The new dijkstra.h comes in the next commit.
authoralpar
Sun, 06 Feb 2005 20:08:25 +0000
changeset 1131425731cb66de
parent 1130 47ef467ccf70
child 1132 ab5c81fcc31a
The new dijkstra.h comes in the next commit.
src/lemon/dijkstra.h
     1.1 --- a/src/lemon/dijkstra.h	Sun Feb 06 20:00:56 2005 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,344 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_DIJKSTRA_H
    1.21 -#define LEMON_DIJKSTRA_H
    1.22 -
    1.23 -///\ingroup flowalgs
    1.24 -///\file
    1.25 -///\brief Dijkstra algorithm.
    1.26 -
    1.27 -#include <lemon/bin_heap.h>
    1.28 -#include <lemon/invalid.h>
    1.29 -
    1.30 -namespace lemon {
    1.31 -
    1.32 -/// \addtogroup flowalgs
    1.33 -/// @{
    1.34 -
    1.35 -  ///%Dijkstra algorithm class.
    1.36 -
    1.37 -  ///This class provides an efficient implementation of %Dijkstra algorithm.
    1.38 -  ///The edge lengths are passed to the algorithm using a
    1.39 -  ///\ref concept::ReadMap "ReadMap",
    1.40 -  ///so it is easy to change it to any kind of length.
    1.41 -  ///
    1.42 -  ///The type of the length is determined by the
    1.43 -  ///\ref concept::ReadMap::Value "Value" of the length map.
    1.44 -  ///
    1.45 -  ///It is also possible to change the underlying priority heap.
    1.46 -  ///
    1.47 -  ///\param GR The graph type the algorithm runs on.
    1.48 -  ///\param LM This read-only
    1.49 -  ///EdgeMap
    1.50 -  ///determines the
    1.51 -  ///lengths of the edges. It is read once for each edge, so the map
    1.52 -  ///may involve in relatively time consuming process to compute the edge
    1.53 -  ///length if it is necessary. The default map type is
    1.54 -  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>"
    1.55 -  ///\param Heap The heap type used by the %Dijkstra
    1.56 -  ///algorithm. The default
    1.57 -  ///is using \ref BinHeap "binary heap".
    1.58 -  ///
    1.59 -  ///\author Jacint Szabo and Alpar Juttner
    1.60 -  ///\todo We need a typedef-names should be standardized. (-:
    1.61 -  ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
    1.62 -  ///should not be fixed. (Problematic to solve).
    1.63 -
    1.64 -#ifdef DOXYGEN
    1.65 -  template <typename GR,
    1.66 -	    typename LM,
    1.67 -	    typename Heap>
    1.68 -#else
    1.69 -  template <typename GR,
    1.70 -	    typename LM=typename GR::template EdgeMap<int>,
    1.71 -	    template <class,class,class,class> class Heap = BinHeap >
    1.72 -#endif
    1.73 -  class Dijkstra{
    1.74 -  public:
    1.75 -    ///The type of the underlying graph.
    1.76 -    typedef GR Graph;
    1.77 -    ///\e
    1.78 -    typedef typename Graph::Node Node;
    1.79 -    ///\e
    1.80 -    typedef typename Graph::NodeIt NodeIt;
    1.81 -    ///\e
    1.82 -    typedef typename Graph::Edge Edge;
    1.83 -    ///\e
    1.84 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.85 -    
    1.86 -    ///The type of the length of the edges.
    1.87 -    typedef typename LM::Value Value;
    1.88 -    ///The type of the map that stores the edge lengths.
    1.89 -    typedef LM LengthMap;
    1.90 -    ///\brief The type of the map that stores the last
    1.91 -    ///edges of the shortest paths.
    1.92 -    typedef typename Graph::template NodeMap<Edge> PredMap;
    1.93 -    ///\brief The type of the map that stores the last but one
    1.94 -    ///nodes of the shortest paths.
    1.95 -    typedef typename Graph::template NodeMap<Node> PredNodeMap;
    1.96 -    ///The type of the map that stores the dists of the nodes.
    1.97 -    typedef typename Graph::template NodeMap<Value> DistMap;
    1.98 -
    1.99 -  private:
   1.100 -    /// Pointer to the underlying graph.
   1.101 -    const Graph *G;
   1.102 -    /// Pointer to the length map
   1.103 -    const LM *length;
   1.104 -    ///Pointer to the map of predecessors edges.
   1.105 -    PredMap *predecessor;
   1.106 -    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
   1.107 -    bool local_predecessor;
   1.108 -    ///Pointer to the map of predecessors nodes.
   1.109 -    PredNodeMap *pred_node;
   1.110 -    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
   1.111 -    bool local_pred_node;
   1.112 -    ///Pointer to the map of distances.
   1.113 -    DistMap *distance;
   1.114 -    ///Indicates if \ref distance is locally allocated (\c true) or not.
   1.115 -    bool local_distance;
   1.116 -
   1.117 -    ///The source node of the last execution.
   1.118 -    Node source;
   1.119 -
   1.120 -    ///Initializes the maps.
   1.121 -    
   1.122 -    ///\todo Error if \c G or are \c NULL. What about \c length?
   1.123 -    ///\todo Better memory allocation (instead of new).
   1.124 -    void init_maps() 
   1.125 -    {
   1.126 -      if(!predecessor) {
   1.127 -	local_predecessor = true;
   1.128 -	predecessor = new PredMap(*G);
   1.129 -      }
   1.130 -      if(!pred_node) {
   1.131 -	local_pred_node = true;
   1.132 -	pred_node = new PredNodeMap(*G);
   1.133 -      }
   1.134 -      if(!distance) {
   1.135 -	local_distance = true;
   1.136 -	distance = new DistMap(*G);
   1.137 -      }
   1.138 -    }
   1.139 -    
   1.140 -  public :
   1.141 -    ///Constructor.
   1.142 -    
   1.143 -    ///\param _G the graph the algorithm will run on.
   1.144 -    ///\param _length the length map used by the algorithm.
   1.145 -    Dijkstra(const Graph& _G, const LM& _length) :
   1.146 -      G(&_G), length(&_length),
   1.147 -      predecessor(NULL), local_predecessor(false),
   1.148 -      pred_node(NULL), local_pred_node(false),
   1.149 -      distance(NULL), local_distance(false)
   1.150 -    { }
   1.151 -    
   1.152 -    ///Destructor.
   1.153 -    ~Dijkstra() 
   1.154 -    {
   1.155 -      if(local_predecessor) delete predecessor;
   1.156 -      if(local_pred_node) delete pred_node;
   1.157 -      if(local_distance) delete distance;
   1.158 -    }
   1.159 -
   1.160 -    ///Sets the length map.
   1.161 -
   1.162 -    ///Sets the length map.
   1.163 -    ///\return <tt> (*this) </tt>
   1.164 -    Dijkstra &setLengthMap(const LM &m) 
   1.165 -    {
   1.166 -      length = &m;
   1.167 -      return *this;
   1.168 -    }
   1.169 -
   1.170 -    ///Sets the map storing the predecessor edges.
   1.171 -
   1.172 -    ///Sets the map storing the predecessor edges.
   1.173 -    ///If you don't use this function before calling \ref run(),
   1.174 -    ///it will allocate one. The destuctor deallocates this
   1.175 -    ///automatically allocated map, of course.
   1.176 -    ///\return <tt> (*this) </tt>
   1.177 -    Dijkstra &setPredMap(PredMap &m) 
   1.178 -    {
   1.179 -      if(local_predecessor) {
   1.180 -	delete predecessor;
   1.181 -	local_predecessor=false;
   1.182 -      }
   1.183 -      predecessor = &m;
   1.184 -      return *this;
   1.185 -    }
   1.186 -
   1.187 -    ///Sets the map storing the predecessor nodes.
   1.188 -
   1.189 -    ///Sets the map storing the predecessor nodes.
   1.190 -    ///If you don't use this function before calling \ref run(),
   1.191 -    ///it will allocate one. The destuctor deallocates this
   1.192 -    ///automatically allocated map, of course.
   1.193 -    ///\return <tt> (*this) </tt>
   1.194 -    Dijkstra &setPredNodeMap(PredNodeMap &m) 
   1.195 -    {
   1.196 -      if(local_pred_node) {
   1.197 -	delete pred_node;
   1.198 -	local_pred_node=false;
   1.199 -      }
   1.200 -      pred_node = &m;
   1.201 -      return *this;
   1.202 -    }
   1.203 -
   1.204 -    ///Sets the map storing the distances calculated by the algorithm.
   1.205 -
   1.206 -    ///Sets the map storing the distances calculated by the algorithm.
   1.207 -    ///If you don't use this function before calling \ref run(),
   1.208 -    ///it will allocate one. The destuctor deallocates this
   1.209 -    ///automatically allocated map, of course.
   1.210 -    ///\return <tt> (*this) </tt>
   1.211 -    Dijkstra &setDistMap(DistMap &m) 
   1.212 -    {
   1.213 -      if(local_distance) {
   1.214 -	delete distance;
   1.215 -	local_distance=false;
   1.216 -      }
   1.217 -      distance = &m;
   1.218 -      return *this;
   1.219 -    }
   1.220 -    
   1.221 -  ///Runs %Dijkstra algorithm from node \c s.
   1.222 -
   1.223 -  ///This method runs the %Dijkstra algorithm from a root node \c s
   1.224 -  ///in order to
   1.225 -  ///compute the
   1.226 -  ///shortest path to each node. The algorithm computes
   1.227 -  ///- The shortest path tree.
   1.228 -  ///- The distance of each node from the root.
   1.229 -    
   1.230 -    void run(Node s) {
   1.231 -      
   1.232 -      init_maps();
   1.233 -      
   1.234 -      source = s;
   1.235 -      
   1.236 -      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   1.237 -	predecessor->set(u,INVALID);
   1.238 -	pred_node->set(u,INVALID);
   1.239 -      }
   1.240 -      
   1.241 -      typename GR::template NodeMap<int> heap_map(*G,-1);
   1.242 -      
   1.243 -      typedef Heap<Node, Value, typename GR::template NodeMap<int>,
   1.244 -      std::less<Value> > 
   1.245 -      HeapType;
   1.246 -      
   1.247 -      HeapType heap(heap_map);
   1.248 -      
   1.249 -      heap.push(s,0); 
   1.250 -      
   1.251 -      while ( !heap.empty() ) {
   1.252 -	
   1.253 -	Node v=heap.top(); 
   1.254 -	Value oldvalue=heap[v];
   1.255 -	heap.pop();
   1.256 -	distance->set(v, oldvalue);
   1.257 -	
   1.258 -	
   1.259 -	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   1.260 -	  Node w=G->target(e); 
   1.261 -	  switch(heap.state(w)) {
   1.262 -	  case HeapType::PRE_HEAP:
   1.263 -	    heap.push(w,oldvalue+(*length)[e]); 
   1.264 -	    predecessor->set(w,e);
   1.265 -	    pred_node->set(w,v);
   1.266 -	    break;
   1.267 -	  case HeapType::IN_HEAP:
   1.268 -	    if ( oldvalue+(*length)[e] < heap[w] ) {
   1.269 -	      heap.decrease(w, oldvalue+(*length)[e]); 
   1.270 -	      predecessor->set(w,e);
   1.271 -	      pred_node->set(w,v);
   1.272 -	    }
   1.273 -	    break;
   1.274 -	  case HeapType::POST_HEAP:
   1.275 -	    break;
   1.276 -	  }
   1.277 -	}
   1.278 -      }
   1.279 -    }
   1.280 -    
   1.281 -    ///The distance of a node from the root.
   1.282 -
   1.283 -    ///Returns the distance of a node from the root.
   1.284 -    ///\pre \ref run() must be called before using this function.
   1.285 -    ///\warning If node \c v in unreachable from the root the return value
   1.286 -    ///of this funcion is undefined.
   1.287 -    Value dist(Node v) const { return (*distance)[v]; }
   1.288 -
   1.289 -    ///Returns the 'previous edge' of the shortest path tree.
   1.290 -
   1.291 -    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   1.292 -    ///i.e. it returns the last edge of a shortest path from the root to \c
   1.293 -    ///v. It is \ref INVALID
   1.294 -    ///if \c v is unreachable from the root or if \c v=s. The
   1.295 -    ///shortest path tree used here is equal to the shortest path tree used in
   1.296 -    ///\ref predNode(Node v).  \pre \ref run() must be called before using
   1.297 -    ///this function.
   1.298 -    ///\todo predEdge could be a better name.
   1.299 -    Edge pred(Node v) const { return (*predecessor)[v]; }
   1.300 -
   1.301 -    ///Returns the 'previous node' of the shortest path tree.
   1.302 -
   1.303 -    ///For a node \c v it returns the 'previous node' of the shortest path tree,
   1.304 -    ///i.e. it returns the last but one node from a shortest path from the
   1.305 -    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   1.306 -    ///\c v=s. The shortest path tree used here is equal to the shortest path
   1.307 -    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   1.308 -    ///using this function.
   1.309 -    Node predNode(Node v) const { return (*pred_node)[v]; }
   1.310 -    
   1.311 -    ///Returns a reference to the NodeMap of distances.
   1.312 -
   1.313 -    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.314 -    ///be called before using this function.
   1.315 -    const DistMap &distMap() const { return *distance;}
   1.316 - 
   1.317 -    ///Returns a reference to the shortest path tree map.
   1.318 -
   1.319 -    ///Returns a reference to the NodeMap of the edges of the
   1.320 -    ///shortest path tree.
   1.321 -    ///\pre \ref run() must be called before using this function.
   1.322 -    const PredMap &predMap() const { return *predecessor;}
   1.323 - 
   1.324 -    ///Returns a reference to the map of nodes of shortest paths.
   1.325 -
   1.326 -    ///Returns a reference to the NodeMap of the last but one nodes of the
   1.327 -    ///shortest path tree.
   1.328 -    ///\pre \ref run() must be called before using this function.
   1.329 -    const PredNodeMap &predNodeMap() const { return *pred_node;}
   1.330 -
   1.331 -    ///Checks if a node is reachable from the root.
   1.332 -
   1.333 -    ///Returns \c true if \c v is reachable from the root.
   1.334 -    ///\note The root node is reported to be reached!
   1.335 -    ///\pre \ref run() must be called before using this function.
   1.336 -    ///
   1.337 -    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   1.338 -    
   1.339 -  };
   1.340 -  
   1.341 -/// @}
   1.342 -  
   1.343 -} //END OF NAMESPACE LEMON
   1.344 -
   1.345 -#endif
   1.346 -
   1.347 -