Some doc added
authoralpar
Sun, 21 Mar 2004 14:59:51 +0000 (2004-03-21)
changeset 2245bc1c83257f8
parent 223 02948c4c68e1
child 225 b72b36a25170
Some doc added
src/work/alpar/dijkstra/bin_heap.hh
src/work/alpar/dijkstra/dijkstra.h
src/work/alpar/dijkstra/fib_heap.h
     1.1 --- a/src/work/alpar/dijkstra/bin_heap.hh	Sun Mar 21 14:58:48 2004 +0000
     1.2 +++ b/src/work/alpar/dijkstra/bin_heap.hh	Sun Mar 21 14:59:51 2004 +0000
     1.3 @@ -65,6 +65,7 @@
     1.4  
     1.5  namespace hugo {
     1.6  
     1.7 +  /// A Binary Heap implementation.
     1.8    template <typename Key, typename Val, typename KeyIntMap,
     1.9  	    typename Compare = std::less<Val> >
    1.10    class BinHeap {
     2.1 --- a/src/work/alpar/dijkstra/dijkstra.h	Sun Mar 21 14:58:48 2004 +0000
     2.2 +++ b/src/work/alpar/dijkstra/dijkstra.h	Sun Mar 21 14:59:51 2004 +0000
     2.3 @@ -32,14 +32,37 @@
     2.4  namespace hugo {
     2.5    
     2.6    //Alpar: Changed the order of the parameters
     2.7 +  
     2.8 +  ///Dijkstra algorithm class.
     2.9 +
    2.10 +  ///This class provides an efficient implementation of Dijkstra algorithm.
    2.11 +  ///The edge lengths are passed to the algorithm using a
    2.12 +  ///\ref ReadMapSkeleton "readable map",
    2.13 +  ///so it is easy to change it to any kind of length.
    2.14 +  ///
    2.15 +  ///The type of the length is determined by the \c ValueType of the length map.
    2.16 +  ///
    2.17 +  ///It is also posible to change the underlying priority heap.
    2.18 +  ///
    2.19 +  ///\param Graph The graph type the algorithm runs on.
    2.20 +  ///\param LengthMap This read-only EdgeMap determines the
    2.21 +  ///lengths of the edges. It is read once for each edge, so the map
    2.22 +  ///may involve in relatively time consuming process to compute the edge
    2.23 +  ///length if it is necessary.
    2.24 +  ///\param Heap The heap type used by the Dijkstra
    2.25 +  ///algorithm. The default
    2.26 +  ///is using \ref BinHeap "binary heap".
    2.27    template <typename Graph,
    2.28  	    typename LengthMap=typename Graph::EdgeMap<int>,
    2.29 -	    typename Heap=FibHeap<typename Graph::Node,
    2.30 +	    typename Heap=BinHeap<typename Graph::Node,
    2.31  				  typename LengthMap::ValueType, 
    2.32  				  typename Graph::NodeMap<int> > >
    2.33    class Dijkstra{
    2.34    public:
    2.35      typedef typename LengthMap::ValueType ValueType;
    2.36 +    typedef typename Graph::NodeMap<Edge> PredMap;
    2.37 +    typedef typename Graph::NodeMap<Node> PredNodeMap;
    2.38 +    typedef typename Graph::NodeMap<ValueType> DistMap;
    2.39  
    2.40    private:
    2.41      typedef typename Graph::Node Node;
    2.42 @@ -49,12 +72,9 @@
    2.43      
    2.44      const Graph& G;
    2.45      const LengthMap& length;
    2.46 -    typedef typename Graph::NodeMap<Edge> PredMap;
    2.47      PredMap predecessor;
    2.48      //In place of reach:
    2.49 -    typedef typename Graph::NodeMap<Node> PredNodeMap;
    2.50      PredNodeMap pred_node;
    2.51 -    typedef typename Graph::NodeMap<ValueType> DistMap;
    2.52      DistMap distance;
    2.53      //I don't like this:
    2.54      //     //FIXME:
    2.55 @@ -72,30 +92,76 @@
    2.56  
    2.57      void run(Node s);
    2.58      
    2.59 +    ///The distance of a node from the source.
    2.60 +
    2.61 +    ///Returns the distance of a node from the source.
    2.62 +    ///\pre \ref run() must be called before using this function.
    2.63 +    ///\warning If node \c v in unreachable from \c s the return value
    2.64 +    ///of this funcion is undefined.
    2.65      ValueType dist(Node v) const { return distance[v]; }
    2.66 +    ///Returns the edges of the shortest path tree.
    2.67 +
    2.68 +    ///For a node \c v it returns the last edge of the shortest path
    2.69 +    ///from \c s to \c v or INVALID if \c v is unreachable from \c s.
    2.70 +    ///\pre \ref run() must be called before using this function.
    2.71      Edge pred(Node v) const { return predecessor[v]; }
    2.72 +    ///Returns the nodes of the shortest paths.
    2.73 +
    2.74 +    ///For a node \c v it returns the last but one node of the shortest path
    2.75 +    ///from \c s to \c v or INVALID if \c v is unreachable from \c s.
    2.76 +    ///\pre \ref run() must be called before using this function.
    2.77      Node predNode(Node v) const { return pred_node[v]; }
    2.78      
    2.79 +    ///Returns a reference to the NodeMap of distances.
    2.80 +
    2.81 +    ///\pre \ref run() must be called before using this function.
    2.82 +    ///
    2.83      const DistMap &distMap() const { return distance;}
    2.84 +    ///Returns a reference to the shortest path tree map.
    2.85 +
    2.86 +    ///Returns a reference to the NodeMap of the edges of the
    2.87 +    ///shortest path tree.
    2.88 +    ///\pre \ref run() must be called before using this function.
    2.89      const PredMap &predMap() const { return predecessor;}
    2.90 +    ///Returns a reference to the map of nodes of  shortest paths.
    2.91 +
    2.92 +    ///Returns a reference to the NodeMap of the last but one nodes of the
    2.93 +    ///shortest paths.
    2.94 +    ///\pre \ref run() must be called before using this function.
    2.95      const PredNodeMap &predNodeMap() const { return pred_node;}
    2.96  
    2.97      //    bool reached(Node v) { return reach[v]; }
    2.98 -    ///\warning \c s is not reached!
    2.99 +
   2.100 +    ///Chech if a node is reachable from \c s.
   2.101 +
   2.102 +    ///Returns \c true if \c v is reachable from \c s.
   2.103 +    ///\warning \c s is reported to be unreached!
   2.104 +    ///\todo Is this what we want?
   2.105 +    ///\pre \ref run() must be called before using this function.
   2.106      ///
   2.107      bool reached(Node v) { return G.valid(predecessor[v]); }
   2.108      
   2.109    };
   2.110    
   2.111  
   2.112 -  // IMPLEMENTATIONS
   2.113 +  // **********************************************************************
   2.114 +  //  IMPLEMENTATIONS
   2.115 +  // **********************************************************************
   2.116  
   2.117 +  ///Runs Dijkstra algorithm from node \c s.
   2.118 +
   2.119 +  ///This method runs the Dijkstra algorithm from node \c s in order to
   2.120 +  ///compute the
   2.121 +  ///shortest path to each node. The algorithm computes
   2.122 +  ///- The shortest path tree.
   2.123 +  ///- The distance of each node.
   2.124    template <typename Graph, typename LengthMap, typename Heap >
   2.125    void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   2.126      
   2.127      NodeIt u;
   2.128      for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   2.129        predecessor.set(u,INVALID);
   2.130 +      pred_node.set(u,INVALID);
   2.131        // If a node is unreacheable, then why should be the dist=0?
   2.132        // distance.set(u,0);
   2.133        //      reach.set(u,false);
     3.1 --- a/src/work/alpar/dijkstra/fib_heap.h	Sun Mar 21 14:58:48 2004 +0000
     3.2 +++ b/src/work/alpar/dijkstra/fib_heap.h	Sun Mar 21 14:59:51 2004 +0000
     3.3 @@ -57,11 +57,11 @@
     3.4  
     3.5  namespace hugo {
     3.6    
     3.7 +  /// A Fibonacci Heap implementation.
     3.8    template <typename Item, typename Prio, typename ItemIntMap, 
     3.9 -    typename Compare = std::less<Prio> >
    3.10 - 
    3.11 +	    typename Compare = std::less<Prio> >
    3.12    class FibHeap {
    3.13 -  
    3.14 +    
    3.15      typedef Prio PrioType;
    3.16      
    3.17      class store;