technical corrections
authormarci
Tue, 17 Aug 2004 11:20:16 +0000
changeset 762511200bdb71f
parent 761 58243a389464
child 763 151b5754c7c6
technical corrections
src/work/makefile
src/work/marci/augmenting_flow.h
src/work/marci/bfs_dfs_misc.h
src/work/marci/bfsit_vs_byhand.cc
src/work/marci/bipartite_graph_wrapper.h
src/work/marci/bipartite_graph_wrapper_test.cc
src/work/marci/bipartite_matching_try.cc
src/work/marci/bipartite_matching_try_3.cc
src/work/marci/lg_vs_sg_vs_sg.cc
src/work/marci/macro_test.cc
src/work/marci/makefile
src/work/marci/max_bipartite_matching.h
src/work/marci/max_flow_1.cc
src/work/marci/max_flow_demo.cc
src/work/marci/top_sort_test.cc
     1.1 --- a/src/work/makefile	Tue Aug 17 10:24:19 2004 +0000
     1.2 +++ b/src/work/makefile	Tue Aug 17 11:20:16 2004 +0000
     1.3 @@ -1,5 +1,5 @@
     1.4  INCLUDEDIRS ?= -I.. -I. -I./{marci,jacint,alpar,klao,akos}
     1.5 -CXXFLAGS = -g -O3 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
     1.6 +CXXFLAGS = -g -O2 -W -Wall $(INCLUDEDIRS) -ansi -pedantic
     1.7  
     1.8  BINARIES ?= bin_heap_demo
     1.9  
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/src/work/marci/augmenting_flow.h	Tue Aug 17 11:20:16 2004 +0000
     2.3 @@ -0,0 +1,1477 @@
     2.4 +// -*- C++ -*-
     2.5 +#ifndef HUGO_AUGMENTING_FLOW_H
     2.6 +#define HUGO_AUGMENTING_FLOW_H
     2.7 +
     2.8 +#include <vector>
     2.9 +#include <queue>
    2.10 +#include <stack>
    2.11 +#include <iostream>
    2.12 +
    2.13 +#include <hugo/graph_wrapper.h>
    2.14 +#include <bfs_dfs.h>
    2.15 +#include <hugo/invalid.h>
    2.16 +#include <hugo/maps.h>
    2.17 +#include <for_each_macros.h>
    2.18 +
    2.19 +/// \file
    2.20 +/// \brief Maximum flow algorithms.
    2.21 +/// \ingroup galgs
    2.22 +
    2.23 +namespace hugo {
    2.24 +
    2.25 +  /// \addtogroup galgs
    2.26 +  /// @{                                                                                                                                        
    2.27 +  ///Maximum flow algorithms class.
    2.28 +
    2.29 +  ///This class provides various algorithms for finding a flow of
    2.30 +  ///maximum value in a directed graph. The \e source node, the \e
    2.31 +  ///target node, the \e capacity of the edges and the \e starting \e
    2.32 +  ///flow value of the edges should be passed to the algorithm through the
    2.33 +  ///constructor. It is possible to change these quantities using the
    2.34 +  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    2.35 +  ///\ref resetFlow. Before any subsequent runs of any algorithm of
    2.36 +  ///the class \ref resetFlow should be called. 
    2.37 +
    2.38 +  ///After running an algorithm of the class, the actual flow value 
    2.39 +  ///can be obtained by calling \ref flowValue(). The minimum
    2.40 +  ///value cut can be written into a \c node map of \c bools by
    2.41 +  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    2.42 +  ///the inclusionwise minimum and maximum of the minimum value
    2.43 +  ///cuts, resp.)                                                                                                                               
    2.44 +  ///\param Graph The directed graph type the algorithm runs on.
    2.45 +  ///\param Num The number type of the capacities and the flow values.
    2.46 +  ///\param CapMap The capacity map type.
    2.47 +  ///\param FlowMap The flow map type.                                                                                                           
    2.48 +  ///\author Marton Makai, Jacint Szabo 
    2.49 +//   template <typename Graph, typename Num,
    2.50 +// 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    2.51 +//             typename FlowMap=typename Graph::template EdgeMap<Num> >
    2.52 +//   class MaxFlow {
    2.53 +//   protected:
    2.54 +//     typedef typename Graph::Node Node;
    2.55 +//     typedef typename Graph::NodeIt NodeIt;
    2.56 +//     typedef typename Graph::EdgeIt EdgeIt;
    2.57 +//     typedef typename Graph::OutEdgeIt OutEdgeIt;
    2.58 +//     typedef typename Graph::InEdgeIt InEdgeIt;
    2.59 +
    2.60 +//     typedef typename std::vector<std::stack<Node> > VecStack;
    2.61 +//     typedef typename Graph::template NodeMap<Node> NNMap;
    2.62 +//     typedef typename std::vector<Node> VecNode;
    2.63 +
    2.64 +//     const Graph* g;
    2.65 +//     Node s;
    2.66 +//     Node t;
    2.67 +//     const CapMap* capacity;
    2.68 +//     FlowMap* flow;
    2.69 +//     int n;      //the number of nodes of G
    2.70 +//     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    2.71 +//     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    2.72 +//     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    2.73 +//     typedef typename ResGW::Edge ResGWEdge;
    2.74 +//     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    2.75 +//     typedef typename Graph::template NodeMap<int> ReachedMap;
    2.76 +
    2.77 +
    2.78 +//     //level works as a bool map in augmenting path algorithms and is
    2.79 +//     //used by bfs for storing reached information.  In preflow, it
    2.80 +//     //shows the levels of nodes.     
    2.81 +//     ReachedMap level;
    2.82 +
    2.83 +//     //excess is needed only in preflow
    2.84 +//     typename Graph::template NodeMap<Num> excess;
    2.85 +
    2.86 +//     //fixme    
    2.87 +// //   protected:
    2.88 +//     //     MaxFlow() { }
    2.89 +//     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    2.90 +//     // 	     FlowMap& _flow)
    2.91 +//     //       {
    2.92 +//     // 	g=&_G;
    2.93 +//     // 	s=_s;
    2.94 +//     // 	t=_t;
    2.95 +//     // 	capacity=&_capacity;
    2.96 +//     // 	flow=&_flow;
    2.97 +//     // 	n=_G.nodeNum;
    2.98 +//     // 	level.set (_G); //kellene vmi ilyesmi fv
    2.99 +//     // 	excess(_G,0); //itt is
   2.100 +//     //       }
   2.101 +
   2.102 +//     // constants used for heuristics
   2.103 +//     static const int H0=20;
   2.104 +//     static const int H1=1;
   2.105 +
   2.106 +//   public:
   2.107 +
   2.108 +//     ///Indicates the property of the starting flow.
   2.109 +
   2.110 +//     ///Indicates the property of the starting flow. The meanings are as follows:
   2.111 +//     ///- \c ZERO_FLOW: constant zero flow
   2.112 +//     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   2.113 +//     ///the sum of the out-flows in every node except the \e source and
   2.114 +//     ///the \e target.
   2.115 +//     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   2.116 +//     ///least the sum of the out-flows in every node except the \e source.
   2.117 +//     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   2.118 +//     ///set to the constant zero flow in the beginning of the algorithm in this case.
   2.119 +//     enum FlowEnum{
   2.120 +//       ZERO_FLOW,
   2.121 +//       GEN_FLOW,
   2.122 +//       PRE_FLOW,
   2.123 +//       NO_FLOW
   2.124 +//     };
   2.125 +
   2.126 +//     enum StatusEnum {
   2.127 +//       AFTER_NOTHING,
   2.128 +//       AFTER_AUGMENTING,
   2.129 +//       AFTER_FAST_AUGMENTING, 
   2.130 +//       AFTER_PRE_FLOW_PHASE_1,      
   2.131 +//       AFTER_PRE_FLOW_PHASE_2
   2.132 +//     };
   2.133 +
   2.134 +//     /// Don not needle this flag only if necessary.
   2.135 +//     StatusEnum status;
   2.136 +// //     int number_of_augmentations;
   2.137 +
   2.138 +
   2.139 +// //     template<typename IntMap>
   2.140 +// //     class TrickyReachedMap {
   2.141 +// //     protected:
   2.142 +// //       IntMap* map;
   2.143 +// //       int* number_of_augmentations;
   2.144 +// //     public:
   2.145 +// //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   2.146 +// // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   2.147 +// //       void set(const Node& n, bool b) {
   2.148 +// // 	if (b)
   2.149 +// // 	  map->set(n, *number_of_augmentations);
   2.150 +// // 	else 
   2.151 +// // 	  map->set(n, *number_of_augmentations-1);
   2.152 +// //       }
   2.153 +// //       bool operator[](const Node& n) const { 
   2.154 +// // 	return (*map)[n]==*number_of_augmentations; 
   2.155 +// //       }
   2.156 +// //     };
   2.157 +    
   2.158 +//     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   2.159 +// 	    FlowMap& _flow) :
   2.160 +//       g(&_G), s(_s), t(_t), capacity(&_capacity),
   2.161 +//       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   2.162 +//       status(AFTER_NOTHING) { }
   2.163 +
   2.164 +//     ///Runs a maximum flow algorithm.
   2.165 +
   2.166 +//     ///Runs a preflow algorithm, which is the fastest maximum flow
   2.167 +//     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   2.168 +//     ///\pre The starting flow must be
   2.169 +//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   2.170 +//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   2.171 +//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   2.172 +//     /// - any map if \c fe is NO_FLOW.
   2.173 +//     void run(FlowEnum fe=ZERO_FLOW) {
   2.174 +//       preflow(fe);
   2.175 +//     }
   2.176 +
   2.177 +                                                                              
   2.178 +//     ///Runs a preflow algorithm.  
   2.179 +
   2.180 +//     ///Runs a preflow algorithm. The preflow algorithms provide the
   2.181 +//     ///fastest way to compute a maximum flow in a directed graph.
   2.182 +//     ///\pre The starting flow must be
   2.183 +//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   2.184 +//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   2.185 +//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   2.186 +//     /// - any map if \c fe is NO_FLOW.
   2.187 +//     void preflow(FlowEnum fe) {
   2.188 +//       preflowPhase1(fe);
   2.189 +//       preflowPhase2();
   2.190 +//     }
   2.191 +//     // Heuristics:
   2.192 +//     //   2 phase
   2.193 +//     //   gap
   2.194 +//     //   list 'level_list' on the nodes on level i implemented by hand
   2.195 +//     //   stack 'active' on the active nodes on level i                                                                                    
   2.196 +//     //   runs heuristic 'highest label' for H1*n relabels
   2.197 +//     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   2.198 +//     //   Parameters H0 and H1 are initialized to 20 and 1.
   2.199 +
   2.200 +//     ///Runs the first phase of the preflow algorithm.
   2.201 +
   2.202 +//     ///The preflow algorithm consists of two phases, this method runs the
   2.203 +//     ///first phase. After the first phase the maximum flow value and a
   2.204 +//     ///minimum value cut can already be computed, though a maximum flow
   2.205 +//     ///is net yet obtained. So after calling this method \ref flowValue
   2.206 +//     ///and \ref actMinCut gives proper results.
   2.207 +//     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   2.208 +//     ///give minimum value cuts unless calling \ref preflowPhase2.
   2.209 +//     ///\pre The starting flow must be
   2.210 +//     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   2.211 +//     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   2.212 +//     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   2.213 +//     /// - any map if \c fe is NO_FLOW.
   2.214 +//     void preflowPhase1(FlowEnum fe);
   2.215 +
   2.216 +//     ///Runs the second phase of the preflow algorithm.
   2.217 +
   2.218 +//     ///The preflow algorithm consists of two phases, this method runs
   2.219 +//     ///the second phase. After calling \ref preflowPhase1 and then
   2.220 +//     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   2.221 +//     ///\ref minMinCut and \ref maxMinCut give proper results.
   2.222 +//     ///\pre \ref preflowPhase1 must be called before.
   2.223 +//     void preflowPhase2();
   2.224 +
   2.225 +//     /// Returns the maximum value of a flow.
   2.226 +
   2.227 +//     /// Returns the maximum value of a flow, by counting the 
   2.228 +//     /// over-flow of the target node \ref t.
   2.229 +//     /// It can be called already after running \ref preflowPhase1.
   2.230 +//     Num flowValue() const {
   2.231 +//       Num a=0;
   2.232 +//       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   2.233 +//       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   2.234 +//       return a;
   2.235 +//       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   2.236 +//     }
   2.237 +
   2.238 +//     ///Returns a minimum value cut after calling \ref preflowPhase1.
   2.239 +
   2.240 +//     ///After the first phase of the preflow algorithm the maximum flow
   2.241 +//     ///value and a minimum value cut can already be computed. This
   2.242 +//     ///method can be called after running \ref preflowPhase1 for
   2.243 +//     ///obtaining a minimum value cut.
   2.244 +//     /// \warning Gives proper result only right after calling \ref
   2.245 +//     /// preflowPhase1.
   2.246 +//     /// \todo We have to make some status variable which shows the
   2.247 +//     /// actual state
   2.248 +//     /// of the class. This enables us to determine which methods are valid
   2.249 +//     /// for MinCut computation
   2.250 +//     template<typename _CutMap>
   2.251 +//     void actMinCut(_CutMap& M) const {
   2.252 +//       NodeIt v;
   2.253 +//       switch (status) {
   2.254 +//       case AFTER_PRE_FLOW_PHASE_1:
   2.255 +// 	for(g->first(v); g->valid(v); g->next(v)) {
   2.256 +// 	  if (level[v] < n) {
   2.257 +// 	    M.set(v, false);
   2.258 +// 	  } else {
   2.259 +// 	    M.set(v, true);
   2.260 +// 	  }
   2.261 +// 	}
   2.262 +// 	break;
   2.263 +//       case AFTER_PRE_FLOW_PHASE_2:
   2.264 +//       case AFTER_NOTHING:
   2.265 +//       case AFTER_AUGMENTING:
   2.266 +//       case AFTER_FAST_AUGMENTING:
   2.267 +// 	minMinCut(M);
   2.268 +// 	break;
   2.269 +// //       case AFTER_AUGMENTING:
   2.270 +// // 	for(g->first(v); g->valid(v); g->next(v)) {
   2.271 +// // 	  if (level[v]) {
   2.272 +// // 	    M.set(v, true);
   2.273 +// // 	  } else {
   2.274 +// // 	    M.set(v, false);
   2.275 +// // 	  }
   2.276 +// // 	}
   2.277 +// // 	break;
   2.278 +// //       case AFTER_FAST_AUGMENTING:
   2.279 +// // 	for(g->first(v); g->valid(v); g->next(v)) {
   2.280 +// // 	  if (level[v]==number_of_augmentations) {
   2.281 +// // 	    M.set(v, true);
   2.282 +// // 	  } else {
   2.283 +// // 	    M.set(v, false);
   2.284 +// // 	  }
   2.285 +// // 	}
   2.286 +// // 	break;
   2.287 +//       }
   2.288 +//     }
   2.289 +
   2.290 +//     ///Returns the inclusionwise minimum of the minimum value cuts.
   2.291 +
   2.292 +//     ///Sets \c M to the characteristic vector of the minimum value cut
   2.293 +//     ///which is inclusionwise minimum. It is computed by processing
   2.294 +//     ///a bfs from the source node \c s in the residual graph.
   2.295 +//     ///\pre M should be a node map of bools initialized to false.
   2.296 +//     ///\pre \c flow must be a maximum flow.
   2.297 +//     template<typename _CutMap>
   2.298 +//     void minMinCut(_CutMap& M) const {
   2.299 +//       std::queue<Node> queue;
   2.300 +
   2.301 +//       M.set(s,true);
   2.302 +//       queue.push(s);
   2.303 +
   2.304 +//       while (!queue.empty()) {
   2.305 +//         Node w=queue.front();
   2.306 +// 	queue.pop();
   2.307 +
   2.308 +// 	OutEdgeIt e;
   2.309 +// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   2.310 +// 	  Node v=g->head(e);
   2.311 +// 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   2.312 +// 	    queue.push(v);
   2.313 +// 	    M.set(v, true);
   2.314 +// 	  }
   2.315 +// 	}
   2.316 +
   2.317 +// 	InEdgeIt f;
   2.318 +// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   2.319 +// 	  Node v=g->tail(f);
   2.320 +// 	  if (!M[v] && (*flow)[f] > 0 ) {
   2.321 +// 	    queue.push(v);
   2.322 +// 	    M.set(v, true);
   2.323 +// 	  }
   2.324 +// 	}
   2.325 +//       }
   2.326 +//     }
   2.327 +
   2.328 +//     ///Returns the inclusionwise maximum of the minimum value cuts.
   2.329 +
   2.330 +//     ///Sets \c M to the characteristic vector of the minimum value cut
   2.331 +//     ///which is inclusionwise maximum. It is computed by processing a
   2.332 +//     ///backward bfs from the target node \c t in the residual graph.
   2.333 +//     ///\pre M should be a node map of bools initialized to false.
   2.334 +//     ///\pre \c flow must be a maximum flow. 
   2.335 +//     template<typename _CutMap>
   2.336 +//     void maxMinCut(_CutMap& M) const {
   2.337 +
   2.338 +//       NodeIt v;
   2.339 +//       for(g->first(v) ; g->valid(v); g->next(v)) {
   2.340 +// 	M.set(v, true);
   2.341 +//       }
   2.342 +
   2.343 +//       std::queue<Node> queue;
   2.344 +
   2.345 +//       M.set(t,false);
   2.346 +//       queue.push(t);
   2.347 +
   2.348 +//       while (!queue.empty()) {
   2.349 +//         Node w=queue.front();
   2.350 +// 	queue.pop();
   2.351 +
   2.352 +// 	InEdgeIt e;
   2.353 +// 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   2.354 +// 	  Node v=g->tail(e);
   2.355 +// 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   2.356 +// 	    queue.push(v);
   2.357 +// 	    M.set(v, false);
   2.358 +// 	  }
   2.359 +// 	}
   2.360 +
   2.361 +// 	OutEdgeIt f;
   2.362 +// 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   2.363 +// 	  Node v=g->head(f);
   2.364 +// 	  if (M[v] && (*flow)[f] > 0 ) {
   2.365 +// 	    queue.push(v);
   2.366 +// 	    M.set(v, false);
   2.367 +// 	  }
   2.368 +// 	}
   2.369 +//       }
   2.370 +//     }
   2.371 +
   2.372 +//     ///Returns a minimum value cut.
   2.373 +
   2.374 +//     ///Sets \c M to the characteristic vector of a minimum value cut.
   2.375 +//     ///\pre M should be a node map of bools initialized to false.
   2.376 +//     ///\pre \c flow must be a maximum flow.    
   2.377 +//     template<typename CutMap>
   2.378 +//     void minCut(CutMap& M) const { minMinCut(M); }
   2.379 +
   2.380 +//     ///Resets the source node to \c _s.
   2.381 +
   2.382 +//     ///Resets the source node to \c _s.
   2.383 +//     /// 
   2.384 +//     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   2.385 +
   2.386 +//     ///Resets the target node to \c _t.
   2.387 +
   2.388 +//     ///Resets the target node to \c _t.
   2.389 +//     ///
   2.390 +//     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   2.391 +
   2.392 +//     /// Resets the edge map of the capacities to _cap.
   2.393 +
   2.394 +//     /// Resets the edge map of the capacities to _cap.
   2.395 +//     /// 
   2.396 +//     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   2.397 +
   2.398 +//     /// Resets the edge map of the flows to _flow.
   2.399 +
   2.400 +//     /// Resets the edge map of the flows to _flow.
   2.401 +//     /// 
   2.402 +//     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   2.403 +
   2.404 +
   2.405 +//   private:
   2.406 +
   2.407 +//     int push(Node w, VecStack& active) {
   2.408 +
   2.409 +//       int lev=level[w];
   2.410 +//       Num exc=excess[w];
   2.411 +//       int newlevel=n;       //bound on the next level of w
   2.412 +
   2.413 +//       OutEdgeIt e;
   2.414 +//       for(g->first(e,w); g->valid(e); g->next(e)) {
   2.415 +
   2.416 +// 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   2.417 +// 	Node v=g->head(e);
   2.418 +
   2.419 +// 	if( lev > level[v] ) { //Push is allowed now
   2.420 +
   2.421 +// 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   2.422 +// 	    int lev_v=level[v];
   2.423 +// 	    active[lev_v].push(v);
   2.424 +// 	  }
   2.425 +
   2.426 +// 	  Num cap=(*capacity)[e];
   2.427 +// 	  Num flo=(*flow)[e];
   2.428 +// 	  Num remcap=cap-flo;
   2.429 +
   2.430 +// 	  if ( remcap >= exc ) { //A nonsaturating push.
   2.431 +
   2.432 +// 	    flow->set(e, flo+exc);
   2.433 +// 	    excess.set(v, excess[v]+exc);
   2.434 +// 	    exc=0;
   2.435 +// 	    break;
   2.436 +
   2.437 +// 	  } else { //A saturating push.
   2.438 +// 	    flow->set(e, cap);
   2.439 +// 	    excess.set(v, excess[v]+remcap);
   2.440 +// 	    exc-=remcap;
   2.441 +// 	  }
   2.442 +// 	} else if ( newlevel > level[v] ) newlevel = level[v];
   2.443 +//       } //for out edges wv
   2.444 +
   2.445 +//       if ( exc > 0 ) {
   2.446 +// 	InEdgeIt e;
   2.447 +// 	for(g->first(e,w); g->valid(e); g->next(e)) {
   2.448 +
   2.449 +// 	  if( (*flow)[e] <= 0 ) continue;
   2.450 +// 	  Node v=g->tail(e);
   2.451 +
   2.452 +// 	  if( lev > level[v] ) { //Push is allowed now
   2.453 +
   2.454 +// 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   2.455 +// 	      int lev_v=level[v];
   2.456 +// 	      active[lev_v].push(v);
   2.457 +// 	    }
   2.458 +
   2.459 +// 	    Num flo=(*flow)[e];
   2.460 +
   2.461 +// 	    if ( flo >= exc ) { //A nonsaturating push.
   2.462 +
   2.463 +// 	      flow->set(e, flo-exc);
   2.464 +// 	      excess.set(v, excess[v]+exc);
   2.465 +// 	      exc=0;
   2.466 +// 	      break;
   2.467 +// 	    } else {  //A saturating push.
   2.468 +
   2.469 +// 	      excess.set(v, excess[v]+flo);
   2.470 +// 	      exc-=flo;
   2.471 +// 	      flow->set(e,0);
   2.472 +// 	    }
   2.473 +// 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   2.474 +// 	} //for in edges vw
   2.475 +
   2.476 +//       } // if w still has excess after the out edge for cycle
   2.477 +
   2.478 +//       excess.set(w, exc);
   2.479 +
   2.480 +//       return newlevel;
   2.481 +//     }
   2.482 +
   2.483 +
   2.484 +//     void preflowPreproc(FlowEnum fe, VecStack& active,
   2.485 +// 			VecNode& level_list, NNMap& left, NNMap& right)
   2.486 +//     {
   2.487 +//       std::queue<Node> bfs_queue;
   2.488 +
   2.489 +//       switch (fe) {
   2.490 +//       case NO_FLOW:   //flow is already set to const zero in this case
   2.491 +//       case ZERO_FLOW:
   2.492 +// 	{
   2.493 +// 	  //Reverse_bfs from t, to find the starting level.
   2.494 +// 	  level.set(t,0);
   2.495 +// 	  bfs_queue.push(t);
   2.496 +
   2.497 +// 	  while (!bfs_queue.empty()) {
   2.498 +
   2.499 +// 	    Node v=bfs_queue.front();
   2.500 +// 	    bfs_queue.pop();
   2.501 +// 	    int l=level[v]+1;
   2.502 +
   2.503 +// 	    InEdgeIt e;
   2.504 +// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   2.505 +// 	      Node w=g->tail(e);
   2.506 +// 	      if ( level[w] == n && w != s ) {
   2.507 +// 		bfs_queue.push(w);
   2.508 +// 		Node first=level_list[l];
   2.509 +// 		if ( g->valid(first) ) left.set(first,w);
   2.510 +// 		right.set(w,first);
   2.511 +// 		level_list[l]=w;
   2.512 +// 		level.set(w, l);
   2.513 +// 	      }
   2.514 +// 	    }
   2.515 +// 	  }
   2.516 +
   2.517 +// 	  //the starting flow
   2.518 +// 	  OutEdgeIt e;
   2.519 +// 	  for(g->first(e,s); g->valid(e); g->next(e))
   2.520 +// 	    {
   2.521 +// 	      Num c=(*capacity)[e];
   2.522 +// 	      if ( c <= 0 ) continue;
   2.523 +// 	      Node w=g->head(e);
   2.524 +// 	      if ( level[w] < n ) {
   2.525 +// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.526 +// 		flow->set(e, c);
   2.527 +// 		excess.set(w, excess[w]+c);
   2.528 +// 	      }
   2.529 +// 	    }
   2.530 +// 	  break;
   2.531 +// 	}
   2.532 +
   2.533 +//       case GEN_FLOW:
   2.534 +//       case PRE_FLOW:
   2.535 +// 	{
   2.536 +// 	  //Reverse_bfs from t in the residual graph,
   2.537 +// 	  //to find the starting level.
   2.538 +// 	  level.set(t,0);
   2.539 +// 	  bfs_queue.push(t);
   2.540 +
   2.541 +// 	  while (!bfs_queue.empty()) {
   2.542 +
   2.543 +// 	    Node v=bfs_queue.front();
   2.544 +// 	    bfs_queue.pop();
   2.545 +// 	    int l=level[v]+1;
   2.546 +
   2.547 +// 	    InEdgeIt e;
   2.548 +// 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   2.549 +// 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   2.550 +// 	      Node w=g->tail(e);
   2.551 +// 	      if ( level[w] == n && w != s ) {
   2.552 +// 		bfs_queue.push(w);
   2.553 +// 		Node first=level_list[l];
   2.554 +// 		if ( g->valid(first) ) left.set(first,w);
   2.555 +// 		right.set(w,first);
   2.556 +// 		level_list[l]=w;
   2.557 +// 		level.set(w, l);
   2.558 +// 	      }
   2.559 +// 	    }
   2.560 +
   2.561 +// 	    OutEdgeIt f;
   2.562 +// 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   2.563 +// 	      if ( 0 >= (*flow)[f] ) continue;
   2.564 +// 	      Node w=g->head(f);
   2.565 +// 	      if ( level[w] == n && w != s ) {
   2.566 +// 		bfs_queue.push(w);
   2.567 +// 		Node first=level_list[l];
   2.568 +// 		if ( g->valid(first) ) left.set(first,w);
   2.569 +// 		right.set(w,first);
   2.570 +// 		level_list[l]=w;
   2.571 +// 		level.set(w, l);
   2.572 +// 	      }
   2.573 +// 	    }
   2.574 +// 	  }
   2.575 +
   2.576 +
   2.577 +// 	  //the starting flow
   2.578 +// 	  OutEdgeIt e;
   2.579 +// 	  for(g->first(e,s); g->valid(e); g->next(e))
   2.580 +// 	    {
   2.581 +// 	      Num rem=(*capacity)[e]-(*flow)[e];
   2.582 +// 	      if ( rem <= 0 ) continue;
   2.583 +// 	      Node w=g->head(e);
   2.584 +// 	      if ( level[w] < n ) {
   2.585 +// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.586 +// 		flow->set(e, (*capacity)[e]);
   2.587 +// 		excess.set(w, excess[w]+rem);
   2.588 +// 	      }
   2.589 +// 	    }
   2.590 +
   2.591 +// 	  InEdgeIt f;
   2.592 +// 	  for(g->first(f,s); g->valid(f); g->next(f))
   2.593 +// 	    {
   2.594 +// 	      if ( (*flow)[f] <= 0 ) continue;
   2.595 +// 	      Node w=g->tail(f);
   2.596 +// 	      if ( level[w] < n ) {
   2.597 +// 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.598 +// 		excess.set(w, excess[w]+(*flow)[f]);
   2.599 +// 		flow->set(f, 0);
   2.600 +// 	      }
   2.601 +// 	    }
   2.602 +// 	  break;
   2.603 +// 	} //case PRE_FLOW
   2.604 +//       }
   2.605 +//     } //preflowPreproc
   2.606 +
   2.607 +
   2.608 +
   2.609 +//     void relabel(Node w, int newlevel, VecStack& active,
   2.610 +// 		 VecNode& level_list, NNMap& left,
   2.611 +// 		 NNMap& right, int& b, int& k, bool what_heur )
   2.612 +//     {
   2.613 +
   2.614 +//       //FIXME jacint: ez mitol num
   2.615 +// //      Num lev=level[w];
   2.616 +//       int lev=level[w];
   2.617 +
   2.618 +//       Node right_n=right[w];
   2.619 +//       Node left_n=left[w];
   2.620 +
   2.621 +//       //unlacing starts
   2.622 +//       if ( g->valid(right_n) ) {
   2.623 +// 	if ( g->valid(left_n) ) {
   2.624 +// 	  right.set(left_n, right_n);
   2.625 +// 	  left.set(right_n, left_n);
   2.626 +// 	} else {
   2.627 +// 	  level_list[lev]=right_n;
   2.628 +// 	  left.set(right_n, INVALID);
   2.629 +// 	}
   2.630 +//       } else {
   2.631 +// 	if ( g->valid(left_n) ) {
   2.632 +// 	  right.set(left_n, INVALID);
   2.633 +// 	} else {
   2.634 +// 	  level_list[lev]=INVALID;
   2.635 +// 	}
   2.636 +//       }
   2.637 +//       //unlacing ends
   2.638 +
   2.639 +//       if ( !g->valid(level_list[lev]) ) {
   2.640 +
   2.641 +// 	//gapping starts
   2.642 +// 	for (int i=lev; i!=k ; ) {
   2.643 +// 	  Node v=level_list[++i];
   2.644 +// 	  while ( g->valid(v) ) {
   2.645 +// 	    level.set(v,n);
   2.646 +// 	    v=right[v];
   2.647 +// 	  }
   2.648 +// 	  level_list[i]=INVALID;
   2.649 +// 	  if ( !what_heur ) {
   2.650 +// 	    while ( !active[i].empty() ) {
   2.651 +// 	      active[i].pop();    //FIXME: ezt szebben kene
   2.652 +// 	    }
   2.653 +// 	  }
   2.654 +// 	}
   2.655 +
   2.656 +// 	level.set(w,n);
   2.657 +// 	b=lev-1;
   2.658 +// 	k=b;
   2.659 +// 	//gapping ends
   2.660 +
   2.661 +//       } else {
   2.662 +
   2.663 +// 	if ( newlevel == n ) level.set(w,n);
   2.664 +// 	else {
   2.665 +// 	  level.set(w,++newlevel);
   2.666 +// 	  active[newlevel].push(w);
   2.667 +// 	  if ( what_heur ) b=newlevel;
   2.668 +// 	  if ( k < newlevel ) ++k;      //now k=newlevel
   2.669 +// 	  Node first=level_list[newlevel];
   2.670 +// 	  if ( g->valid(first) ) left.set(first,w);
   2.671 +// 	  right.set(w,first);
   2.672 +// 	  left.set(w,INVALID);
   2.673 +// 	  level_list[newlevel]=w;
   2.674 +// 	}
   2.675 +//       }
   2.676 +
   2.677 +//     } //relabel
   2.678 +
   2.679 +//   };
   2.680 +
   2.681 +
   2.682 +
   2.683 +//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.684 +//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   2.685 +//   {
   2.686 +
   2.687 +//     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   2.688 +//     int heur1=(int)(H1*n);  //time while running 'highest label'
   2.689 +//     int heur=heur1;         //starting time interval (#of relabels)
   2.690 +//     int numrelabel=0;
   2.691 +
   2.692 +//     bool what_heur=1;
   2.693 +//     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   2.694 +
   2.695 +//     bool end=false;
   2.696 +//     //Needed for 'bound decrease', true means no active nodes are above bound
   2.697 +//     //b.
   2.698 +
   2.699 +//     int k=n-2;  //bound on the highest level under n containing a node
   2.700 +//     int b=k;    //bound on the highest level under n of an active node
   2.701 +
   2.702 +//     VecStack active(n);
   2.703 +
   2.704 +//     NNMap left(*g, INVALID);
   2.705 +//     NNMap right(*g, INVALID);
   2.706 +//     VecNode level_list(n,INVALID);
   2.707 +//     //List of the nodes in level i<n, set to n.
   2.708 +
   2.709 +//     NodeIt v;
   2.710 +//     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   2.711 +//     //setting each node to level n
   2.712 +
   2.713 +//     if ( fe == NO_FLOW ) {
   2.714 +//       EdgeIt e;
   2.715 +//       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   2.716 +//     }
   2.717 +
   2.718 +//     switch (fe) { //computing the excess
   2.719 +//     case PRE_FLOW:
   2.720 +//       {
   2.721 +// 	NodeIt v;
   2.722 +// 	for(g->first(v); g->valid(v); g->next(v)) {
   2.723 +// 	  Num exc=0;
   2.724 +
   2.725 +// 	  InEdgeIt e;
   2.726 +// 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   2.727 +// 	  OutEdgeIt f;
   2.728 +// 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   2.729 +
   2.730 +// 	  excess.set(v,exc);
   2.731 +
   2.732 +// 	  //putting the active nodes into the stack
   2.733 +// 	  int lev=level[v];
   2.734 +// 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   2.735 +// 	}
   2.736 +// 	break;
   2.737 +//       }
   2.738 +//     case GEN_FLOW:
   2.739 +//       {
   2.740 +// 	NodeIt v;
   2.741 +// 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   2.742 +
   2.743 +// 	Num exc=0;
   2.744 +// 	InEdgeIt e;
   2.745 +// 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   2.746 +// 	OutEdgeIt f;
   2.747 +// 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   2.748 +// 	excess.set(t,exc);
   2.749 +// 	break;
   2.750 +//       }
   2.751 +//     case ZERO_FLOW:
   2.752 +//     case NO_FLOW:
   2.753 +//       {
   2.754 +// 	NodeIt v;
   2.755 +//         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   2.756 +// 	break;
   2.757 +//       }
   2.758 +//     }
   2.759 +
   2.760 +//     preflowPreproc(fe, active, level_list, left, right);
   2.761 +//     //End of preprocessing
   2.762 +
   2.763 +
   2.764 +//     //Push/relabel on the highest level active nodes.
   2.765 +//     while ( true ) {
   2.766 +//       if ( b == 0 ) {
   2.767 +// 	if ( !what_heur && !end && k > 0 ) {
   2.768 +// 	  b=k;
   2.769 +// 	  end=true;
   2.770 +// 	} else break;
   2.771 +//       }
   2.772 +
   2.773 +//       if ( active[b].empty() ) --b;
   2.774 +//       else {
   2.775 +// 	end=false;
   2.776 +// 	Node w=active[b].top();
   2.777 +// 	active[b].pop();
   2.778 +// 	int newlevel=push(w,active);
   2.779 +// 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   2.780 +// 				     left, right, b, k, what_heur);
   2.781 +
   2.782 +// 	++numrelabel;
   2.783 +// 	if ( numrelabel >= heur ) {
   2.784 +// 	  numrelabel=0;
   2.785 +// 	  if ( what_heur ) {
   2.786 +// 	    what_heur=0;
   2.787 +// 	    heur=heur0;
   2.788 +// 	    end=false;
   2.789 +// 	  } else {
   2.790 +// 	    what_heur=1;
   2.791 +// 	    heur=heur1;
   2.792 +// 	    b=k;
   2.793 +// 	  }
   2.794 +// 	}
   2.795 +//       }
   2.796 +//     }
   2.797 +
   2.798 +//     status=AFTER_PRE_FLOW_PHASE_1;
   2.799 +//   }
   2.800 +
   2.801 +
   2.802 +
   2.803 +//   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.804 +//   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   2.805 +//   {
   2.806 +
   2.807 +//     int k=n-2;  //bound on the highest level under n containing a node
   2.808 +//     int b=k;    //bound on the highest level under n of an active node
   2.809 +
   2.810 +//     VecStack active(n);
   2.811 +//     level.set(s,0);
   2.812 +//     std::queue<Node> bfs_queue;
   2.813 +//     bfs_queue.push(s);
   2.814 +
   2.815 +//     while (!bfs_queue.empty()) {
   2.816 +
   2.817 +//       Node v=bfs_queue.front();
   2.818 +//       bfs_queue.pop();
   2.819 +//       int l=level[v]+1;
   2.820 +
   2.821 +//       InEdgeIt e;
   2.822 +//       for(g->first(e,v); g->valid(e); g->next(e)) {
   2.823 +// 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   2.824 +// 	Node u=g->tail(e);
   2.825 +// 	if ( level[u] >= n ) {
   2.826 +// 	  bfs_queue.push(u);
   2.827 +// 	  level.set(u, l);
   2.828 +// 	  if ( excess[u] > 0 ) active[l].push(u);
   2.829 +// 	}
   2.830 +//       }
   2.831 +
   2.832 +//       OutEdgeIt f;
   2.833 +//       for(g->first(f,v); g->valid(f); g->next(f)) {
   2.834 +// 	if ( 0 >= (*flow)[f] ) continue;
   2.835 +// 	Node u=g->head(f);
   2.836 +// 	if ( level[u] >= n ) {
   2.837 +// 	  bfs_queue.push(u);
   2.838 +// 	  level.set(u, l);
   2.839 +// 	  if ( excess[u] > 0 ) active[l].push(u);
   2.840 +// 	}
   2.841 +//       }
   2.842 +//     }
   2.843 +//     b=n-2;
   2.844 +
   2.845 +//     while ( true ) {
   2.846 +
   2.847 +//       if ( b == 0 ) break;
   2.848 +
   2.849 +//       if ( active[b].empty() ) --b;
   2.850 +//       else {
   2.851 +// 	Node w=active[b].top();
   2.852 +// 	active[b].pop();
   2.853 +// 	int newlevel=push(w,active);
   2.854 +
   2.855 +// 	//relabel
   2.856 +// 	if ( excess[w] > 0 ) {
   2.857 +// 	  level.set(w,++newlevel);
   2.858 +// 	  active[newlevel].push(w);
   2.859 +// 	  b=newlevel;
   2.860 +// 	}
   2.861 +//       }  // if stack[b] is nonempty
   2.862 +//     } // while(true)
   2.863 +
   2.864 +//     status=AFTER_PRE_FLOW_PHASE_2;
   2.865 +//   }
   2.866 +
   2.867 +
   2.868 +  template <typename Graph, typename Num,
   2.869 +	    typename CapMap=typename Graph::template EdgeMap<Num>,
   2.870 +            typename FlowMap=typename Graph::template EdgeMap<Num> >
   2.871 +  class AugmentingFlow {
   2.872 +  protected:
   2.873 +    typedef typename Graph::Node Node;
   2.874 +    typedef typename Graph::NodeIt NodeIt;
   2.875 +    typedef typename Graph::EdgeIt EdgeIt;
   2.876 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
   2.877 +    typedef typename Graph::InEdgeIt InEdgeIt;
   2.878 +
   2.879 +//    typedef typename std::vector<std::stack<Node> > VecStack;
   2.880 +//    typedef typename Graph::template NodeMap<Node> NNMap;
   2.881 +//    typedef typename std::vector<Node> VecNode;
   2.882 +
   2.883 +    const Graph* g;
   2.884 +    Node s;
   2.885 +    Node t;
   2.886 +    const CapMap* capacity;
   2.887 +    FlowMap* flow;
   2.888 +//    int n;      //the number of nodes of G
   2.889 +    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
   2.890 +    //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
   2.891 +    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
   2.892 +    typedef typename ResGW::Edge ResGWEdge;
   2.893 +    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
   2.894 +    typedef typename Graph::template NodeMap<int> ReachedMap;
   2.895 +
   2.896 +
   2.897 +    //level works as a bool map in augmenting path algorithms and is
   2.898 +    //used by bfs for storing reached information.  In preflow, it
   2.899 +    //shows the levels of nodes.     
   2.900 +    ReachedMap level;
   2.901 +
   2.902 +    //excess is needed only in preflow
   2.903 +//    typename Graph::template NodeMap<Num> excess;
   2.904 +
   2.905 +    //fixme    
   2.906 +//   protected:
   2.907 +    //     MaxFlow() { }
   2.908 +    //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   2.909 +    // 	     FlowMap& _flow)
   2.910 +    //       {
   2.911 +    // 	g=&_G;
   2.912 +    // 	s=_s;
   2.913 +    // 	t=_t;
   2.914 +    // 	capacity=&_capacity;
   2.915 +    // 	flow=&_flow;
   2.916 +    // 	n=_G.nodeNum;
   2.917 +    // 	level.set (_G); //kellene vmi ilyesmi fv
   2.918 +    // 	excess(_G,0); //itt is
   2.919 +    //       }
   2.920 +
   2.921 +    // constants used for heuristics
   2.922 +//    static const int H0=20;
   2.923 +//    static const int H1=1;
   2.924 +
   2.925 +  public:
   2.926 +
   2.927 +    ///Indicates the property of the starting flow.
   2.928 +
   2.929 +    ///Indicates the property of the starting flow. The meanings are as follows:
   2.930 +    ///- \c ZERO_FLOW: constant zero flow
   2.931 +    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   2.932 +    ///the sum of the out-flows in every node except the \e source and
   2.933 +    ///the \e target.
   2.934 +    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   2.935 +    ///least the sum of the out-flows in every node except the \e source.
   2.936 +    ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   2.937 +    ///set to the constant zero flow in the beginning of the algorithm in this case.
   2.938 +    enum FlowEnum{
   2.939 +      ZERO_FLOW,
   2.940 +      GEN_FLOW,
   2.941 +      PRE_FLOW,
   2.942 +      NO_FLOW
   2.943 +    };
   2.944 +
   2.945 +    enum StatusEnum {
   2.946 +      AFTER_NOTHING,
   2.947 +      AFTER_AUGMENTING,
   2.948 +      AFTER_FAST_AUGMENTING, 
   2.949 +      AFTER_PRE_FLOW_PHASE_1,      
   2.950 +      AFTER_PRE_FLOW_PHASE_2
   2.951 +    };
   2.952 +
   2.953 +    /// Don not needle this flag only if necessary.
   2.954 +    StatusEnum status;
   2.955 +    int number_of_augmentations;
   2.956 +
   2.957 +
   2.958 +    template<typename IntMap>
   2.959 +    class TrickyReachedMap {
   2.960 +    protected:
   2.961 +      IntMap* map;
   2.962 +      int* number_of_augmentations;
   2.963 +    public:
   2.964 +      TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   2.965 +	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   2.966 +      void set(const Node& n, bool b) {
   2.967 +	if (b)
   2.968 +	  map->set(n, *number_of_augmentations);
   2.969 +	else 
   2.970 +	  map->set(n, *number_of_augmentations-1);
   2.971 +      }
   2.972 +      bool operator[](const Node& n) const { 
   2.973 +	return (*map)[n]==*number_of_augmentations; 
   2.974 +      }
   2.975 +    };
   2.976 +    
   2.977 +    AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   2.978 +		   FlowMap& _flow) :
   2.979 +      g(&_G), s(_s), t(_t), capacity(&_capacity),
   2.980 +      flow(&_flow), //n(_G.nodeNum()), 
   2.981 +      level(_G), //excess(_G,0), 
   2.982 +      status(AFTER_NOTHING), number_of_augmentations(0) { }
   2.983 +
   2.984 +    /// Starting from a flow, this method searches for an augmenting path
   2.985 +    /// according to the Edmonds-Karp algorithm
   2.986 +    /// and augments the flow on if any.
   2.987 +    /// The return value shows if the augmentation was succesful.
   2.988 +    bool augmentOnShortestPath();
   2.989 +    bool augmentOnShortestPath2();
   2.990 +
   2.991 +    /// Starting from a flow, this method searches for an augmenting blocking
   2.992 +    /// flow according to Dinits' algorithm and augments the flow on if any.
   2.993 +    /// The blocking flow is computed in a physically constructed
   2.994 +    /// residual graph of type \c Mutablegraph.
   2.995 +    /// The return value show sif the augmentation was succesful.
   2.996 +    template<typename MutableGraph> bool augmentOnBlockingFlow();
   2.997 +
   2.998 +    /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   2.999 +    /// residual graph is not constructed physically.
  2.1000 +    /// The return value shows if the augmentation was succesful.
  2.1001 +    bool augmentOnBlockingFlow2();
  2.1002 +
  2.1003 +    template<typename _CutMap>
  2.1004 +    void actMinCut(_CutMap& M) const {
  2.1005 +      NodeIt v;
  2.1006 +      switch (status) {
  2.1007 +	case AFTER_PRE_FLOW_PHASE_1:
  2.1008 +//	std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
  2.1009 +// 	for(g->first(v); g->valid(v); g->next(v)) {
  2.1010 +// 	  if (level[v] < n) {
  2.1011 +// 	    M.set(v, false);
  2.1012 +// 	  } else {
  2.1013 +// 	    M.set(v, true);
  2.1014 +// 	  }
  2.1015 +// 	}
  2.1016 +	break;
  2.1017 +      case AFTER_PRE_FLOW_PHASE_2:
  2.1018 +//	std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
  2.1019 +	break;
  2.1020 +      case AFTER_NOTHING:
  2.1021 +//	std::cout << "AFTER_NOTHING" << std::endl;
  2.1022 +	minMinCut(M);
  2.1023 +	break;
  2.1024 +      case AFTER_AUGMENTING:
  2.1025 +//	std::cout << "AFTER_AUGMENTING" << std::endl;
  2.1026 +	for(g->first(v); g->valid(v); g->next(v)) {
  2.1027 +	  if (level[v]) {
  2.1028 +	    M.set(v, true);
  2.1029 +	  } else {
  2.1030 +	    M.set(v, false);
  2.1031 +	  }
  2.1032 +	}
  2.1033 +	break;
  2.1034 +      case AFTER_FAST_AUGMENTING:
  2.1035 +//	std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
  2.1036 +	for(g->first(v); g->valid(v); g->next(v)) {
  2.1037 +	  if (level[v]==number_of_augmentations) {
  2.1038 +	    M.set(v, true);
  2.1039 +	  } else {
  2.1040 +	    M.set(v, false);
  2.1041 +	  }
  2.1042 +	}
  2.1043 +	break;
  2.1044 +      }
  2.1045 +    }
  2.1046 +
  2.1047 +    template<typename _CutMap>
  2.1048 +    void minMinCut(_CutMap& M) const {
  2.1049 +      std::queue<Node> queue;
  2.1050 +
  2.1051 +      M.set(s,true);
  2.1052 +      queue.push(s);
  2.1053 +
  2.1054 +      while (!queue.empty()) {
  2.1055 +        Node w=queue.front();
  2.1056 +	queue.pop();
  2.1057 +
  2.1058 +	OutEdgeIt e;
  2.1059 +	for(g->first(e,w) ; g->valid(e); g->next(e)) {
  2.1060 +	  Node v=g->head(e);
  2.1061 +	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
  2.1062 +	    queue.push(v);
  2.1063 +	    M.set(v, true);
  2.1064 +	  }
  2.1065 +	}
  2.1066 +
  2.1067 +	InEdgeIt f;
  2.1068 +	for(g->first(f,w) ; g->valid(f); g->next(f)) {
  2.1069 +	  Node v=g->tail(f);
  2.1070 +	  if (!M[v] && (*flow)[f] > 0 ) {
  2.1071 +	    queue.push(v);
  2.1072 +	    M.set(v, true);
  2.1073 +	  }
  2.1074 +	}
  2.1075 +      }
  2.1076 +    }
  2.1077 +
  2.1078 +    template<typename _CutMap>
  2.1079 +    void minMinCut2(_CutMap& M) const {
  2.1080 +      ResGW res_graph(*g, *capacity, *flow);
  2.1081 +      BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
  2.1082 +      bfs.pushAndSetReached(s);
  2.1083 +      while (!bfs.finished()) ++bfs;
  2.1084 +    }
  2.1085 +
  2.1086 +    Num flowValue() const {
  2.1087 +      Num a=0;
  2.1088 +      FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
  2.1089 +      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
  2.1090 +      return a;
  2.1091 +      //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
  2.1092 +    }
  2.1093 +
  2.1094 +    template<typename MapGraphWrapper>
  2.1095 +    class DistanceMap {
  2.1096 +    protected:
  2.1097 +      const MapGraphWrapper* g;
  2.1098 +      typename MapGraphWrapper::template NodeMap<int> dist;
  2.1099 +    public:
  2.1100 +      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
  2.1101 +      void set(const typename MapGraphWrapper::Node& n, int a) {
  2.1102 +	dist.set(n, a);
  2.1103 +      }
  2.1104 +      int operator[](const typename MapGraphWrapper::Node& n) const { 
  2.1105 +	return dist[n]; 
  2.1106 +      }
  2.1107 +      //       int get(const typename MapGraphWrapper::Node& n) const {
  2.1108 +      // 	return dist[n]; }
  2.1109 +      //       bool get(const typename MapGraphWrapper::Edge& e) const {
  2.1110 +      // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
  2.1111 +      bool operator[](const typename MapGraphWrapper::Edge& e) const {
  2.1112 +	return (dist[g->tail(e)]<dist[g->head(e)]);
  2.1113 +      }
  2.1114 +    };
  2.1115 +
  2.1116 +  };
  2.1117 +
  2.1118 +
  2.1119 +
  2.1120 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  2.1121 +  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
  2.1122 +  {
  2.1123 +    ResGW res_graph(*g, *capacity, *flow);
  2.1124 +    bool _augment=false;
  2.1125 +
  2.1126 +    //ReachedMap level(res_graph);
  2.1127 +    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  2.1128 +    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  2.1129 +    bfs.pushAndSetReached(s);
  2.1130 +
  2.1131 +    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
  2.1132 +    pred.set(s, INVALID);
  2.1133 +
  2.1134 +    typename ResGW::template NodeMap<Num> free(res_graph);
  2.1135 +
  2.1136 +    //searching for augmenting path
  2.1137 +    while ( !bfs.finished() ) {
  2.1138 +      ResGWOutEdgeIt e=bfs;
  2.1139 +      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  2.1140 +	Node v=res_graph.tail(e);
  2.1141 +	Node w=res_graph.head(e);
  2.1142 +	pred.set(w, e);
  2.1143 +	if (res_graph.valid(pred[v])) {
  2.1144 +	  free.set(w, std::min(free[v], res_graph.resCap(e)));
  2.1145 +	} else {
  2.1146 +	  free.set(w, res_graph.resCap(e));
  2.1147 +	}
  2.1148 +	if (res_graph.head(e)==t) { _augment=true; break; }
  2.1149 +      }
  2.1150 +
  2.1151 +      ++bfs;
  2.1152 +    } //end of searching augmenting path
  2.1153 +
  2.1154 +    if (_augment) {
  2.1155 +      Node n=t;
  2.1156 +      Num augment_value=free[t];
  2.1157 +      while (res_graph.valid(pred[n])) {
  2.1158 +	ResGWEdge e=pred[n];
  2.1159 +	res_graph.augment(e, augment_value);
  2.1160 +	n=res_graph.tail(e);
  2.1161 +      }
  2.1162 +    }
  2.1163 +
  2.1164 +    status=AFTER_AUGMENTING;
  2.1165 +    return _augment;
  2.1166 +  }
  2.1167 +
  2.1168 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  2.1169 +  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
  2.1170 +  {
  2.1171 +    ResGW res_graph(*g, *capacity, *flow);
  2.1172 +    bool _augment=false;
  2.1173 +
  2.1174 +    if (status!=AFTER_FAST_AUGMENTING) {
  2.1175 +      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
  2.1176 +      number_of_augmentations=1;
  2.1177 +    } else {
  2.1178 +      ++number_of_augmentations;
  2.1179 +    }
  2.1180 +    TrickyReachedMap<ReachedMap> 
  2.1181 +      tricky_reached_map(level, number_of_augmentations);
  2.1182 +    //ReachedMap level(res_graph);
  2.1183 +//    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  2.1184 +    BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
  2.1185 +      bfs(res_graph, tricky_reached_map);
  2.1186 +    bfs.pushAndSetReached(s);
  2.1187 +
  2.1188 +    typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
  2.1189 +    pred.set(s, INVALID);
  2.1190 +
  2.1191 +    typename ResGW::template NodeMap<Num> free(res_graph);
  2.1192 +
  2.1193 +    //searching for augmenting path
  2.1194 +    while ( !bfs.finished() ) {
  2.1195 +      ResGWOutEdgeIt e=bfs;
  2.1196 +      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  2.1197 +	Node v=res_graph.tail(e);
  2.1198 +	Node w=res_graph.head(e);
  2.1199 +	pred.set(w, e);
  2.1200 +	if (res_graph.valid(pred[v])) {
  2.1201 +	  free.set(w, std::min(free[v], res_graph.resCap(e)));
  2.1202 +	} else {
  2.1203 +	  free.set(w, res_graph.resCap(e));
  2.1204 +	}
  2.1205 +	if (res_graph.head(e)==t) { _augment=true; break; }
  2.1206 +      }
  2.1207 +
  2.1208 +      ++bfs;
  2.1209 +    } //end of searching augmenting path
  2.1210 +
  2.1211 +    if (_augment) {
  2.1212 +      Node n=t;
  2.1213 +      Num augment_value=free[t];
  2.1214 +      while (res_graph.valid(pred[n])) {
  2.1215 +	ResGWEdge e=pred[n];
  2.1216 +	res_graph.augment(e, augment_value);
  2.1217 +	n=res_graph.tail(e);
  2.1218 +      }
  2.1219 +    }
  2.1220 +
  2.1221 +    status=AFTER_FAST_AUGMENTING;
  2.1222 +    return _augment;
  2.1223 +  }
  2.1224 +
  2.1225 +
  2.1226 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  2.1227 +  template<typename MutableGraph>
  2.1228 +  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
  2.1229 +  {
  2.1230 +    typedef MutableGraph MG;
  2.1231 +    bool _augment=false;
  2.1232 +
  2.1233 +    ResGW res_graph(*g, *capacity, *flow);
  2.1234 +
  2.1235 +    //bfs for distances on the residual graph
  2.1236 +    //ReachedMap level(res_graph);
  2.1237 +    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  2.1238 +    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  2.1239 +    bfs.pushAndSetReached(s);
  2.1240 +    typename ResGW::template NodeMap<int>
  2.1241 +      dist(res_graph); //filled up with 0's
  2.1242 +
  2.1243 +    //F will contain the physical copy of the residual graph
  2.1244 +    //with the set of edges which are on shortest paths
  2.1245 +    MG F;
  2.1246 +    typename ResGW::template NodeMap<typename MG::Node>
  2.1247 +      res_graph_to_F(res_graph);
  2.1248 +    {
  2.1249 +      typename ResGW::NodeIt n;
  2.1250 +      for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  2.1251 +	res_graph_to_F.set(n, F.addNode());
  2.1252 +      }
  2.1253 +    }
  2.1254 +
  2.1255 +    typename MG::Node sF=res_graph_to_F[s];
  2.1256 +    typename MG::Node tF=res_graph_to_F[t];
  2.1257 +    typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  2.1258 +    typename MG::template EdgeMap<Num> residual_capacity(F);
  2.1259 +
  2.1260 +    while ( !bfs.finished() ) {
  2.1261 +      ResGWOutEdgeIt e=bfs;
  2.1262 +      if (res_graph.valid(e)) {
  2.1263 +	if (bfs.isBNodeNewlyReached()) {
  2.1264 +	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  2.1265 +	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  2.1266 +					res_graph_to_F[res_graph.head(e)]);
  2.1267 +	  original_edge.update();
  2.1268 +	  original_edge.set(f, e);
  2.1269 +	  residual_capacity.update();
  2.1270 +	  residual_capacity.set(f, res_graph.resCap(e));
  2.1271 +	} else {
  2.1272 +	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
  2.1273 +	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  2.1274 +					  res_graph_to_F[res_graph.head(e)]);
  2.1275 +	    original_edge.update();
  2.1276 +	    original_edge.set(f, e);
  2.1277 +	    residual_capacity.update();
  2.1278 +	    residual_capacity.set(f, res_graph.resCap(e));
  2.1279 +	  }
  2.1280 +	}
  2.1281 +      }
  2.1282 +      ++bfs;
  2.1283 +    } //computing distances from s in the residual graph
  2.1284 +
  2.1285 +    bool __augment=true;
  2.1286 +
  2.1287 +    while (__augment) {
  2.1288 +      __augment=false;
  2.1289 +      //computing blocking flow with dfs
  2.1290 +      DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  2.1291 +      typename MG::template NodeMap<typename MG::Edge> pred(F);
  2.1292 +      pred.set(sF, INVALID);
  2.1293 +      //invalid iterators for sources
  2.1294 +
  2.1295 +      typename MG::template NodeMap<Num> free(F);
  2.1296 +
  2.1297 +      dfs.pushAndSetReached(sF);
  2.1298 +      while (!dfs.finished()) {
  2.1299 +	++dfs;
  2.1300 +	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  2.1301 +	  if (dfs.isBNodeNewlyReached()) {
  2.1302 +	    typename MG::Node v=F.aNode(dfs);
  2.1303 +	    typename MG::Node w=F.bNode(dfs);
  2.1304 +	    pred.set(w, dfs);
  2.1305 +	    if (F.valid(pred[v])) {
  2.1306 +	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  2.1307 +	    } else {
  2.1308 +	      free.set(w, residual_capacity[dfs]);
  2.1309 +	    }
  2.1310 +	    if (w==tF) {
  2.1311 +	      __augment=true;
  2.1312 +	      _augment=true;
  2.1313 +	      break;
  2.1314 +	    }
  2.1315 +
  2.1316 +	  } else {
  2.1317 +	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  2.1318 +	  }
  2.1319 +	}
  2.1320 +      }
  2.1321 +
  2.1322 +      if (__augment) {
  2.1323 +	typename MG::Node n=tF;
  2.1324 +	Num augment_value=free[tF];
  2.1325 +	while (F.valid(pred[n])) {
  2.1326 +	  typename MG::Edge e=pred[n];
  2.1327 +	  res_graph.augment(original_edge[e], augment_value);
  2.1328 +	  n=F.tail(e);
  2.1329 +	  if (residual_capacity[e]==augment_value)
  2.1330 +	    F.erase(e);
  2.1331 +	  else
  2.1332 +	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  2.1333 +	}
  2.1334 +      }
  2.1335 +
  2.1336 +    }
  2.1337 +
  2.1338 +    status=AFTER_AUGMENTING;
  2.1339 +    return _augment;
  2.1340 +  }
  2.1341 +
  2.1342 +
  2.1343 +
  2.1344 +
  2.1345 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  2.1346 +  bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  2.1347 +  {
  2.1348 +    bool _augment=false;
  2.1349 +
  2.1350 +    ResGW res_graph(*g, *capacity, *flow);
  2.1351 +
  2.1352 +    //ReachedMap level(res_graph);
  2.1353 +    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  2.1354 +    BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  2.1355 +
  2.1356 +    bfs.pushAndSetReached(s);
  2.1357 +    DistanceMap<ResGW> dist(res_graph);
  2.1358 +    while ( !bfs.finished() ) {
  2.1359 +      ResGWOutEdgeIt e=bfs;
  2.1360 +      if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  2.1361 +	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  2.1362 +      }
  2.1363 +      ++bfs;
  2.1364 +    } //computing distances from s in the residual graph
  2.1365 +
  2.1366 +      //Subgraph containing the edges on some shortest paths
  2.1367 +    ConstMap<typename ResGW::Node, bool> true_map(true);
  2.1368 +    typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  2.1369 +      DistanceMap<ResGW> > FilterResGW;
  2.1370 +    FilterResGW filter_res_graph(res_graph, true_map, dist);
  2.1371 +
  2.1372 +    //Subgraph, which is able to delete edges which are already
  2.1373 +    //met by the dfs
  2.1374 +    typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  2.1375 +      first_out_edges(filter_res_graph);
  2.1376 +    typename FilterResGW::NodeIt v;
  2.1377 +    for(filter_res_graph.first(v); filter_res_graph.valid(v);
  2.1378 +	filter_res_graph.next(v))
  2.1379 +      {
  2.1380 + 	typename FilterResGW::OutEdgeIt e;
  2.1381 + 	filter_res_graph.first(e, v);
  2.1382 + 	first_out_edges.set(v, e);
  2.1383 +      }
  2.1384 +    typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  2.1385 +      template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  2.1386 +    ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  2.1387 +
  2.1388 +    bool __augment=true;
  2.1389 +
  2.1390 +    while (__augment) {
  2.1391 +
  2.1392 +      __augment=false;
  2.1393 +      //computing blocking flow with dfs
  2.1394 +      DfsIterator< ErasingResGW,
  2.1395 +	typename ErasingResGW::template NodeMap<bool> >
  2.1396 +	dfs(erasing_res_graph);
  2.1397 +      typename ErasingResGW::
  2.1398 +	template NodeMap<typename ErasingResGW::OutEdgeIt>
  2.1399 +	pred(erasing_res_graph);
  2.1400 +      pred.set(s, INVALID);
  2.1401 +      //invalid iterators for sources
  2.1402 +
  2.1403 +      typename ErasingResGW::template NodeMap<Num>
  2.1404 +	free1(erasing_res_graph);
  2.1405 +
  2.1406 +      dfs.pushAndSetReached
  2.1407 +	///\bug hugo 0.2
  2.1408 +	(typename ErasingResGW::Node
  2.1409 +	 (typename FilterResGW::Node
  2.1410 +	  (typename ResGW::Node(s)
  2.1411 +	   )
  2.1412 +	  )
  2.1413 +	 );
  2.1414 +      while (!dfs.finished()) {
  2.1415 +	++dfs;
  2.1416 +	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  2.1417 + 	  {
  2.1418 +  	    if (dfs.isBNodeNewlyReached()) {
  2.1419 +
  2.1420 + 	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  2.1421 + 	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  2.1422 +
  2.1423 + 	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  2.1424 + 	      if (erasing_res_graph.valid(pred[v])) {
  2.1425 + 		free1.set
  2.1426 +		  (w, std::min(free1[v], res_graph.resCap
  2.1427 +			       (typename ErasingResGW::OutEdgeIt(dfs))));
  2.1428 + 	      } else {
  2.1429 + 		free1.set
  2.1430 +		  (w, res_graph.resCap
  2.1431 +		   (typename ErasingResGW::OutEdgeIt(dfs)));
  2.1432 + 	      }
  2.1433 +
  2.1434 + 	      if (w==t) {
  2.1435 + 		__augment=true;
  2.1436 + 		_augment=true;
  2.1437 + 		break;
  2.1438 + 	      }
  2.1439 + 	    } else {
  2.1440 + 	      erasing_res_graph.erase(dfs);
  2.1441 +	    }
  2.1442 +	  }
  2.1443 +      }
  2.1444 +
  2.1445 +      if (__augment) {
  2.1446 +	typename ErasingResGW::Node
  2.1447 +	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  2.1448 +	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  2.1449 +	// 	  typename ResGW::Node b;
  2.1450 +	// 	  Num j=a[b];
  2.1451 +	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  2.1452 +	// 	  typename FilterResGW::Node b1;
  2.1453 +	// 	  Num j1=a1[b1];
  2.1454 +	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  2.1455 +	// 	  typename ErasingResGW::Node b2;
  2.1456 +	// 	  Num j2=a2[b2];
  2.1457 +	Num augment_value=free1[n];
  2.1458 +	while (erasing_res_graph.valid(pred[n])) {
  2.1459 +	  typename ErasingResGW::OutEdgeIt e=pred[n];
  2.1460 +	  res_graph.augment(e, augment_value);
  2.1461 +	  n=erasing_res_graph.tail(e);
  2.1462 +	  if (res_graph.resCap(e)==0)
  2.1463 +	    erasing_res_graph.erase(e);
  2.1464 +	}
  2.1465 +      }
  2.1466 +
  2.1467 +    } //while (__augment)
  2.1468 +
  2.1469 +    status=AFTER_AUGMENTING;
  2.1470 +    return _augment;
  2.1471 +  }
  2.1472 +
  2.1473 +
  2.1474 +} //namespace hugo
  2.1475 +
  2.1476 +#endif //HUGO_AUGMENTING_FLOW_H
  2.1477 +
  2.1478 +
  2.1479 +
  2.1480 +
     3.1 --- a/src/work/marci/bfs_dfs_misc.h	Tue Aug 17 10:24:19 2004 +0000
     3.2 +++ b/src/work/marci/bfs_dfs_misc.h	Tue Aug 17 11:20:16 2004 +0000
     3.3 @@ -11,7 +11,7 @@
     3.4  // ///\author Marton Makai
     3.5  
     3.6  #include <bfs_dfs.h>
     3.7 -#include <hugo/for_each_macros.h>
     3.8 +#include <for_each_macros.h>
     3.9  
    3.10  namespace hugo {
    3.11  
     4.1 --- a/src/work/marci/bfsit_vs_byhand.cc	Tue Aug 17 10:24:19 2004 +0000
     4.2 +++ b/src/work/marci/bfsit_vs_byhand.cc	Tue Aug 17 11:20:16 2004 +0000
     4.3 @@ -6,7 +6,7 @@
     4.4  //#include <smart_graph.h>
     4.5  #include <hugo/dimacs.h>
     4.6  #include <hugo/time_measure.h>
     4.7 -#include <hugo/for_each_macros.h>
     4.8 +//#include <hugo/for_each_macros.h>
     4.9  #include <bfs_dfs.h>
    4.10  
    4.11  using namespace hugo;
    4.12 @@ -21,7 +21,7 @@
    4.13  
    4.14    Graph g;
    4.15    Node s, t;
    4.16 -  Graph::EdgeMap<int> cap(g);
    4.17 +  //Graph::EdgeMap<int> cap(g);
    4.18    //readDimacsMaxFlow(std::cin, g, s, t, cap);
    4.19    readDimacs(std::cin, g);
    4.20  
     5.1 --- a/src/work/marci/bipartite_graph_wrapper.h	Tue Aug 17 10:24:19 2004 +0000
     5.2 +++ b/src/work/marci/bipartite_graph_wrapper.h	Tue Aug 17 11:20:16 2004 +0000
     5.3 @@ -13,6 +13,7 @@
     5.4  #include <hugo/invalid.h>
     5.5  #include <iter_map.h>
     5.6  #include <hugo/graph_wrapper.h>
     5.7 +#include <for_each_macros.h>
     5.8  
     5.9  namespace hugo {
    5.10  
     6.1 --- a/src/work/marci/bipartite_graph_wrapper_test.cc	Tue Aug 17 10:24:19 2004 +0000
     6.2 +++ b/src/work/marci/bipartite_graph_wrapper_test.cc	Tue Aug 17 11:20:16 2004 +0000
     6.3 @@ -7,12 +7,13 @@
     6.4  //#include <smart_graph.h>
     6.5  //#include <dimacs.h>
     6.6  #include <hugo/time_measure.h>
     6.7 -#include <hugo/for_each_macros.h>
     6.8 +#include <for_each_macros.h>
     6.9  #include <bfs_dfs.h>
    6.10  #include <hugo/graph_wrapper.h>
    6.11  #include <bipartite_graph_wrapper.h>
    6.12  #include <hugo/maps.h>
    6.13 -#include <max_flow.h>
    6.14 +#include <hugo/max_flow.h>
    6.15 +#include <augmenting_flow.h>
    6.16  
    6.17  using namespace hugo;
    6.18  
    6.19 @@ -133,7 +134,7 @@
    6.20      ++bfs_stgw; 
    6.21    }
    6.22    
    6.23 -  MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
    6.24 +  AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
    6.25      max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow);
    6.26    while (max_flow_test.augmentOnShortestPath()) { }
    6.27  
     7.1 --- a/src/work/marci/bipartite_matching_try.cc	Tue Aug 17 10:24:19 2004 +0000
     7.2 +++ b/src/work/marci/bipartite_matching_try.cc	Tue Aug 17 11:20:16 2004 +0000
     7.3 @@ -8,12 +8,13 @@
     7.4  //#include <smart_graph.h>
     7.5  //#include <dimacs.h>
     7.6  #include <hugo/time_measure.h>
     7.7 -#include <hugo/for_each_macros.h>
     7.8 +#include <for_each_macros.h>
     7.9  #include <bfs_dfs.h>
    7.10  #include <hugo/graph_wrapper.h>
    7.11  #include <bipartite_graph_wrapper.h>
    7.12  #include <hugo/maps.h>
    7.13 -#include <max_flow.h>
    7.14 +#include <hugo/max_flow.h>
    7.15 +#include <augmenting_flow.h>
    7.16  
    7.17  /**
    7.18   * Inicializalja a veletlenszamgeneratort.
    7.19 @@ -163,7 +164,7 @@
    7.20    Timer ts;
    7.21    ts.reset();
    7.22    stGW::EdgeMap<int> max_flow(stgw);
    7.23 -  MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
    7.24 +  AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
    7.25      max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, max_flow);
    7.26  //  while (max_flow_test.augmentOnShortestPath()) { }
    7.27    typedef SageGraph MutableGraph;
     8.1 --- a/src/work/marci/bipartite_matching_try_3.cc	Tue Aug 17 10:24:19 2004 +0000
     8.2 +++ b/src/work/marci/bipartite_matching_try_3.cc	Tue Aug 17 11:20:16 2004 +0000
     8.3 @@ -7,11 +7,11 @@
     8.4  //#include <smart_graph.h>
     8.5  //#include <dimacs.h>
     8.6  #include <hugo/time_measure.h>
     8.7 -#include <hugo/for_each_macros.h>
     8.8 +#include <for_each_macros.h>
     8.9  #include <bfs_dfs.h>
    8.10  #include <bipartite_graph_wrapper.h>
    8.11  #include <hugo/maps.h>
    8.12 -#include <max_flow.h>
    8.13 +#include <hugo/max_flow.h>
    8.14  #include <graph_gen.h>
    8.15  #include <max_bipartite_matching.h>
    8.16  
     9.1 --- a/src/work/marci/lg_vs_sg_vs_sg.cc	Tue Aug 17 10:24:19 2004 +0000
     9.2 +++ b/src/work/marci/lg_vs_sg_vs_sg.cc	Tue Aug 17 11:20:16 2004 +0000
     9.3 @@ -7,9 +7,10 @@
     9.4  #include <hugo/list_graph.h>
     9.5  #include <hugo/smart_graph.h>
     9.6  #include <hugo/dimacs.h>
     9.7 -#include <max_flow.h>
     9.8 +#include <hugo/max_flow.h>
     9.9 +#include <augmenting_flow.h>
    9.10  #include <hugo/time_measure.h>
    9.11 -#include <hugo/for_each_macros.h>
    9.12 +#include <for_each_macros.h>
    9.13  
    9.14  using namespace hugo;
    9.15  
    9.16 @@ -37,6 +38,8 @@
    9.17      Graph::EdgeMap<int> flow(g); //0 flow
    9.18      MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
    9.19        max_flow_test(g, s, t, cap, flow/*, true*/);
    9.20 +    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
    9.21 +      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
    9.22  
    9.23      std::cout << "SageGraph ..." << std::endl;
    9.24  
    9.25 @@ -53,10 +56,10 @@
    9.26        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
    9.27        ts.reset();
    9.28        int i=0;
    9.29 -      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
    9.30 +      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
    9.31        std::cout << "elapsed time: " << ts << std::endl;
    9.32        std::cout << "number of augmentation phases: " << i << std::endl; 
    9.33 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    9.34 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
    9.35      }
    9.36  
    9.37  //     {
    9.38 @@ -75,10 +78,10 @@
    9.39        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
    9.40        ts.reset();
    9.41        int i=0;
    9.42 -      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
    9.43 +      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
    9.44        std::cout << "elapsed time: " << ts << std::endl;
    9.45        std::cout << "number of augmentation phases: " << i << std::endl; 
    9.46 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    9.47 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
    9.48      }
    9.49  
    9.50      {
    9.51 @@ -86,10 +89,10 @@
    9.52        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
    9.53        ts.reset();
    9.54        int i=0;
    9.55 -      while (max_flow_test.augmentOnShortestPath()) { ++i; }
    9.56 +      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
    9.57        std::cout << "elapsed time: " << ts << std::endl;
    9.58        std::cout << "number of augmentation phases: " << i << std::endl; 
    9.59 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    9.60 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
    9.61      }
    9.62    }
    9.63  
    9.64 @@ -109,6 +112,8 @@
    9.65      Graph::EdgeMap<int> flow(g); //0 flow
    9.66      MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
    9.67        max_flow_test(g, s, t, cap, flow/*, true*/);
    9.68 +    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
    9.69 +      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
    9.70      //    MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
    9.71      //  max_flow_test(g, s, t, cap, flow);
    9.72  
    9.73 @@ -128,10 +133,10 @@
    9.74        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
    9.75        ts.reset();
    9.76        int i=0;
    9.77 -      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
    9.78 +      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
    9.79        std::cout << "elapsed time: " << ts << std::endl;
    9.80        std::cout << "number of augmentation phases: " << i << std::endl; 
    9.81 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    9.82 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
    9.83      }
    9.84  
    9.85  //     {
    9.86 @@ -150,10 +155,10 @@
    9.87        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
    9.88        ts.reset();
    9.89        int i=0;
    9.90 -      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
    9.91 +      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
    9.92        std::cout << "elapsed time: " << ts << std::endl;
    9.93        std::cout << "number of augmentation phases: " << i << std::endl; 
    9.94 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    9.95 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
    9.96      }
    9.97  
    9.98      {
    9.99 @@ -161,10 +166,10 @@
   9.100        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   9.101        ts.reset();
   9.102        int i=0;
   9.103 -      while (max_flow_test.augmentOnShortestPath()) { ++i; }
   9.104 +      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
   9.105        std::cout << "elapsed time: " << ts << std::endl;
   9.106        std::cout << "number of augmentation phases: " << i << std::endl; 
   9.107 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   9.108 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   9.109      }
   9.110    }
   9.111  
   9.112 @@ -184,6 +189,8 @@
   9.113      Graph::EdgeMap<int> flow(g); //0 flow
   9.114      MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
   9.115        max_flow_test(g, s, t, cap, flow/*, true*/);
   9.116 +    AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
   9.117 +      augmenting_flow_test(g, s, t, cap, flow/*, true*/);
   9.118      //    MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
   9.119      //  max_flow_test(g, s, t, cap, flow);
   9.120  
   9.121 @@ -203,10 +210,10 @@
   9.122        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   9.123        ts.reset();
   9.124        int i=0;
   9.125 -      while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
   9.126 +      while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
   9.127        std::cout << "elapsed time: " << ts << std::endl;
   9.128        std::cout << "number of augmentation phases: " << i << std::endl; 
   9.129 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   9.130 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   9.131      }
   9.132  
   9.133  //     {
   9.134 @@ -225,10 +232,10 @@
   9.135        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   9.136        ts.reset();
   9.137        int i=0;
   9.138 -      while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
   9.139 +      while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
   9.140        std::cout << "elapsed time: " << ts << std::endl;
   9.141        std::cout << "number of augmentation phases: " << i << std::endl; 
   9.142 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   9.143 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   9.144      }
   9.145  
   9.146      {
   9.147 @@ -236,15 +243,12 @@
   9.148        FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   9.149        ts.reset();
   9.150        int i=0;
   9.151 -      while (max_flow_test.augmentOnShortestPath()) { ++i; }
   9.152 +      while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
   9.153        std::cout << "elapsed time: " << ts << std::endl;
   9.154        std::cout << "number of augmentation phases: " << i << std::endl; 
   9.155 -      std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   9.156 +      std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   9.157      }
   9.158    }
   9.159  
   9.160 -
   9.161 -
   9.162 -
   9.163    return 0;
   9.164  }
    10.1 --- a/src/work/marci/macro_test.cc	Tue Aug 17 10:24:19 2004 +0000
    10.2 +++ b/src/work/marci/macro_test.cc	Tue Aug 17 11:20:16 2004 +0000
    10.3 @@ -3,7 +3,7 @@
    10.4  #include <fstream>
    10.5  
    10.6  #include <sage_graph.h>
    10.7 -#include <hugo/for_each_macros.h>
    10.8 +#include <for_each_macros.h>
    10.9  
   10.10  using namespace hugo;
   10.11  
    11.1 --- a/src/work/marci/makefile	Tue Aug 17 10:24:19 2004 +0000
    11.2 +++ b/src/work/marci/makefile	Tue Aug 17 11:20:16 2004 +0000
    11.3 @@ -1,10 +1,11 @@
    11.4  CXX2 = g++-2.95
    11.5  CXX3=$(CXX)
    11.6  BOOSTROOT ?= /home/marci/boost
    11.7 -INCLUDEDIRS ?= -I../.. -I.. -I../{marci,jacint,alpar,klao,akos,athos} -I$(BOOSTROOT)
    11.8 +INCLUDEDIRS ?= -I../{jacint,marci,alpar,klao,akos,athos} -I../.. -I.. -I$(BOOSTROOT)
    11.9  
   11.10  LEDABINARIES = leda_graph_demo leda_bfs_dfs max_bipartite_matching_demo
   11.11  BINARIES = max_flow_demo iterator_bfs_demo macro_test lg_vs_sg_vs_sg bfsit_vs_byhand bipartite_graph_wrapper_test bipartite_matching_try bipartite_matching_try_3 top_sort_test max_flow_1
   11.12 +#BINARIES = preflow_bug
   11.13  #gw_vs_not preflow_demo_boost edmonds_karp_demo_boost preflow_demo_jacint preflow_demo_athos edmonds_karp_demo_alpar preflow_demo_leda
   11.14  
   11.15  include ../makefile
    12.1 --- a/src/work/marci/max_bipartite_matching.h	Tue Aug 17 10:24:19 2004 +0000
    12.2 +++ b/src/work/marci/max_bipartite_matching.h	Tue Aug 17 11:20:16 2004 +0000
    12.3 @@ -15,7 +15,7 @@
    12.4  //#include <for_each_macros.h>
    12.5  #include <bipartite_graph_wrapper.h>
    12.6  //#include <hugo/maps.h>
    12.7 -#include <max_flow.h>
    12.8 +#include <hugo/max_flow.h>
    12.9  
   12.10  namespace hugo {
   12.11  
    13.1 --- a/src/work/marci/max_flow_1.cc	Tue Aug 17 10:24:19 2004 +0000
    13.2 +++ b/src/work/marci/max_flow_1.cc	Tue Aug 17 11:20:16 2004 +0000
    13.3 @@ -7,9 +7,9 @@
    13.4  #include <hugo/dimacs.h>
    13.5  #include <hugo/time_measure.h>
    13.6  //#include <graph_wrapper.h>
    13.7 -#include <max_flow.h>
    13.8 +#include <hugo/max_flow.h>
    13.9  //#include <preflow_res.h>
   13.10 -#include <hugo/for_each_macros.h>
   13.11 +#include <for_each_macros.h>
   13.12  
   13.13  using namespace hugo;
   13.14  
    14.1 --- a/src/work/marci/max_flow_demo.cc	Tue Aug 17 10:24:19 2004 +0000
    14.2 +++ b/src/work/marci/max_flow_demo.cc	Tue Aug 17 11:20:16 2004 +0000
    14.3 @@ -7,9 +7,10 @@
    14.4  #include <hugo/dimacs.h>
    14.5  #include <hugo/time_measure.h>
    14.6  //#include <graph_wrapper.h>
    14.7 -#include <max_flow.h>
    14.8 +#include <hugo/max_flow.h>
    14.9 +#include <augmenting_flow.h>
   14.10  //#include <preflow_res.h>
   14.11 -#include <hugo/for_each_macros.h>
   14.12 +#include <for_each_macros.h>
   14.13  #include <graph_concept.h>
   14.14  
   14.15  using namespace hugo;
   14.16 @@ -38,8 +39,8 @@
   14.17    typedef SageGraph MutableGraph;
   14.18  
   14.19    //typedef FullFeatureGraphConcept Graph;
   14.20 -  typedef SmartGraph Graph;
   14.21 -  //  typedef SageGraph Graph;
   14.22 +  //typedef SmartGraph Graph;
   14.23 +  typedef SageGraph Graph;
   14.24    typedef Graph::Node Node;
   14.25    typedef Graph::EdgeIt EdgeIt;
   14.26  
   14.27 @@ -75,6 +76,9 @@
   14.28    Graph::EdgeMap<int> flow(g); //0 flow
   14.29    MaxFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
   14.30      max_flow_test(g, s, t, cap, flow);
   14.31 +  AugmentingFlow<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > 
   14.32 +    augmenting_flow_test(g, s, t, cap, flow);
   14.33 +  
   14.34    Graph::NodeMap<bool> cut(g);
   14.35  
   14.36    {
   14.37 @@ -123,10 +127,10 @@
   14.38      FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   14.39      ts.reset();
   14.40      int i=0;
   14.41 -    while (max_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
   14.42 +    while (augmenting_flow_test.augmentOnBlockingFlow<MutableGraph>()) { ++i; }
   14.43      std::cout << "elapsed time: " << ts << std::endl;
   14.44      std::cout << "number of augmentation phases: " << i << std::endl; 
   14.45 -    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   14.46 +    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   14.47  
   14.48      FOR_EACH_LOC(Graph::EdgeIt, e, g) {
   14.49        if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
   14.50 @@ -152,10 +156,10 @@
   14.51      FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   14.52      ts.reset();
   14.53      int i=0;
   14.54 -    while (max_flow_test.augmentOnBlockingFlow2()) { ++i; }
   14.55 +    while (augmenting_flow_test.augmentOnBlockingFlow2()) { ++i; }
   14.56      std::cout << "elapsed time: " << ts << std::endl;
   14.57      std::cout << "number of augmentation phases: " << i << std::endl; 
   14.58 -    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   14.59 +    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   14.60  
   14.61      FOR_EACH_LOC(Graph::EdgeIt, e, g) {
   14.62        if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
   14.63 @@ -170,10 +174,10 @@
   14.64      FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   14.65      ts.reset();
   14.66      int i=0;
   14.67 -    while (max_flow_test.augmentOnShortestPath()) { ++i; }
   14.68 +    while (augmenting_flow_test.augmentOnShortestPath()) { ++i; }
   14.69      std::cout << "elapsed time: " << ts << std::endl;
   14.70      std::cout << "number of augmentation phases: " << i << std::endl; 
   14.71 -    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   14.72 +    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   14.73  
   14.74      FOR_EACH_LOC(Graph::EdgeIt, e, g) {
   14.75        if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
   14.76 @@ -188,10 +192,10 @@
   14.77      FOR_EACH_LOC(Graph::EdgeIt, e, g) flow.set(e, 0);
   14.78      ts.reset();
   14.79      int i=0;
   14.80 -    while (max_flow_test.augmentOnShortestPath2()) { ++i; }
   14.81 +    while (augmenting_flow_test.augmentOnShortestPath2()) { ++i; }
   14.82      std::cout << "elapsed time: " << ts << std::endl;
   14.83      std::cout << "number of augmentation phases: " << i << std::endl; 
   14.84 -    std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
   14.85 +    std::cout << "flow value: "<< augmenting_flow_test.flowValue() << std::endl;
   14.86  
   14.87      FOR_EACH_LOC(Graph::EdgeIt, e, g) {
   14.88        if (cut[g.tail(e)] && !cut[g.head(e)] && !flow[e]==cap[e]) 
    15.1 --- a/src/work/marci/top_sort_test.cc	Tue Aug 17 10:24:19 2004 +0000
    15.2 +++ b/src/work/marci/top_sort_test.cc	Tue Aug 17 11:20:16 2004 +0000
    15.3 @@ -8,7 +8,7 @@
    15.4  #include <sage_graph.h>
    15.5  #include <hugo/graph_wrapper.h>
    15.6  #include <hugo/maps.h>
    15.7 -#include <hugo/for_each_macros.h>
    15.8 +#include <for_each_macros.h>
    15.9  
   15.10  using namespace hugo;
   15.11