. the Dijkstra
    1.16 +algorithm to store its result in any kind of path structure.
    1.17 +
    1.18 +\sa hugo::skeleton::Path
    1.19 +
    1.20 +*/
    1.21 +
    1.22 +///\ingroup paths
    1.23 +///\file
    1.24 +///\brief Classes for representing paths in graphs.
    1.25 +
    1.26 +#ifndef HUGO_PATH_H
    1.27 +#define HUGO_PATH_H
    1.28 +
    1.29 +#include <deque>
    1.30 +#include <vector>
    1.31 +#include <algorithm>
    1.32 +
    1.33 +#include <hugo/invalid.h>
    1.34 +#include <hugo/error.h>
    1.35 +#include <hugo/debug.h>
    1.36 +
    1.37 +namespace hugo {
    1.38 +
    1.39 +  /// \addtogroup paths
    1.40 +  /// @{
    1.41 +
    1.42 +
    1.43 +  //! \brief A structure for representing directed paths in a graph.
    1.44 +  //!
    1.45 +  //! A structure for representing directed path in a graph.
    1.46 +  //! \param Graph The graph type in which the path is.
    1.47 +  //! \param DM DebugMode, defaults to DefaultDebugMode.
    1.48 +  //! 
    1.49 +  //! In a sense, the path can be treated as a graph, for is has \c NodeIt
    1.50 +  //! and \c EdgeIt with the same usage. These types converts to the \c Node
    1.51 +  //! and \c Edge of the original graph.
    1.52 +  //!
    1.53 +  //! \todo Thoroughfully check all the range and consistency tests.
    1.54 +  template<typename Graph, typename DM = DefaultDebugMode>
    1.55 +  class DirPath {
    1.56 +  public:
    1.57 +    /// Edge type of the underlying graph.
    1.58 +    typedef typename Graph::Edge GraphEdge; 
    1.59 +    /// Node type of the underlying graph.
    1.60 +    typedef typename Graph::Node GraphNode;
    1.61 +    class NodeIt;
    1.62 +    class EdgeIt;
    1.63 +
    1.64 +  protected:
    1.65 +    const Graph *gr;
    1.66 +    typedef std::vector<GraphEdge> Container;
    1.67 +    Container edges;
    1.68 +
    1.69 +  public:
    1.70 +
    1.71 +    /// \param _G The graph in which the path is.
    1.72 +    ///
    1.73 +    DirPath(const Graph &_G) : gr(&_G) {}
    1.74 +
    1.75 +    /// \brief Subpath constructor.
    1.76 +    ///
    1.77 +    /// Subpath defined by two nodes.
    1.78 +    /// \warning It is an error if the two edges are not in order!
    1.79 +    DirPath(const DirPath &P, const NodeIt &a, const NodeIt &b) {
    1.80 +      if( DM::range_check && (!a.valid() || !b.valid) ) {
    1.81 +	// FIXME: this check should be more elaborate...
    1.82 +	fault("DirPath, subpath ctor: invalid bounding nodes");
    1.83 +      }
    1.84 +      gr = P.gr;
    1.85 +      edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    1.86 +    }
    1.87 +
    1.88 +    /// \brief Subpath constructor.
    1.89 +    ///
    1.90 +    /// Subpath defined by two edges. Contains edges in [a,b)
    1.91 +    /// \warning It is an error if the two edges are not in order!
    1.92 +    DirPath(const DirPath &P, const EdgeIt &a, const EdgeIt &b) {
    1.93 +      if( DM::range_check && (!a.valid() || !b.valid) ) {
    1.94 +	// FIXME: this check should be more elaborate...
    1.95 +	fault("DirPath, subpath ctor: invalid bounding nodes");
    1.96 +      }
    1.97 +      gr = P.gr;
    1.98 +      edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    1.99 +    }
   1.100 +
   1.101 +    /// Length of the path.
   1.102 +    size_t length() const { return edges.size(); }
   1.103 +    /// Returns whether the path is empty.
   1.104 +    bool empty() const { return edges.empty(); }
   1.105 +
   1.106 +    /// Resets the path to an empty path.
   1.107 +    void clear() { edges.clear(); }
   1.108 +
   1.109 +    /// \brief Starting point of the path.
   1.110 +    ///
   1.111 +    /// Starting point of the path.
   1.112 +    /// Returns INVALID if the path is empty.
   1.113 +    GraphNode from() const {
   1.114 +      return empty() ? INVALID : gr->tail(edges[0]);
   1.115 +    }
   1.116 +    /// \brief End point of the path.
   1.117 +    ///
   1.118 +    /// End point of the path.
   1.119 +    /// Returns INVALID if the path is empty.
   1.120 +    GraphNode to() const {
   1.121 +      return empty() ? INVALID : gr->head(edges[length()-1]);
   1.122 +    }
   1.123 +
   1.124 +    /// \brief Initializes node or edge iterator to point to the first
   1.125 +    /// node or edge.
   1.126 +    ///
   1.127 +    /// \sa nth
   1.128 +    template<typename It>
   1.129 +    It& first(It &i) const { return i=It(*this); }
   1.130 +
   1.131 +    /// \brief Initializes node iterator to point to the node of a given index.
   1.132 +    NodeIt& nth(NodeIt &i, int n) const {
   1.133 +      if( DM::range_check && (n<0 || n>int(length())) )
   1.134 +	fault("DirPath::nth: index out of range");
   1.135 +      return i=NodeIt(*this, n);
   1.136 +    }
   1.137 +
   1.138 +    /// \brief Initializes edge iterator to point to the edge of a given index.
   1.139 +    EdgeIt& nth(EdgeIt &i, int n) const {
   1.140 +      if( DM::range_check && (n<0 || n>=int(length())) )
   1.141 +	fault("DirPath::nth: index out of range");
   1.142 +      return i=EdgeIt(*this, n);
   1.143 +    }
   1.144 +
   1.145 +    /// Checks validity of a node or edge iterator.
   1.146 +    template<typename It>
   1.147 +    static
   1.148 +    bool valid(const It &i) { return i.valid(); }
   1.149 +
   1.150 +    /// Steps the given node or edge iterator.
   1.151 +    template<typename It>
   1.152 +    static
   1.153 +    It& next(It &e) {
   1.154 +      if( DM::range_check && !e.valid() )
   1.155 +	fault("DirPath::next() on invalid iterator");
   1.156 +      return ++e;
   1.157 +    }
   1.158 +
   1.159 +    /// \brief Returns node iterator pointing to the head node of the
   1.160 +    /// given edge iterator.
   1.161 +    NodeIt head(const EdgeIt& e) const {
   1.162 +      if( DM::range_check && !e.valid() )
   1.163 +	fault("DirPath::head() on invalid iterator");
   1.164 +      return NodeIt(*this, e.idx+1);
   1.165 +    }
   1.166 +
   1.167 +    /// \brief Returns node iterator pointing to the tail node of the
   1.168 +    /// given edge iterator.
   1.169 +    NodeIt tail(const EdgeIt& e) const {
   1.170 +      if( DM::range_check && !e.valid() )
   1.171 +	fault("DirPath::tail() on invalid iterator");
   1.172 +      return NodeIt(*this, e.idx);
   1.173 +    }
   1.174 +
   1.175 +
   1.176 +    /* Iterator classes */
   1.177 +
   1.178 +    /**
   1.179 +     * \brief Iterator class to iterate on the edges of the paths
   1.180 +     * 
   1.181 +     * \ingroup paths
   1.182 +     * This class is used to iterate on the edges of the paths
   1.183 +     *
   1.184 +     * Of course it converts to Graph::Edge
   1.185 +     * 
   1.186 +     * \todo Its interface differs from the standard edge iterator.
   1.187 +     * Yes, it shouldn't.
   1.188 +     */
   1.189 +    class EdgeIt {
   1.190 +      friend class DirPath;
   1.191 +
   1.192 +      int idx;
   1.193 +      const DirPath *p;
   1.194 +    public:
   1.195 +      /// Default constructor
   1.196 +      EdgeIt() {}
   1.197 +      /// Invalid constructor
   1.198 +      EdgeIt(Invalid) : idx(-1), p(0) {}
   1.199 +      /// Constructor with starting point
   1.200 +      EdgeIt(const DirPath &_p, int _idx = 0) :
   1.201 +	idx(_idx), p(&_p) { validate(); }
   1.202 +
   1.203 +      ///Validity check
   1.204 +      bool valid() const { return idx!=-1; }
   1.205 +
   1.206 +      ///Conversion to Graph::Edge
   1.207 +      operator GraphEdge () const {
   1.208 +	return valid() ? p->edges[idx] : INVALID;
   1.209 +      }
   1.210 +
   1.211 +      /// Next edge
   1.212 +      EdgeIt& operator++() { ++idx; validate(); return *this; }
   1.213 +
   1.214 +      /// Comparison operator
   1.215 +      bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   1.216 +      /// Comparison operator
   1.217 +      bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   1.218 +      /// Comparison operator
   1.219 +      bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   1.220 +
   1.221 +    private:
   1.222 +      // FIXME: comparison between signed and unsigned...
   1.223 +      // Jo ez igy? Vagy esetleg legyen a length() int?
   1.224 +      void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   1.225 +    };
   1.226 +
   1.227 +    /**
   1.228 +     * \brief Iterator class to iterate on the nodes of the paths
   1.229 +     * 
   1.230 +     * \ingroup paths
   1.231 +     * This class is used to iterate on the nodes of the paths
   1.232 +     *
   1.233 +     * Of course it converts to Graph::Node
   1.234 +     * 
   1.235 +     * \todo Its interface differs from the standard node iterator.
   1.236 +     * Yes, it shouldn't.
   1.237 +     */
   1.238 +    class NodeIt {
   1.239 +      friend class DirPath;
   1.240 +
   1.241 +      int idx;
   1.242 +      const DirPath *p;
   1.243 +    public:
   1.244 +      /// Default constructor
   1.245 +      NodeIt() {}
   1.246 +      /// Invalid constructor
   1.247 +      NodeIt(Invalid) : idx(-1), p(0) {}
   1.248 +      /// Constructor with starting point
   1.249 +      NodeIt(const DirPath &_p, int _idx = 0) :
   1.250 +	idx(_idx), p(&_p) { validate(); }
   1.251 +
   1.252 +      ///Validity check
   1.253 +      bool valid() const { return idx!=-1; }
   1.254 +
   1.255 +      ///Conversion to Graph::Node
   1.256 +      operator const GraphNode& () const {
   1.257 +	if(idx >= p->length())
   1.258 +	  return p->to();
   1.259 +	else if(idx >= 0)
   1.260 +	  return p->gr->tail(p->edges[idx]);
   1.261 +	else
   1.262 +	  return INVALID;
   1.263 +      }
   1.264 +      /// Next node
   1.265 +      NodeIt& operator++() { ++idx; validate(); return *this; }
   1.266 +
   1.267 +      /// Comparison operator
   1.268 +      bool operator==(const NodeIt& e) const { return idx==e.idx; }
   1.269 +      /// Comparison operator
   1.270 +      bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   1.271 +      /// Comparison operator
   1.272 +      bool operator<(const NodeIt& e) const { return idx<e.idx; }
   1.273 +
   1.274 +    private:
   1.275 +      void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   1.276 +    };
   1.277 +
   1.278 +    friend class Builder;    
   1.279 +
   1.280 +    /**
   1.281 +     * \brief Class to build paths
   1.282 +     * 
   1.283 +     * \ingroup paths
   1.284 +     * This class is used to fill a path with edges.
   1.285 +     *
   1.286 +     * You can push new edges to the front and to the back of the path in
   1.287 +     * arbitrary order then you should commit these changes to the graph.
   1.288 +     *
   1.289 +     * Fundamentally, for most "Paths" (classes fulfilling the
   1.290 +     * PathConcept) while the builder is active (after the first modifying
   1.291 +     * operation and until the commit()) the original Path is in a
   1.292 +     * "transitional" state (operations on it have undefined result). But
   1.293 +     * in the case of DirPath the original path remains unchanged until the
   1.294 +     * commit. However we don't recomend that you use this feature.
   1.295 +     */
   1.296 +    class Builder {
   1.297 +      DirPath &P;
   1.298 +      Container front, back;
   1.299 +
   1.300 +    public:
   1.301 +      ///\param _P the path you want to fill in.
   1.302 +      ///
   1.303 +      Builder(DirPath &_P) : P(_P) {}
   1.304 +
   1.305 +      /// Sets the starting node of the path.
   1.306 +      
   1.307 +      /// Sets the starting node of the path. Edge added to the path
   1.308 +      /// afterwards have to be incident to this node.
   1.309 +      /// It should be called iff the path is empty and before any call to
   1.310 +      /// \ref pushFront() or \ref pushBack()
   1.311 +      void setStartNode(const GraphNode &) {}
   1.312 +
   1.313 +      ///Push a new edge to the front of the path
   1.314 +
   1.315 +      ///Push a new edge to the front of the path.
   1.316 +      ///\sa setStartNode
   1.317 +      void pushFront(const GraphEdge& e) {
   1.318 +	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   1.319 +	  fault("DirPath::Builder::pushFront: nonincident edge");
   1.320 +	}
   1.321 +	front.push_back(e);
   1.322 +      }
   1.323 +
   1.324 +      ///Push a new edge to the back of the path
   1.325 +
   1.326 +      ///Push a new edge to the back of the path.
   1.327 +      ///\sa setStartNode
   1.328 +      void pushBack(const GraphEdge& e) {
   1.329 +	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   1.330 +	  fault("DirPath::Builder::pushBack: nonincident edge");
   1.331 +	}
   1.332 +	back.push_back(e);
   1.333 +      }
   1.334 +
   1.335 +      ///Commit the changes to the path.
   1.336 +      void commit() {
   1.337 +	if( !(front.empty() && back.empty()) ) {
   1.338 +	  Container tmp;
   1.339 +	  tmp.reserve(front.size()+back.size()+P.length());
   1.340 +	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   1.341 +	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   1.342 +	  tmp.insert(tmp.end(), back.begin(), back.end());
   1.343 +	  P.edges.swap(tmp);
   1.344 +	  front.clear();
   1.345 +	  back.clear();
   1.346 +	}
   1.347 +      }
   1.348 +
   1.349 +      // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   1.350 +      // Hogy kenyelmes egy ilyet hasznalni?
   1.351 +  
   1.352 +      ///Reserve storage for the builder in advance.
   1.353 +
   1.354 +      ///If you know an reasonable upper bound of the number of the edges
   1.355 +      ///to add, using this function you can speed up the building.
   1.356 +      void reserve(size_t r) {
   1.357 +	front.reserve(r);
   1.358 +	back.reserve(r);
   1.359 +      }
   1.360 +
   1.361 +    private:
   1.362 +      bool empty() {
   1.363 +	return front.empty() && back.empty() && P.empty();
   1.364 +      }
   1.365 +
   1.366 +      GraphNode from() const {
   1.367 +	if( ! front.empty() )
   1.368 +	  return P.gr->tail(front[front.size()-1]);
   1.369 +	else if( ! P.empty() )
   1.370 +	  return P.gr->tail(P.edges[0]);
   1.371 +	else if( ! back.empty() )
   1.372 +	  return P.gr->tail(back[0]);
   1.373 +	else
   1.374 +	  return INVALID;
   1.375 +      }
   1.376 +      GraphNode to() const {
   1.377 +	if( ! back.empty() )
   1.378 +	  return P.gr->head(back[back.size()-1]);
   1.379 +	else if( ! P.empty() )
   1.380 +	  return P.gr->head(P.edges[P.length()-1]);
   1.381 +	else if( ! front.empty() )
   1.382 +	  return P.gr->head(front[0]);
   1.383 +	else
   1.384 +	  return INVALID;
   1.385 +      }
   1.386 +
   1.387 +    };
   1.388 +
   1.389 +  };
   1.390 +
   1.391 +
   1.392 +
   1.393 +
   1.394 +
   1.395 +
   1.396 +
   1.397 +
   1.398 +
   1.399 +
   1.400 +  /**********************************************************************/
   1.401 +
   1.402 +
   1.403 +  //! \brief A structure for representing undirected path in a graph.
   1.404 +  //!
   1.405 +  //! A structure for representing undirected path in a graph. Ie. this is
   1.406 +  //! a path in a \e directed graph but the edges should not be directed
   1.407 +  //! forward.
   1.408 +  //!
   1.409 +  //! \param Graph The graph type in which the path is.
   1.410 +  //! \param DM DebugMode, defaults to DefaultDebugMode.
   1.411 +  //! 
   1.412 +  //! In a sense, the path can be treated as a graph, for is has \c NodeIt
   1.413 +  //! and \c EdgeIt with the same usage. These types converts to the \c Node
   1.414 +  //! and \c Edge of the original graph.
   1.415 +  //!
   1.416 +  //! \todo Thoroughfully check all the range and consistency tests.
   1.417 +  template<typename Graph, typename DM = DefaultDebugMode>
   1.418 +  class UndirPath {
   1.419 +  public:
   1.420 +    /// Edge type of the underlying graph.
   1.421 +    typedef typename Graph::Edge GraphEdge;
   1.422 +     /// Node type of the underlying graph.
   1.423 +   typedef typename Graph::Node GraphNode;
   1.424 +    class NodeIt;
   1.425 +    class EdgeIt;
   1.426 +
   1.427 +  protected:
   1.428 +    const Graph *gr;
   1.429 +    typedef std::vector<GraphEdge> Container;
   1.430 +    Container edges;
   1.431 +
   1.432 +  public:
   1.433 +
   1.434 +    /// \param _G The graph in which the path is.
   1.435 +    ///
   1.436 +    UndirPath(const Graph &_G) : gr(&_G) {}
   1.437 +
   1.438 +    /// \brief Subpath constructor.
   1.439 +    ///
   1.440 +    /// Subpath defined by two nodes.
   1.441 +    /// \warning It is an error if the two edges are not in order!
   1.442 +    UndirPath(const UndirPath &P, const NodeIt &a, const NodeIt &b) {
   1.443 +      if( DM::range_check && (!a.valid() || !b.valid) ) {
   1.444 +	// FIXME: this check should be more elaborate...
   1.445 +	fault("UndirPath, subpath ctor: invalid bounding nodes");
   1.446 +      }
   1.447 +      gr = P.gr;
   1.448 +      edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   1.449 +    }
   1.450 +
   1.451 +    /// \brief Subpath constructor.
   1.452 +    ///
   1.453 +    /// Subpath defined by two edges. Contains edges in [a,b)
   1.454 +    /// \warning It is an error if the two edges are not in order!
   1.455 +    UndirPath(const UndirPath &P, const EdgeIt &a, const EdgeIt &b) {
   1.456 +      if( DM::range_check && (!a.valid() || !b.valid) ) {
   1.457 +	// FIXME: this check should be more elaborate...
   1.458 +	fault("UndirPath, subpath ctor: invalid bounding nodes");
   1.459 +      }
   1.460 +      gr = P.gr;
   1.461 +      edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   1.462 +    }
   1.463 +
   1.464 +    /// Length of the path.
   1.465 +    size_t length() const { return edges.size(); }
   1.466 +    /// Returns whether the path is empty.
   1.467 +    bool empty() const { return edges.empty(); }
   1.468 +
   1.469 +    /// Resets the path to an empty path.
   1.470 +    void clear() { edges.clear(); }
   1.471 +
   1.472 +    /// \brief Starting point of the path.
   1.473 +    ///
   1.474 +    /// Starting point of the path.
   1.475 +    /// Returns INVALID if the path is empty.
   1.476 +    GraphNode from() const {
   1.477 +      return empty() ? INVALID : gr->tail(edges[0]);
   1.478 +    }
   1.479 +    /// \brief End point of the path.
   1.480 +    ///
   1.481 +    /// End point of the path.
   1.482 +    /// Returns INVALID if the path is empty.
   1.483 +    GraphNode to() const {
   1.484 +      return empty() ? INVALID : gr->head(edges[length()-1]);
   1.485 +    }
   1.486 +
   1.487 +    /// \brief Initializes node or edge iterator to point to the first
   1.488 +    /// node or edge.
   1.489 +    ///
   1.490 +    /// \sa nth
   1.491 +    template<typename It>
   1.492 +    It& first(It &i) const { return i=It(*this); }
   1.493 +
   1.494 +    /// \brief Initializes node iterator to point to the node of a given index.
   1.495 +    NodeIt& nth(NodeIt &i, int n) const {
   1.496 +      if( DM::range_check && (n<0 || n>int(length())) )
   1.497 +	fault("UndirPath::nth: index out of range");
   1.498 +      return i=NodeIt(*this, n);
   1.499 +    }
   1.500 +
   1.501 +    /// \brief Initializes edge iterator to point to the edge of a given index.
   1.502 +    EdgeIt& nth(EdgeIt &i, int n) const {
   1.503 +      if( DM::range_check && (n<0 || n>=int(length())) )
   1.504 +	fault("UndirPath::nth: index out of range");
   1.505 +      return i=EdgeIt(*this, n);
   1.506 +    }
   1.507 +
   1.508 +    /// Checks validity of a node or edge iterator.
   1.509 +    template<typename It>
   1.510 +    static
   1.511 +    bool valid(const It &i) { return i.valid(); }
   1.512 +
   1.513 +    /// Steps the given node or edge iterator.
   1.514 +    template<typename It>
   1.515 +    static
   1.516 +    It& next(It &e) {
   1.517 +      if( DM::range_check && !e.valid() )
   1.518 +	fault("UndirPath::next() on invalid iterator");
   1.519 +      return ++e;
   1.520 +    }
   1.521 +
   1.522 +    /// \brief Returns node iterator pointing to the head node of the
   1.523 +    /// given edge iterator.
   1.524 +    NodeIt head(const EdgeIt& e) const {
   1.525 +      if( DM::range_check && !e.valid() )
   1.526 +	fault("UndirPath::head() on invalid iterator");
   1.527 +      return NodeIt(*this, e.idx+1);
   1.528 +    }
   1.529 +
   1.530 +    /// \brief Returns node iterator pointing to the tail node of the
   1.531 +    /// given edge iterator.
   1.532 +    NodeIt tail(const EdgeIt& e) const {
   1.533 +      if( DM::range_check && !e.valid() )
   1.534 +	fault("UndirPath::tail() on invalid iterator");
   1.535 +      return NodeIt(*this, e.idx);
   1.536 +    }
   1.537 +
   1.538 +
   1.539 +
   1.540 +    /**
   1.541 +     * \brief Iterator class to iterate on the edges of the paths
   1.542 +     * 
   1.543 +     * \ingroup paths
   1.544 +     * This class is used to iterate on the edges of the paths
   1.545 +     *
   1.546 +     * Of course it converts to Graph::Edge
   1.547 +     * 
   1.548 +     * \todo Its interface differs from the standard edge iterator.
   1.549 +     * Yes, it shouldn't.
   1.550 +     */
   1.551 +    class EdgeIt {
   1.552 +      friend class UndirPath;
   1.553 +
   1.554 +      int idx;
   1.555 +      const UndirPath *p;
   1.556 +    public:
   1.557 +      /// Default constructor
   1.558 +      EdgeIt() {}
   1.559 +      /// Invalid constructor
   1.560 +      EdgeIt(Invalid) : idx(-1), p(0) {}
   1.561 +      /// Constructor with starting point
   1.562 +      EdgeIt(const UndirPath &_p, int _idx = 0) :
   1.563 +	idx(_idx), p(&_p) { validate(); }
   1.564 +
   1.565 +      ///Validity check
   1.566 +      bool valid() const { return idx!=-1; }
   1.567 +
   1.568 +      ///Conversion to Graph::Edge
   1.569 +      operator GraphEdge () const {
   1.570 +	return valid() ? p->edges[idx] : INVALID;
   1.571 +      }
   1.572 +      /// Next edge
   1.573 +     EdgeIt& operator++() { ++idx; validate(); return *this; }
   1.574 +
   1.575 +      /// Comparison operator
   1.576 +      bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   1.577 +      /// Comparison operator
   1.578 +      bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   1.579 +      /// Comparison operator
   1.580 +      bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   1.581 +
   1.582 +    private:
   1.583 +      // FIXME: comparison between signed and unsigned...
   1.584 +      // Jo ez igy? Vagy esetleg legyen a length() int?
   1.585 +      void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   1.586 +    };
   1.587 +
   1.588 +    /**
   1.589 +     * \brief Iterator class to iterate on the nodes of the paths
   1.590 +     * 
   1.591 +     * \ingroup paths
   1.592 +     * This class is used to iterate on the nodes of the paths
   1.593 +     *
   1.594 +     * Of course it converts to Graph::Node
   1.595 +     * 
   1.596 +     * \todo Its interface differs from the standard node iterator.
   1.597 +     * Yes, it shouldn't.
   1.598 +     */
   1.599 +    class NodeIt {
   1.600 +      friend class UndirPath;
   1.601 +
   1.602 +      int idx;
   1.603 +      const UndirPath *p;
   1.604 +    public:
   1.605 +      /// Default constructor
   1.606 +      NodeIt() {}
   1.607 +      /// Invalid constructor
   1.608 +      NodeIt(Invalid) : idx(-1), p(0) {}
   1.609 +      /// Constructor with starting point
   1.610 +      NodeIt(const UndirPath &_p, int _idx = 0) :
   1.611 +	idx(_idx), p(&_p) { validate(); }
   1.612 +
   1.613 +      ///Validity check
   1.614 +      bool valid() const { return idx!=-1; }
   1.615 +
   1.616 +      ///Conversion to Graph::Node
   1.617 +      operator const GraphNode& () const {
   1.618 +	if(idx >= p->length())
   1.619 +	  return p->to();
   1.620 +	else if(idx >= 0)
   1.621 +	  return p->gr->tail(p->edges[idx]);
   1.622 +	else
   1.623 +	  return INVALID;
   1.624 +      }
   1.625 +      /// Next node
   1.626 +      NodeIt& operator++() { ++idx; validate(); return *this; }
   1.627 +
   1.628 +      /// Comparison operator
   1.629 +      bool operator==(const NodeIt& e) const { return idx==e.idx; }
   1.630 +      /// Comparison operator
   1.631 +      bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   1.632 +       /// Comparison operator
   1.633 +     bool operator<(const NodeIt& e) const { return idx<e.idx; }
   1.634 +
   1.635 +    private:
   1.636 +      void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   1.637 +    };
   1.638 +
   1.639 +    friend class Builder;    
   1.640 +
   1.641 +    /**
   1.642 +     * \brief Class to build paths
   1.643 +     * 
   1.644 +     * \ingroup paths
   1.645 +     * This class is used to fill a path with edges.
   1.646 +     *
   1.647 +     * You can push new edges to the front and to the back of the path in
   1.648 +     * arbitrary order then you should commit these changes to the graph.
   1.649 +     *
   1.650 +     * Fundamentally, for most "Paths" (classes fulfilling the
   1.651 +     * PathConcept) while the builder is active (after the first modifying
   1.652 +     * operation and until the commit()) the original Path is in a
   1.653 +     * "transitional" state (operations ot it have undefined result). But
   1.654 +     * in the case of UndirPath the original path is unchanged until the
   1.655 +     * commit. However we don't recomend that you use this feature.
   1.656 +     */
   1.657 +    class Builder {
   1.658 +      UndirPath &P;
   1.659 +      Container front, back;
   1.660 +
   1.661 +    public:
   1.662 +      ///\param _P the path you want to fill in.
   1.663 +      ///
   1.664 +      Builder(UndirPath &_P) : P(_P) {}
   1.665 +
   1.666 +      /// Sets the starting node of the path.
   1.667 +      
   1.668 +      /// Sets the starting node of the path. Edge added to the path
   1.669 +      /// afterwards have to be incident to this node.
   1.670 +      /// It should be called iff the path is empty and before any call to
   1.671 +      /// \ref pushFront() or \ref pushBack()
   1.672 +      void setStartNode(const GraphNode &) {}
   1.673 +
   1.674 +      ///Push a new edge to the front of the path
   1.675 +
   1.676 +      ///Push a new edge to the front of the path.
   1.677 +      ///\sa setStartNode
   1.678 +      void pushFront(const GraphEdge& e) {
   1.679 +	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   1.680 +	  fault("UndirPath::Builder::pushFront: nonincident edge");
   1.681 +	}
   1.682 +	front.push_back(e);
   1.683 +      }
   1.684 +
   1.685 +      ///Push a new edge to the back of the path
   1.686 +
   1.687 +      ///Push a new edge to the back of the path.
   1.688 +      ///\sa setStartNode
   1.689 +      void pushBack(const GraphEdge& e) {
   1.690 +	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   1.691 +	  fault("UndirPath::Builder::pushBack: nonincident edge");
   1.692 +	}
   1.693 +	back.push_back(e);
   1.694 +      }
   1.695 +
   1.696 +      ///Commit the changes to the path.
   1.697 +      void commit() {
   1.698 +	if( !(front.empty() && back.empty()) ) {
   1.699 +	  Container tmp;
   1.700 +	  tmp.reserve(front.size()+back.size()+P.length());
   1.701 +	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   1.702 +	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   1.703 +	  tmp.insert(tmp.end(), back.begin(), back.end());
   1.704 +	  P.edges.swap(tmp);
   1.705 +	  front.clear();
   1.706 +	  back.clear();
   1.707 +	}
   1.708 +      }
   1.709 +
   1.710 +      // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   1.711 +      // Hogy kenyelmes egy ilyet hasznalni?
   1.712 +
   1.713 +      ///Reserve storage for the builder in advance.
   1.714 +
   1.715 +      ///If you know an reasonable upper bound of the number of the edges
   1.716 +      ///to add, using this function you can speed up the building.
   1.717 +       void reserve(size_t r) {
   1.718 +	front.reserve(r);
   1.719 +	back.reserve(r);
   1.720 +      }
   1.721 +
   1.722 +    private:
   1.723 +      bool empty() {
   1.724 +	return front.empty() && back.empty() && P.empty();
   1.725 +      }
   1.726 +
   1.727 +      GraphNode from() const {
   1.728 +	if( ! front.empty() )
   1.729 +	  return P.gr->tail(front[front.size()-1]);
   1.730 +	else if( ! P.empty() )
   1.731 +	  return P.gr->tail(P.edges[0]);
   1.732 +	else if( ! back.empty() )
   1.733 +	  return P.gr->tail(back[0]);
   1.734 +	else
   1.735 +	  return INVALID;
   1.736 +      }
   1.737 +      GraphNode to() const {
   1.738 +	if( ! back.empty() )
   1.739 +	  return P.gr->head(back[back.size()-1]);
   1.740 +	else if( ! P.empty() )
   1.741 +	  return P.gr->head(P.edges[P.length()-1]);
   1.742 +	else if( ! front.empty() )
   1.743 +	  return P.gr->head(front[0]);
   1.744 +	else
   1.745 +	  return INVALID;
   1.746 +      }
   1.747 +
   1.748 +    };
   1.749 +
   1.750 +  };
   1.751 +
   1.752 +
   1.753 +
   1.754 +
   1.755 +
   1.756 +
   1.757 +
   1.758 +
   1.759 +
   1.760 +
   1.761 +  /**********************************************************************/
   1.762 +
   1.763 +
   1.764 +  /* Ennek az allocatorosdinak sokkal jobban utana kene nezni a hasznalata
   1.765 +     elott. Eleg bonyinak nez ki, ahogyan azokat az STL-ben hasznaljak. */
   1.766 +
   1.767 +  template<typename Graph>
   1.768 +  class DynamicPath {
   1.769 +
   1.770 +  public:
   1.771 +    typedef typename Graph::Edge GraphEdge;
   1.772 +    typedef typename Graph::Node GraphNode;
   1.773 +    class NodeIt;
   1.774 +    class EdgeIt;
   1.775 +
   1.776 +  protected:
   1.777 +    Graph& G;
   1.778 +    // FIXME: ehelyett eleg lenne tarolni ket boolt: a ket szelso el
   1.779 +    // iranyitasat:
   1.780 +    GraphNode _first, _last;
   1.781 +    typedef std::deque<GraphEdge> Container;
   1.782 +    Container edges;
   1.783 +
   1.784 +  public:
   1.785 +
   1.786 +    DynamicPath(Graph &_G) : G(_G), _first(INVALID), _last(INVALID) {}
   1.787 +
   1.788 +    /// Subpath defined by two nodes.
   1.789 +    /// Nodes may be in reversed order, then
   1.790 +    /// we contstruct the reversed path.
   1.791 +    DynamicPath(const DynamicPath &P, const NodeIt &a, const NodeIt &b);
   1.792 +    /// Subpath defined by two edges. Contains edges in [a,b)
   1.793 +    /// It is an error if the two edges are not in order!
   1.794 +    DynamicPath(const DynamicPath &P, const EdgeIt &a, const EdgeIt &b);
   1.795 +    
   1.796 +    size_t length() const { return edges.size(); }
   1.797 +    GraphNode from() const { return _first; }
   1.798 +    GraphNode to() const { return _last; }
   1.799 +
   1.800 +    NodeIt& first(NodeIt &n) const { return nth(n, 0); }
   1.801 +    EdgeIt& first(EdgeIt &e) const { return nth(e, 0); }
   1.802 +    template<typename It>
   1.803 +    It first() const { 
   1.804 +      It e;
   1.805 +      first(e);
   1.806 +      return e; 
   1.807 +    }
   1.808 +
   1.809 +    NodeIt& nth(NodeIt &, size_t) const;
   1.810 +    EdgeIt& nth(EdgeIt &, size_t) const;
   1.811 +    template<typename It>
   1.812 +    It nth(size_t n) const { 
   1.813 +      It e;
   1.814 +      nth(e, n);
   1.815 +      return e; 
   1.816 +    }
   1.817 +
   1.818 +    bool valid(const NodeIt &n) const { return n.idx <= length(); }
   1.819 +    bool valid(const EdgeIt &e) const { return e.it < edges.end(); }
   1.820 +
   1.821 +    bool isForward(const EdgeIt &e) const { return e.forw; }
   1.822 +
   1.823 +    /// index of a node on the path. Returns length+2 for the invalid NodeIt
   1.824 +    int index(const NodeIt &n) const { return n.idx; }
   1.825 +    /// index of an edge on the path. Returns length+1 for the invalid EdgeIt
   1.826 +    int index(const EdgeIt &e) const { return e.it - edges.begin(); }
   1.827 +
   1.828 +    EdgeIt& next(EdgeIt &e) const;
   1.829 +    NodeIt& next(NodeIt &n) const;
   1.830 +    template <typename It>
   1.831 +    It getNext(It it) const {
   1.832 +      It tmp(it); return next(tmp);
   1.833 +    }
   1.834 +
   1.835 +    // A path is constructed using the following four functions.
   1.836 +    // They return false if the requested operation is inconsistent
   1.837 +    // with the path constructed so far.
   1.838 +    // If your path has only one edge you MUST set either "from" or "to"!
   1.839 +    // So you probably SHOULD call it in any case to be safe (and check the
   1.840 +    // returned value to check if your path is consistent with your idea).
   1.841 +    bool pushFront(const GraphEdge &e);
   1.842 +    bool pushBack(const GraphEdge &e);
   1.843 +    bool setFrom(const GraphNode &n);
   1.844 +    bool setTo(const GraphNode &n);
   1.845 +
   1.846 +    // WARNING: these two functions return the head/tail of an edge with
   1.847 +    // respect to the direction of the path!
   1.848 +    // So G.head(P.graphEdge(e)) == P.graphNode(P.head(e)) holds only if 
   1.849 +    // P.forward(e) is true (or the edge is a loop)!
   1.850 +    NodeIt head(const EdgeIt& e) const;
   1.851 +    NodeIt tail(const EdgeIt& e) const;
   1.852 +
   1.853 +    // FIXME: ezeknek valami jobb nev kellene!!!
   1.854 +    GraphEdge graphEdge(const EdgeIt& e) const;
   1.855 +    GraphNode graphNode(const NodeIt& n) const;
   1.856 +
   1.857 +
   1.858 +    /*** Iterator classes ***/
   1.859 +    class EdgeIt {
   1.860 +      friend class DynamicPath;
   1.861 +
   1.862 +      typename Container::const_iterator it;
   1.863 +      bool forw;
   1.864 +    public:
   1.865 +      // FIXME: jarna neki ilyen is...
   1.866 +      // EdgeIt(Invalid);
   1.867 +
   1.868 +      bool forward() const { return forw; }
   1.869 +
   1.870 +      bool operator==(const EdgeIt& e) const { return it==e.it; }
   1.871 +      bool operator!=(const EdgeIt& e) const { return it!=e.it; }
   1.872 +      bool operator<(const EdgeIt& e) const { return it<e.it; }
   1.873 +    };
   1.874 +
   1.875 +    class NodeIt {
   1.876 +      friend class DynamicPath;
   1.877 +
   1.878 +      size_t idx;
   1.879 +      bool tail;  // Is this node the tail of the edge with same idx?
   1.880 +
   1.881 +    public:
   1.882 +      // FIXME: jarna neki ilyen is...
   1.883 +      // NodeIt(Invalid);
   1.884 +
   1.885 +      bool operator==(const NodeIt& n) const { return idx==n.idx; }
   1.886 +      bool operator!=(const NodeIt& n) const { return idx!=n.idx; }
   1.887 +      bool operator<(const NodeIt& n) const { return idx<n.idx; }
   1.888 +    };
   1.889 +
   1.890 +  private:
   1.891 +    bool edgeIncident(const GraphEdge &e, const GraphNode &a,
   1.892 +		      GraphNode &b);
   1.893 +    bool connectTwoEdges(const GraphEdge &e, const GraphEdge &f);
   1.894 +  };
   1.895 +
   1.896 +  template<typename Gr>
   1.897 +  typename DynamicPath<Gr>::EdgeIt&
   1.898 +  DynamicPath<Gr>::next(DynamicPath::EdgeIt &e) const {
   1.899 +    if( e.it == edges.end() ) 
   1.900 +      return e;
   1.901 +
   1.902 +    GraphNode common_node = ( e.forw ? G.head(*e.it) : G.tail(*e.it) );
   1.903 +    ++e.it;
   1.904 +
   1.905 +    // Invalid edgeit is always forward :)
   1.906 +    if( e.it == edges.end() ) {
   1.907 +      e.forw = true;
   1.908 +      return e;
   1.909 +    }
   1.910 +
   1.911 +    e.forw = ( G.tail(*e.it) == common_node );
   1.912 +    return e;
   1.913 +  }
   1.914 +
   1.915 +  template<typename Gr>
   1.916 +  typename DynamicPath<Gr>::NodeIt& DynamicPath<Gr>::next(NodeIt &n) const {
   1.917 +    if( n.idx >= length() ) {
   1.918 +      // FIXME: invalid
   1.919 +      n.idx = length()+1;
   1.920 +      return n;
   1.921 +    }
   1.922 +
   1.923 +    
   1.924 +    GraphNode next_node = ( n.tail ? G.head(edges[n.idx]) :
   1.925 +			      G.tail(edges[n.idx]) );
   1.926 +    ++n.idx;
   1.927 +    if( n.idx < length() ) {
   1.928 +      n.tail = ( next_node == G.tail(edges[n.idx]) );
   1.929 +    }
   1.930 +    else {
   1.931 +      n.tail = true;
   1.932 +    }
   1.933 +
   1.934 +    return n;
   1.935 +  }
   1.936 +
   1.937 +  template<typename Gr>
   1.938 +  bool DynamicPath<Gr>::edgeIncident(const GraphEdge &e, const GraphNode &a,
   1.939 +			  GraphNode &b) {
   1.940 +    if( G.tail(e) == a ) {
   1.941 +      b=G.head(e);
   1.942 +      return true;
   1.943 +    }
   1.944 +    if( G.head(e) == a ) {
   1.945 +      b=G.tail(e);
   1.946 +      return true;
   1.947 +    }
   1.948 +    return false;
   1.949 +  }
   1.950 +
   1.951 +  template<typename Gr>
   1.952 +  bool DynamicPath<Gr>::connectTwoEdges(const GraphEdge &e,
   1.953 +			     const GraphEdge &f) {
   1.954 +    if( edgeIncident(f, G.tail(e), _last) ) {
   1.955 +      _first = G.head(e);
   1.956 +      return true;
   1.957 +    }
   1.958 +    if( edgeIncident(f, G.head(e), _last) ) {
   1.959 +      _first = G.tail(e);
   1.960 +      return true;
   1.961 +    }
   1.962 +    return false;
   1.963 +  }
   1.964 +
   1.965 +  template<typename Gr>
   1.966 +  bool DynamicPath<Gr>::pushFront(const GraphEdge &e) {
   1.967 +    if( G.valid(_first) ) {
   1.968 +	if( edgeIncident(e, _first, _first) ) {
   1.969 +	  edges.push_front(e);
   1.970 +	  return true;
   1.971 +	}
   1.972 +	else
   1.973 +	  return false;
   1.974 +    }
   1.975 +    else if( length() < 1 || connectTwoEdges(e, edges[0]) ) {
   1.976 +      edges.push_front(e);
   1.977 +      return true;
   1.978 +    }
   1.979 +    else
   1.980 +      return false;
   1.981 +  }
   1.982 +
   1.983 +  template<typename Gr>
   1.984 +  bool DynamicPath<Gr>::pushBack(const GraphEdge &e) {
   1.985 +    if( G.valid(_last) ) {
   1.986 +	if( edgeIncident(e, _last, _last) ) {
   1.987 +	  edges.push_back(e);
   1.988 +	  return true;
   1.989 +	}
   1.990 +	else
   1.991 +	  return false;
   1.992 +    }
   1.993 +    else if( length() < 1 || connectTwoEdges(edges[0], e) ) {
   1.994 +      edges.push_back(e);
   1.995 +      return true;
   1.996 +    }
   1.997 +    else
   1.998 +      return false;
   1.999 +  }
  1.1000 +
  1.1001 +
  1.1002 +  template<typename Gr>
  1.1003 +  bool DynamicPath<Gr>::setFrom(const GraphNode &n) {
  1.1004 +    if( G.valid(_first) ) {
  1.1005 +      return _first == n;
  1.1006 +    }
  1.1007 +    else {
  1.1008 +      if( length() > 0) {
  1.1009 +	if( edgeIncident(edges[0], n, _last) ) {
  1.1010 +	  _first = n;
  1.1011 +	  return true;
  1.1012 +	}
  1.1013 +	else return false;
  1.1014 +      }
  1.1015 +      else {
  1.1016 +	_first = _last = n;
  1.1017 +	return true;
  1.1018 +      }
  1.1019 +    }
  1.1020 +  }
  1.1021 +
  1.1022 +  template<typename Gr>
  1.1023 +  bool DynamicPath<Gr>::setTo(const GraphNode &n) {
  1.1024 +    if( G.valid(_last) ) {
  1.1025 +      return _last == n;
  1.1026 +    }
  1.1027 +    else {
  1.1028 +      if( length() > 0) {
  1.1029 +	if( edgeIncident(edges[0], n, _first) ) {
  1.1030 +	  _last = n;
  1.1031 +	  return true;
  1.1032 +	}
  1.1033 +	else return false;
  1.1034 +      }
  1.1035 +      else {
  1.1036 +	_first = _last = n;
  1.1037 +	return true;
  1.1038 +      }
  1.1039 +    }
  1.1040 +  }
  1.1041 +
  1.1042 +
  1.1043 +  template<typename Gr>
  1.1044 +  typename DynamicPath<Gr>::NodeIt
  1.1045 +  DynamicPath<Gr>::tail(const EdgeIt& e) const {
  1.1046 +    NodeIt n;
  1.1047 +
  1.1048 +    if( e.it == edges.end() ) {
  1.1049 +      // FIXME: invalid-> invalid
  1.1050 +      n.idx = length() + 1;
  1.1051 +      n.tail = true;
  1.1052 +      return n;
  1.1053 +    }
  1.1054 +
  1.1055 +    n.idx = e.it-edges.begin();
  1.1056 +    n.tail = e.forw;
  1.1057 +    return n;
  1.1058 +  }
  1.1059 +
  1.1060 +  template<typename Gr>
  1.1061 +  typename DynamicPath<Gr>::NodeIt
  1.1062 +  DynamicPath<Gr>::head(const EdgeIt& e) const {
  1.1063 +    if( e.it == edges.end()-1 ) {
  1.1064 +      return _last;
  1.1065 +    }
  1.1066 +
  1.1067 +    EdgeIt next_edge = e;
  1.1068 +    next(next_edge);
  1.1069 +    return tail(next_edge);
  1.1070 +  }
  1.1071 +      
  1.1072 +  template<typename Gr>
  1.1073 +  typename DynamicPath<Gr>::GraphEdge
  1.1074 +  DynamicPath<Gr>::graphEdge(const EdgeIt& e) const {
  1.1075 +    if( e.it != edges.end() ) {
  1.1076 +      return *e.it;
  1.1077 +    }
  1.1078 +    else {
  1.1079 +      return INVALID;
  1.1080 +    }
  1.1081 +  }
  1.1082 +  
  1.1083 +  template<typename Gr>
  1.1084 +  typename DynamicPath<Gr>::GraphNode
  1.1085 +  DynamicPath<Gr>::graphNode(const NodeIt& n) const {
  1.1086 +    if( n.idx < length() ) {
  1.1087 +      return n.tail ? G.tail(edges[n.idx]) : G.head(edges[n.idx]);
  1.1088 +    }
  1.1089 +    else if( n.idx == length() ) {
  1.1090 +      return _last;
  1.1091 +    }
  1.1092 +    else {
  1.1093 +      return INVALID;
  1.1094 +    }
  1.1095 +  }
  1.1096 +
  1.1097 +  template<typename Gr>
  1.1098 +  typename DynamicPath<Gr>::EdgeIt&
  1.1099 +  DynamicPath<Gr>::nth(EdgeIt &e, size_t k) const {
  1.1100 +    if( k>=length() ) {
  1.1101 +      // FIXME: invalid EdgeIt
  1.1102 +      e.it = edges.end();
  1.1103 +      e.forw = true;
  1.1104 +      return e;
  1.1105 +    }
  1.1106 +
  1.1107 +    e.it = edges.begin()+k;
  1.1108 +    if(k==0) {
  1.1109 +      e.forw = ( G.tail(*e.it) == _first );
  1.1110 +    }
  1.1111 +    else {
  1.1112 +      e.forw = ( G.tail(*e.it) == G.tail(edges[k-1]) ||
  1.1113 +		 G.tail(*e.it) == G.head(edges[k-1]) );
  1.1114 +    }
  1.1115 +    return e;
  1.1116 +  }
  1.1117 +    
  1.1118 +  template<typename Gr>
  1.1119 +  typename DynamicPath<Gr>::NodeIt&
  1.1120 +  DynamicPath<Gr>::nth(NodeIt &n, size_t k) const {
  1.1121 +    if( k>length() ) {
  1.1122 +      // FIXME: invalid NodeIt
  1.1123 +      n.idx = length()+1;
  1.1124 +      n.tail = true;
  1.1125 +      return n;
  1.1126 +    }
  1.1127 +    if( k==length() ) {
  1.1128 +      n.idx = length();
  1.1129 +      n.tail = true;
  1.1130 +      return n;
  1.1131 +    }
  1.1132 +    n = tail(nth<EdgeIt>(k));
  1.1133 +    return n;
  1.1134 +  }
  1.1135 +
  1.1136 +  // Reszut konstruktorok:
  1.1137 +
  1.1138 +
  1.1139 +  template<typename Gr>
  1.1140 +  DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const EdgeIt &a,
  1.1141 +			       const EdgeIt &b) :
  1.1142 +    G(P.G), edges(a.it, b.it)    // WARNING: if b.it < a.it this will blow up! 
  1.1143 +  {
  1.1144 +    if( G.valid(P._first) && a.it < P.edges.end() ) {
  1.1145 +      _first = ( a.forw ? G.tail(*a.it) : G.head(*a.it) );
  1.1146 +      if( b.it < P.edges.end() ) {
  1.1147 +	_last = ( b.forw ? G.tail(*b.it) : G.head(*b.it) );
  1.1148 +      }
  1.1149 +      else {
  1.1150 +	_last = P._last;
  1.1151 +      }
  1.1152 +    }
  1.1153 +  }
  1.1154 +
  1.1155 +  template<typename Gr>
  1.1156 +  DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const NodeIt &a,
  1.1157 +			       const NodeIt &b) : G(P.G)
  1.1158 +  {
  1.1159 +    if( !P.valid(a) || !P.valid(b) )
  1.1160 +      return;
  1.1161 +
  1.1162 +    int ai = a.idx, bi = b.idx;
  1.1163 +    if( bi<ai )
  1.1164 +      std::swap(ai,bi);
  1.1165 +    
  1.1166 +    edges.resize(bi-ai);
  1.1167 +    copy(P.edges.begin()+ai, P.edges.begin()+bi, edges.begin());
  1.1168 +
  1.1169 +    _first = P.graphNode(a);
  1.1170 +    _last = P.graphNode(b);
  1.1171 +  }
  1.1172 +
  1.1173 +  ///@}
  1.1174 +
  1.1175 +} // namespace hugo
  1.1176 +
  1.1177 +#endif // HUGO_PATH_H