1.1 --- a/src/work/alpar/dijkstra.h Sun Feb 06 15:49:37 2005 +0000
1.2 +++ b/src/work/alpar/dijkstra.h Sun Feb 06 20:00:56 2005 +0000
1.3 @@ -85,14 +85,14 @@
1.4 ///nodes of the shortest paths.
1.5 ///It must meet the \ref concept::WriteMap "WriteMap" concept.
1.6 ///
1.7 - typedef typename Graph::template NodeMap<typename GR::Node> PredNodeMap;
1.8 + typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
1.9 ///Instantiates a PredNodeMap.
1.10
1.11 ///This function instantiates a \ref PredNodeMap.
1.12 ///\param G is the graph, to which we would like to define the \ref PredNodeMap
1.13 static PredNodeMap *createPredNodeMap(const GR &G)
1.14 {
1.15 - return new PredNodeMap(G);
1.16 + return new PredNodeMap();
1.17 }
1.18
1.19 ///The type of the map that stores whether a nodes is reached.
1.20 @@ -222,13 +222,13 @@
1.21 ///Indicates if \ref _pred is locally allocated (\c true) or not.
1.22 bool local_pred;
1.23 ///Pointer to the map of predecessors nodes.
1.24 - PredNodeMap *pred_node;
1.25 - ///Indicates if \ref pred_node is locally allocated (\c true) or not.
1.26 - bool local_pred_node;
1.27 + PredNodeMap *_predNode;
1.28 + ///Indicates if \ref _predNode is locally allocated (\c true) or not.
1.29 + bool local_predNode;
1.30 ///Pointer to the map of distances.
1.31 - DistMap *distance;
1.32 - ///Indicates if \ref distance is locally allocated (\c true) or not.
1.33 - bool local_distance;
1.34 + DistMap *_dist;
1.35 + ///Indicates if \ref _dist is locally allocated (\c true) or not.
1.36 + bool local_dist;
1.37 ///Pointer to the map of reached status of the nodes.
1.38 ReachedMap *_reached;
1.39 ///Indicates if \ref _reached is locally allocated (\c true) or not.
1.40 @@ -247,13 +247,13 @@
1.41 local_pred = true;
1.42 _pred = Traits::createPredMap(*G);
1.43 }
1.44 - if(!pred_node) {
1.45 - local_pred_node = true;
1.46 - pred_node = Traits::createPredNodeMap(*G);
1.47 + if(!_predNode) {
1.48 + local_predNode = true;
1.49 + _predNode = Traits::createPredNodeMap(*G);
1.50 }
1.51 - if(!distance) {
1.52 - local_distance = true;
1.53 - distance = Traits::createDistMap(*G);
1.54 + if(!_dist) {
1.55 + local_dist = true;
1.56 + _dist = Traits::createDistMap(*G);
1.57 }
1.58 if(!_reached) {
1.59 local_reached = true;
1.60 @@ -369,8 +369,8 @@
1.61 Dijkstra(const Graph& _G, const LengthMap& _length) :
1.62 G(&_G), length(&_length),
1.63 _pred(NULL), local_pred(false),
1.64 - pred_node(NULL), local_pred_node(false),
1.65 - distance(NULL), local_distance(false),
1.66 + _predNode(NULL), local_predNode(false),
1.67 + _dist(NULL), local_dist(false),
1.68 _reached(NULL), local_reached(false),
1.69 _heap_map(*G,-1),_heap(_heap_map)
1.70 { }
1.71 @@ -379,8 +379,8 @@
1.72 ~Dijkstra()
1.73 {
1.74 if(local_pred) delete _pred;
1.75 - if(local_pred_node) delete pred_node;
1.76 - if(local_distance) delete distance;
1.77 + if(local_predNode) delete _predNode;
1.78 + if(local_dist) delete _dist;
1.79 if(local_reached) delete _reached;
1.80 }
1.81
1.82 @@ -420,11 +420,11 @@
1.83 ///\return <tt> (*this) </tt>
1.84 Dijkstra &predNodeMap(PredNodeMap &m)
1.85 {
1.86 - if(local_pred_node) {
1.87 - delete pred_node;
1.88 - local_pred_node=false;
1.89 + if(local_predNode) {
1.90 + delete _predNode;
1.91 + local_predNode=false;
1.92 }
1.93 - pred_node = &m;
1.94 + _predNode = &m;
1.95 return *this;
1.96 }
1.97
1.98 @@ -437,14 +437,23 @@
1.99 ///\return <tt> (*this) </tt>
1.100 Dijkstra &distMap(DistMap &m)
1.101 {
1.102 - if(local_distance) {
1.103 - delete distance;
1.104 - local_distance=false;
1.105 + if(local_dist) {
1.106 + delete _dist;
1.107 + local_dist=false;
1.108 }
1.109 - distance = &m;
1.110 + _dist = &m;
1.111 return *this;
1.112 }
1.113
1.114 + private:
1.115 + void finalizeNodeData(Node v,Value dst)
1.116 + {
1.117 + _reached->set(v,true);
1.118 + _dist->set(v, dst);
1.119 + _predNode->set(v,G->source((*_pred)[v]));
1.120 + }
1.121 +
1.122 + public:
1.123 ///\name Excetution control
1.124 ///The simplest way to execute the algorithm is to use
1.125 ///\ref run().
1.126 @@ -467,7 +476,7 @@
1.127
1.128 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
1.129 _pred->set(u,INVALID);
1.130 - pred_node->set(u,INVALID);
1.131 + _predNode->set(u,INVALID);
1.132 ///\todo *_reached is not set to false.
1.133 _heap_map.set(u,Heap::PRE_HEAP);
1.134 }
1.135 @@ -490,10 +499,9 @@
1.136 void processNode()
1.137 {
1.138 Node v=_heap.top();
1.139 - _reached->set(v,true);
1.140 Value oldvalue=_heap[v];
1.141 _heap.pop();
1.142 - distance->set(v, oldvalue);
1.143 + finalizeNodeData(v,oldvalue);
1.144
1.145 for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
1.146 Node w=G->target(e);
1.147 @@ -501,13 +509,13 @@
1.148 case Heap::PRE_HEAP:
1.149 _heap.push(w,oldvalue+(*length)[e]);
1.150 _pred->set(w,e);
1.151 - pred_node->set(w,v);
1.152 +// _predNode->set(w,v);
1.153 break;
1.154 case Heap::IN_HEAP:
1.155 if ( oldvalue+(*length)[e] < _heap[w] ) {
1.156 _heap.decrease(w, oldvalue+(*length)[e]);
1.157 _pred->set(w,e);
1.158 - pred_node->set(w,v);
1.159 +// _predNode->set(w,v);
1.160 }
1.161 break;
1.162 case Heap::POST_HEAP:
1.163 @@ -516,12 +524,12 @@
1.164 }
1.165 }
1.166
1.167 - ///Starts the execution of the algorithm.
1.168 + ///Executes the algorithm.
1.169
1.170 - ///Starts the execution of the algorithm.
1.171 + ///Executes the algorithm.
1.172 ///
1.173 - ///\pre init() must be called before and at least one node should be added
1.174 - ///with addSource().
1.175 + ///\pre init() must be called and at least one node should be added
1.176 + ///with addSource() before using this function.
1.177 ///
1.178 ///This method runs the %Dijkstra algorithm from the root node(s)
1.179 ///in order to
1.180 @@ -535,12 +543,12 @@
1.181 while ( !_heap.empty() ) processNode();
1.182 }
1.183
1.184 - ///Starts the execution of the algorithm until \c dest is reached.
1.185 + ///Executes the algorithm until \c dest is reached.
1.186
1.187 - ///Starts the execution of the algorithm until \c dest is reached.
1.188 + ///Executes the algorithm until \c dest is reached.
1.189 ///
1.190 - ///\pre init() must be called before and at least one node should be added
1.191 - ///with addSource().
1.192 + ///\pre init() must be called and at least one node should be added
1.193 + ///with addSource() before using this function.
1.194 ///
1.195 ///This method runs the %Dijkstra algorithm from the root node(s)
1.196 ///in order to
1.197 @@ -551,7 +559,24 @@
1.198 ///
1.199 void start(Node dest)
1.200 {
1.201 - while ( !_heap.empty() && _heap.top()!=dest) processNode();
1.202 + while ( !_heap.empty() && _heap.top()!=dest ) processNode();
1.203 + if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
1.204 + }
1.205 +
1.206 + ///Executes the algorithm until a condition is met.
1.207 +
1.208 + ///Executes the algorithm until a condition is met.
1.209 + ///
1.210 + ///\pre init() must be called and at least one node should be added
1.211 + ///with addSource() before using this function.
1.212 + ///
1.213 + ///\param nm must be a bool (or convertible) node map. The algorithm
1.214 + ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
1.215 + template<class NM>
1.216 + void start(const NM &nm)
1.217 + {
1.218 + while ( !_heap.empty() && !mn[_heap.top()] ) processNode();
1.219 + if ( !_heap.empty() ) finalizeNodeData(_heap.top());
1.220 }
1.221
1.222 ///Runs %Dijkstra algorithm from node \c s.
1.223 @@ -575,6 +600,26 @@
1.224 start();
1.225 }
1.226
1.227 + ///Finds the shortest path between \c s and \c t.
1.228 +
1.229 + ///Finds the shortest path between \c s and \c t.
1.230 + ///
1.231 + ///\return The length of the shortest s---t path if there exists one,
1.232 + ///0 otherwise.
1.233 + ///\note Apart from the return value, d.run(s) is
1.234 + ///just a shortcut of the following code.
1.235 + ///\code
1.236 + /// d.init();
1.237 + /// d.addSource(s);
1.238 + /// d.start(t);
1.239 + ///\endcode
1.240 + Value run(Node s,Node t) {
1.241 + init();
1.242 + addSource(s);
1.243 + start(t);
1.244 + return (*_pred)[t]==INVALID?0:(*_dist)[t];
1.245 + }
1.246 +
1.247 ///@}
1.248
1.249 ///\name Query Functions
1.250 @@ -591,7 +636,7 @@
1.251 ///\pre \ref run() must be called before using this function.
1.252 ///\warning If node \c v in unreachable from the root the return value
1.253 ///of this funcion is undefined.
1.254 - Value dist(Node v) const { return (*distance)[v]; }
1.255 + Value dist(Node v) const { return (*_dist)[v]; }
1.256
1.257 ///Returns the 'previous edge' of the shortest path tree.
1.258
1.259 @@ -613,13 +658,14 @@
1.260 ///\c v=s. The shortest path tree used here is equal to the shortest path
1.261 ///tree used in \ref pred(Node v). \pre \ref run() must be called before
1.262 ///using this function.
1.263 - Node predNode(Node v) const { return (*pred_node)[v]; }
1.264 + Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
1.265 + G->source((*_pred)[v]); }
1.266
1.267 ///Returns a reference to the NodeMap of distances.
1.268
1.269 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
1.270 ///be called before using this function.
1.271 - const DistMap &distMap() const { return *distance;}
1.272 + const DistMap &distMap() const { return *_dist;}
1.273
1.274 ///Returns a reference to the shortest path tree map.
1.275
1.276 @@ -633,7 +679,7 @@
1.277 ///Returns a reference to the NodeMap of the last but one nodes of the
1.278 ///shortest path tree.
1.279 ///\pre \ref run() must be called before using this function.
1.280 - const PredNodeMap &predNodeMap() const { return *pred_node;}
1.281 + const PredNodeMap &predNodeMap() const { return *_predNode;}
1.282
1.283 ///Checks if a node is reachable from the root.
1.284