Small bugs in the documentation.
authorathos
Mon, 30 Oct 2006 16:12:44 +0000
changeset 2273507232469f5e
parent 2272 f6b352fdc6b1
child 2274 432d0469a87e
Small bugs in the documentation.
lemon/hao_orlin.h
     1.1 --- a/lemon/hao_orlin.h	Mon Oct 30 15:29:50 2006 +0000
     1.2 +++ b/lemon/hao_orlin.h	Mon Oct 30 16:12:44 2006 +0000
     1.3 @@ -42,11 +42,11 @@
     1.4    ///
     1.5    /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
     1.6    ///
     1.7 -  /// Hao-Orlin calculates a minimum cut in a directed graph \f$
     1.8 -  /// D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
     1.9 +  /// Hao-Orlin calculates a minimum cut in a directed graph 
    1.10 +  /// \f$ D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
    1.11    /// of two phases: in the first phase it determines a minimum cut
    1.12 -  /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V
    1.13 -  /// \f$ with \f$ source \in X \f$ and minimal out-degree) and in the
    1.14 +  /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V \f$
    1.15 +  /// with \f$ source \in X \f$ and minimal out-degree) and in the
    1.16    /// second phase it determines a minimum cut with \f$ source \f$ on the
    1.17    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$
    1.18    /// and minimal out-degree). Obviously, the smaller of these two
    1.19 @@ -56,8 +56,9 @@
    1.20    /// highest-label rule). The purpose of such an algorithm is testing
    1.21    /// network reliability. For an undirected graph with \f$ n \f$
    1.22    /// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi
    1.23 -  /// and Ibaraki which solves the undirected problem in \f$ O(ne +
    1.24 -  /// n^2 \log(n)) \f$ time: it is implemented in the MinCut algorithm
    1.25 +  /// and Ibaraki which solves the undirected problem in 
    1.26 +  /// \f$ O(ne + n^2 \log(n)) \f$ time: it is implemented in the MinCut 
    1.27 +  /// algorithm
    1.28    /// class.
    1.29    ///
    1.30    /// \param _Graph is the graph type of the algorithm.
    1.31 @@ -535,8 +536,8 @@
    1.32      /// source-side.
    1.33      ///
    1.34      /// \brief Calculates a minimum cut with \f$ source \f$ on the
    1.35 -    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
    1.36 -    /// \f$ and minimal out-degree).
    1.37 +    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
    1.38 +    ///  and minimal out-degree).
    1.39      void calculateOut() {
    1.40        for (NodeIt it(*_graph); it != INVALID; ++it) {
    1.41          if (it != _source) {
    1.42 @@ -550,8 +551,8 @@
    1.43      /// source-side.
    1.44      ///
    1.45      /// \brief Calculates a minimum cut with \f$ source \f$ on the
    1.46 -    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
    1.47 -    /// \f$ and minimal out-degree). The \c target is the initial target
    1.48 +    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
    1.49 +    ///  and minimal out-degree). The \c target is the initial target
    1.50      /// for the push-relabel algorithm.
    1.51      void calculateOut(const Node& target) {
    1.52        findMinCut(target, true, *_out_res_graph, *_out_current_edge);
    1.53 @@ -561,8 +562,9 @@
    1.54      /// sink-side.
    1.55      ///
    1.56      /// \brief Calculates a minimum cut with \f$ source \f$ on the
    1.57 -    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X
    1.58 -    /// \f$ and minimal out-degree).
    1.59 +    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with 
    1.60 +    /// \f$ source \notin X \f$
    1.61 +    /// and minimal out-degree).
    1.62      void calculateIn() {
    1.63        for (NodeIt it(*_graph); it != INVALID; ++it) {
    1.64          if (it != _source) {
    1.65 @@ -576,8 +578,9 @@
    1.66      /// sink-side.
    1.67      ///
    1.68      /// \brief Calculates a minimum cut with \f$ source \f$ on the
    1.69 -    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin
    1.70 -    /// X \f$ and minimal out-degree).  The \c target is the initial
    1.71 +    /// sink-side (i.e. a set \f$ X\subsetneq V 
    1.72 +    /// \f$ with \f$ source \notin X \f$ and minimal out-degree).  
    1.73 +    /// The \c target is the initial
    1.74      /// target for the push-relabel algorithm.
    1.75      void calculateIn(const Node& target) {
    1.76        findMinCut(target, false, *_in_res_graph, *_in_current_edge);