1.1 --- a/src/work/marci/augmenting_flow.h Thu Sep 16 10:59:30 2004 +0000
1.2 +++ b/src/work/marci/augmenting_flow.h Thu Sep 16 10:59:52 2004 +0000
1.3 @@ -3,15 +3,14 @@
1.4 #define HUGO_AUGMENTING_FLOW_H
1.5
1.6 #include <vector>
1.7 -#include <queue>
1.8 -#include <stack>
1.9 +//#include <queue>
1.10 +//#include <stack>
1.11 #include <iostream>
1.12
1.13 #include <hugo/graph_wrapper.h>
1.14 #include <bfs_dfs.h>
1.15 #include <hugo/invalid.h>
1.16 #include <hugo/maps.h>
1.17 -//#include <for_each_macros.h>
1.18
1.19 /// \file
1.20 /// \brief Maximum flow algorithms.
1.21 @@ -19,849 +18,68 @@
1.22
1.23 namespace hugo {
1.24
1.25 + /// \brief A map for filtering the edge-set to those edges
1.26 + /// which are tight w.r.t. some node_potential map and
1.27 + /// edge_distance map.
1.28 + ///
1.29 + /// A node-map node_potential is said to be a potential w.r.t.
1.30 + /// an edge-map edge_distance
1.31 + /// if and only if for each edge e, node_potential[g.head(e)]
1.32 + /// <= edge_distance[e]+node_potential[g.tail(e)]
1.33 + /// (or the reverse inequality holds for each edge).
1.34 + /// An edge is said to be tight if this inequality holds with equality,
1.35 + /// and the map returns true exactly for those edges.
1.36 + /// To avoid rounding errors, it is recommended to use this class with exact
1.37 + /// types, e.g. with int.
1.38 + template<typename Graph,
1.39 + typename NodePotentialMap, typename EdgeDistanceMap>
1.40 + class TightEdgeFilterMap {
1.41 + protected:
1.42 + const Graph* g;
1.43 + NodePotentialMap* node_potential;
1.44 + EdgeDistanceMap* edge_distance;
1.45 + public:
1.46 + TightEdgeFilterMap(Graph& _g, NodePotentialMap& _node_potential,
1.47 + EdgeDistanceMap& _edge_distance) :
1.48 + g(&_g), node_potential(&_node_potential),
1.49 + edge_distance(&_edge_distance) { }
1.50 +// void set(const typename Graph::Node& n, int a) {
1.51 +// pot->set(n, a);
1.52 +// }
1.53 +// int operator[](const typename Graph::Node& n) const {
1.54 +// return (*node_potential)[n];
1.55 +// }
1.56 + bool operator[](const typename Graph::Edge& e) const {
1.57 + return ((*node_potential)[g->head(e)] ==
1.58 + (*edge_distance)[e]+(*node_potential)[g->tail(e)]);
1.59 + }
1.60 + };
1.61 +
1.62 /// \addtogroup galgs
1.63 /// @{
1.64 - ///Maximum flow algorithms class.
1.65 + /// Class for augmenting path flow algorithms.
1.66
1.67 - ///This class provides various algorithms for finding a flow of
1.68 - ///maximum value in a directed graph. The \e source node, the \e
1.69 - ///target node, the \e capacity of the edges and the \e starting \e
1.70 - ///flow value of the edges should be passed to the algorithm through the
1.71 - ///constructor. It is possible to change these quantities using the
1.72 - ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
1.73 - ///\ref resetFlow. Before any subsequent runs of any algorithm of
1.74 - ///the class \ref resetFlow should be called.
1.75 + /// This class provides various algorithms for finding a flow of
1.76 + /// maximum value in a directed graph. The \e source node, the \e
1.77 + /// target node, the \e capacity of the edges and the \e starting \e
1.78 + /// flow value of the edges should be passed to the algorithm through the
1.79 + /// constructor.
1.80 +// /// It is possible to change these quantities using the
1.81 +// /// functions \ref resetSource, \ref resetTarget, \ref resetCap and
1.82 +// /// \ref resetFlow. Before any subsequent runs of any algorithm of
1.83 +// /// the class \ref resetFlow should be called.
1.84
1.85 - ///After running an algorithm of the class, the actual flow value
1.86 - ///can be obtained by calling \ref flowValue(). The minimum
1.87 - ///value cut can be written into a \c node map of \c bools by
1.88 - ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
1.89 - ///the inclusionwise minimum and maximum of the minimum value
1.90 - ///cuts, resp.)
1.91 + /// After running an algorithm of the class, the actual flow value
1.92 + /// can be obtained by calling \ref flowValue(). The minimum
1.93 + /// value cut can be written into a \c node map of \c bools by
1.94 + /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
1.95 + /// the inclusionwise minimum and maximum of the minimum value
1.96 + /// cuts, resp.)
1.97 ///\param Graph The directed graph type the algorithm runs on.
1.98 ///\param Num The number type of the capacities and the flow values.
1.99 ///\param CapMap The capacity map type.
1.100 ///\param FlowMap The flow map type.
1.101 - ///\author Marton Makai, Jacint Szabo
1.102 -// template <typename Graph, typename Num,
1.103 -// typename CapMap=typename Graph::template EdgeMap<Num>,
1.104 -// typename FlowMap=typename Graph::template EdgeMap<Num> >
1.105 -// class MaxFlow {
1.106 -// protected:
1.107 -// typedef typename Graph::Node Node;
1.108 -// typedef typename Graph::NodeIt NodeIt;
1.109 -// typedef typename Graph::EdgeIt EdgeIt;
1.110 -// typedef typename Graph::OutEdgeIt OutEdgeIt;
1.111 -// typedef typename Graph::InEdgeIt InEdgeIt;
1.112 -
1.113 -// typedef typename std::vector<std::stack<Node> > VecStack;
1.114 -// typedef typename Graph::template NodeMap<Node> NNMap;
1.115 -// typedef typename std::vector<Node> VecNode;
1.116 -
1.117 -// const Graph* g;
1.118 -// Node s;
1.119 -// Node t;
1.120 -// const CapMap* capacity;
1.121 -// FlowMap* flow;
1.122 -// int n; //the number of nodes of G
1.123 -// typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
1.124 -// //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
1.125 -// typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
1.126 -// typedef typename ResGW::Edge ResGWEdge;
1.127 -// //typedef typename ResGW::template NodeMap<bool> ReachedMap;
1.128 -// typedef typename Graph::template NodeMap<int> ReachedMap;
1.129 -
1.130 -
1.131 -// //level works as a bool map in augmenting path algorithms and is
1.132 -// //used by bfs for storing reached information. In preflow, it
1.133 -// //shows the levels of nodes.
1.134 -// ReachedMap level;
1.135 -
1.136 -// //excess is needed only in preflow
1.137 -// typename Graph::template NodeMap<Num> excess;
1.138 -
1.139 -// //fixme
1.140 -// // protected:
1.141 -// // MaxFlow() { }
1.142 -// // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
1.143 -// // FlowMap& _flow)
1.144 -// // {
1.145 -// // g=&_G;
1.146 -// // s=_s;
1.147 -// // t=_t;
1.148 -// // capacity=&_capacity;
1.149 -// // flow=&_flow;
1.150 -// // n=_G.nodeNum;
1.151 -// // level.set (_G); //kellene vmi ilyesmi fv
1.152 -// // excess(_G,0); //itt is
1.153 -// // }
1.154 -
1.155 -// // constants used for heuristics
1.156 -// static const int H0=20;
1.157 -// static const int H1=1;
1.158 -
1.159 -// public:
1.160 -
1.161 -// ///Indicates the property of the starting flow.
1.162 -
1.163 -// ///Indicates the property of the starting flow. The meanings are as follows:
1.164 -// ///- \c ZERO_FLOW: constant zero flow
1.165 -// ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
1.166 -// ///the sum of the out-flows in every node except the \e source and
1.167 -// ///the \e target.
1.168 -// ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
1.169 -// ///least the sum of the out-flows in every node except the \e source.
1.170 -// ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
1.171 -// ///set to the constant zero flow in the beginning of the algorithm in this case.
1.172 -// enum FlowEnum{
1.173 -// ZERO_FLOW,
1.174 -// GEN_FLOW,
1.175 -// PRE_FLOW,
1.176 -// NO_FLOW
1.177 -// };
1.178 -
1.179 -// enum StatusEnum {
1.180 -// AFTER_NOTHING,
1.181 -// AFTER_AUGMENTING,
1.182 -// AFTER_FAST_AUGMENTING,
1.183 -// AFTER_PRE_FLOW_PHASE_1,
1.184 -// AFTER_PRE_FLOW_PHASE_2
1.185 -// };
1.186 -
1.187 -// /// Don not needle this flag only if necessary.
1.188 -// StatusEnum status;
1.189 -// // int number_of_augmentations;
1.190 -
1.191 -
1.192 -// // template<typename IntMap>
1.193 -// // class TrickyReachedMap {
1.194 -// // protected:
1.195 -// // IntMap* map;
1.196 -// // int* number_of_augmentations;
1.197 -// // public:
1.198 -// // TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
1.199 -// // map(&_map), number_of_augmentations(&_number_of_augmentations) { }
1.200 -// // void set(const Node& n, bool b) {
1.201 -// // if (b)
1.202 -// // map->set(n, *number_of_augmentations);
1.203 -// // else
1.204 -// // map->set(n, *number_of_augmentations-1);
1.205 -// // }
1.206 -// // bool operator[](const Node& n) const {
1.207 -// // return (*map)[n]==*number_of_augmentations;
1.208 -// // }
1.209 -// // };
1.210 -
1.211 -// MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
1.212 -// FlowMap& _flow) :
1.213 -// g(&_G), s(_s), t(_t), capacity(&_capacity),
1.214 -// flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),
1.215 -// status(AFTER_NOTHING) { }
1.216 -
1.217 -// ///Runs a maximum flow algorithm.
1.218 -
1.219 -// ///Runs a preflow algorithm, which is the fastest maximum flow
1.220 -// ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
1.221 -// ///\pre The starting flow must be
1.222 -// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
1.223 -// /// - an arbitary flow if \c fe is \c GEN_FLOW,
1.224 -// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
1.225 -// /// - any map if \c fe is NO_FLOW.
1.226 -// void run(FlowEnum fe=ZERO_FLOW) {
1.227 -// preflow(fe);
1.228 -// }
1.229 -
1.230 -
1.231 -// ///Runs a preflow algorithm.
1.232 -
1.233 -// ///Runs a preflow algorithm. The preflow algorithms provide the
1.234 -// ///fastest way to compute a maximum flow in a directed graph.
1.235 -// ///\pre The starting flow must be
1.236 -// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
1.237 -// /// - an arbitary flow if \c fe is \c GEN_FLOW,
1.238 -// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
1.239 -// /// - any map if \c fe is NO_FLOW.
1.240 -// void preflow(FlowEnum fe) {
1.241 -// preflowPhase1(fe);
1.242 -// preflowPhase2();
1.243 -// }
1.244 -// // Heuristics:
1.245 -// // 2 phase
1.246 -// // gap
1.247 -// // list 'level_list' on the nodes on level i implemented by hand
1.248 -// // stack 'active' on the active nodes on level i
1.249 -// // runs heuristic 'highest label' for H1*n relabels
1.250 -// // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
1.251 -// // Parameters H0 and H1 are initialized to 20 and 1.
1.252 -
1.253 -// ///Runs the first phase of the preflow algorithm.
1.254 -
1.255 -// ///The preflow algorithm consists of two phases, this method runs the
1.256 -// ///first phase. After the first phase the maximum flow value and a
1.257 -// ///minimum value cut can already be computed, though a maximum flow
1.258 -// ///is net yet obtained. So after calling this method \ref flowValue
1.259 -// ///and \ref actMinCut gives proper results.
1.260 -// ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
1.261 -// ///give minimum value cuts unless calling \ref preflowPhase2.
1.262 -// ///\pre The starting flow must be
1.263 -// /// - a constant zero flow if \c fe is \c ZERO_FLOW,
1.264 -// /// - an arbitary flow if \c fe is \c GEN_FLOW,
1.265 -// /// - an arbitary preflow if \c fe is \c PRE_FLOW,
1.266 -// /// - any map if \c fe is NO_FLOW.
1.267 -// void preflowPhase1(FlowEnum fe);
1.268 -
1.269 -// ///Runs the second phase of the preflow algorithm.
1.270 -
1.271 -// ///The preflow algorithm consists of two phases, this method runs
1.272 -// ///the second phase. After calling \ref preflowPhase1 and then
1.273 -// ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
1.274 -// ///\ref minMinCut and \ref maxMinCut give proper results.
1.275 -// ///\pre \ref preflowPhase1 must be called before.
1.276 -// void preflowPhase2();
1.277 -
1.278 -// /// Returns the maximum value of a flow.
1.279 -
1.280 -// /// Returns the maximum value of a flow, by counting the
1.281 -// /// over-flow of the target node \ref t.
1.282 -// /// It can be called already after running \ref preflowPhase1.
1.283 -// Num flowValue() const {
1.284 -// Num a=0;
1.285 -// FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
1.286 -// FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
1.287 -// return a;
1.288 -// //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan
1.289 -// }
1.290 -
1.291 -// ///Returns a minimum value cut after calling \ref preflowPhase1.
1.292 -
1.293 -// ///After the first phase of the preflow algorithm the maximum flow
1.294 -// ///value and a minimum value cut can already be computed. This
1.295 -// ///method can be called after running \ref preflowPhase1 for
1.296 -// ///obtaining a minimum value cut.
1.297 -// /// \warning Gives proper result only right after calling \ref
1.298 -// /// preflowPhase1.
1.299 -// /// \todo We have to make some status variable which shows the
1.300 -// /// actual state
1.301 -// /// of the class. This enables us to determine which methods are valid
1.302 -// /// for MinCut computation
1.303 -// template<typename _CutMap>
1.304 -// void actMinCut(_CutMap& M) const {
1.305 -// NodeIt v;
1.306 -// switch (status) {
1.307 -// case AFTER_PRE_FLOW_PHASE_1:
1.308 -// for(g->first(v); g->valid(v); g->next(v)) {
1.309 -// if (level[v] < n) {
1.310 -// M.set(v, false);
1.311 -// } else {
1.312 -// M.set(v, true);
1.313 -// }
1.314 -// }
1.315 -// break;
1.316 -// case AFTER_PRE_FLOW_PHASE_2:
1.317 -// case AFTER_NOTHING:
1.318 -// case AFTER_AUGMENTING:
1.319 -// case AFTER_FAST_AUGMENTING:
1.320 -// minMinCut(M);
1.321 -// break;
1.322 -// // case AFTER_AUGMENTING:
1.323 -// // for(g->first(v); g->valid(v); g->next(v)) {
1.324 -// // if (level[v]) {
1.325 -// // M.set(v, true);
1.326 -// // } else {
1.327 -// // M.set(v, false);
1.328 -// // }
1.329 -// // }
1.330 -// // break;
1.331 -// // case AFTER_FAST_AUGMENTING:
1.332 -// // for(g->first(v); g->valid(v); g->next(v)) {
1.333 -// // if (level[v]==number_of_augmentations) {
1.334 -// // M.set(v, true);
1.335 -// // } else {
1.336 -// // M.set(v, false);
1.337 -// // }
1.338 -// // }
1.339 -// // break;
1.340 -// }
1.341 -// }
1.342 -
1.343 -// ///Returns the inclusionwise minimum of the minimum value cuts.
1.344 -
1.345 -// ///Sets \c M to the characteristic vector of the minimum value cut
1.346 -// ///which is inclusionwise minimum. It is computed by processing
1.347 -// ///a bfs from the source node \c s in the residual graph.
1.348 -// ///\pre M should be a node map of bools initialized to false.
1.349 -// ///\pre \c flow must be a maximum flow.
1.350 -// template<typename _CutMap>
1.351 -// void minMinCut(_CutMap& M) const {
1.352 -// std::queue<Node> queue;
1.353 -
1.354 -// M.set(s,true);
1.355 -// queue.push(s);
1.356 -
1.357 -// while (!queue.empty()) {
1.358 -// Node w=queue.front();
1.359 -// queue.pop();
1.360 -
1.361 -// OutEdgeIt e;
1.362 -// for(g->first(e,w) ; g->valid(e); g->next(e)) {
1.363 -// Node v=g->head(e);
1.364 -// if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
1.365 -// queue.push(v);
1.366 -// M.set(v, true);
1.367 -// }
1.368 -// }
1.369 -
1.370 -// InEdgeIt f;
1.371 -// for(g->first(f,w) ; g->valid(f); g->next(f)) {
1.372 -// Node v=g->tail(f);
1.373 -// if (!M[v] && (*flow)[f] > 0 ) {
1.374 -// queue.push(v);
1.375 -// M.set(v, true);
1.376 -// }
1.377 -// }
1.378 -// }
1.379 -// }
1.380 -
1.381 -// ///Returns the inclusionwise maximum of the minimum value cuts.
1.382 -
1.383 -// ///Sets \c M to the characteristic vector of the minimum value cut
1.384 -// ///which is inclusionwise maximum. It is computed by processing a
1.385 -// ///backward bfs from the target node \c t in the residual graph.
1.386 -// ///\pre M should be a node map of bools initialized to false.
1.387 -// ///\pre \c flow must be a maximum flow.
1.388 -// template<typename _CutMap>
1.389 -// void maxMinCut(_CutMap& M) const {
1.390 -
1.391 -// NodeIt v;
1.392 -// for(g->first(v) ; g->valid(v); g->next(v)) {
1.393 -// M.set(v, true);
1.394 -// }
1.395 -
1.396 -// std::queue<Node> queue;
1.397 -
1.398 -// M.set(t,false);
1.399 -// queue.push(t);
1.400 -
1.401 -// while (!queue.empty()) {
1.402 -// Node w=queue.front();
1.403 -// queue.pop();
1.404 -
1.405 -// InEdgeIt e;
1.406 -// for(g->first(e,w) ; g->valid(e); g->next(e)) {
1.407 -// Node v=g->tail(e);
1.408 -// if (M[v] && (*flow)[e] < (*capacity)[e] ) {
1.409 -// queue.push(v);
1.410 -// M.set(v, false);
1.411 -// }
1.412 -// }
1.413 -
1.414 -// OutEdgeIt f;
1.415 -// for(g->first(f,w) ; g->valid(f); g->next(f)) {
1.416 -// Node v=g->head(f);
1.417 -// if (M[v] && (*flow)[f] > 0 ) {
1.418 -// queue.push(v);
1.419 -// M.set(v, false);
1.420 -// }
1.421 -// }
1.422 -// }
1.423 -// }
1.424 -
1.425 -// ///Returns a minimum value cut.
1.426 -
1.427 -// ///Sets \c M to the characteristic vector of a minimum value cut.
1.428 -// ///\pre M should be a node map of bools initialized to false.
1.429 -// ///\pre \c flow must be a maximum flow.
1.430 -// template<typename CutMap>
1.431 -// void minCut(CutMap& M) const { minMinCut(M); }
1.432 -
1.433 -// ///Resets the source node to \c _s.
1.434 -
1.435 -// ///Resets the source node to \c _s.
1.436 -// ///
1.437 -// void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
1.438 -
1.439 -// ///Resets the target node to \c _t.
1.440 -
1.441 -// ///Resets the target node to \c _t.
1.442 -// ///
1.443 -// void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
1.444 -
1.445 -// /// Resets the edge map of the capacities to _cap.
1.446 -
1.447 -// /// Resets the edge map of the capacities to _cap.
1.448 -// ///
1.449 -// void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
1.450 -
1.451 -// /// Resets the edge map of the flows to _flow.
1.452 -
1.453 -// /// Resets the edge map of the flows to _flow.
1.454 -// ///
1.455 -// void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
1.456 -
1.457 -
1.458 -// private:
1.459 -
1.460 -// int push(Node w, VecStack& active) {
1.461 -
1.462 -// int lev=level[w];
1.463 -// Num exc=excess[w];
1.464 -// int newlevel=n; //bound on the next level of w
1.465 -
1.466 -// OutEdgeIt e;
1.467 -// for(g->first(e,w); g->valid(e); g->next(e)) {
1.468 -
1.469 -// if ( (*flow)[e] >= (*capacity)[e] ) continue;
1.470 -// Node v=g->head(e);
1.471 -
1.472 -// if( lev > level[v] ) { //Push is allowed now
1.473 -
1.474 -// if ( excess[v]<=0 && v!=t && v!=s ) {
1.475 -// int lev_v=level[v];
1.476 -// active[lev_v].push(v);
1.477 -// }
1.478 -
1.479 -// Num cap=(*capacity)[e];
1.480 -// Num flo=(*flow)[e];
1.481 -// Num remcap=cap-flo;
1.482 -
1.483 -// if ( remcap >= exc ) { //A nonsaturating push.
1.484 -
1.485 -// flow->set(e, flo+exc);
1.486 -// excess.set(v, excess[v]+exc);
1.487 -// exc=0;
1.488 -// break;
1.489 -
1.490 -// } else { //A saturating push.
1.491 -// flow->set(e, cap);
1.492 -// excess.set(v, excess[v]+remcap);
1.493 -// exc-=remcap;
1.494 -// }
1.495 -// } else if ( newlevel > level[v] ) newlevel = level[v];
1.496 -// } //for out edges wv
1.497 -
1.498 -// if ( exc > 0 ) {
1.499 -// InEdgeIt e;
1.500 -// for(g->first(e,w); g->valid(e); g->next(e)) {
1.501 -
1.502 -// if( (*flow)[e] <= 0 ) continue;
1.503 -// Node v=g->tail(e);
1.504 -
1.505 -// if( lev > level[v] ) { //Push is allowed now
1.506 -
1.507 -// if ( excess[v]<=0 && v!=t && v!=s ) {
1.508 -// int lev_v=level[v];
1.509 -// active[lev_v].push(v);
1.510 -// }
1.511 -
1.512 -// Num flo=(*flow)[e];
1.513 -
1.514 -// if ( flo >= exc ) { //A nonsaturating push.
1.515 -
1.516 -// flow->set(e, flo-exc);
1.517 -// excess.set(v, excess[v]+exc);
1.518 -// exc=0;
1.519 -// break;
1.520 -// } else { //A saturating push.
1.521 -
1.522 -// excess.set(v, excess[v]+flo);
1.523 -// exc-=flo;
1.524 -// flow->set(e,0);
1.525 -// }
1.526 -// } else if ( newlevel > level[v] ) newlevel = level[v];
1.527 -// } //for in edges vw
1.528 -
1.529 -// } // if w still has excess after the out edge for cycle
1.530 -
1.531 -// excess.set(w, exc);
1.532 -
1.533 -// return newlevel;
1.534 -// }
1.535 -
1.536 -
1.537 -// void preflowPreproc(FlowEnum fe, VecStack& active,
1.538 -// VecNode& level_list, NNMap& left, NNMap& right)
1.539 -// {
1.540 -// std::queue<Node> bfs_queue;
1.541 -
1.542 -// switch (fe) {
1.543 -// case NO_FLOW: //flow is already set to const zero in this case
1.544 -// case ZERO_FLOW:
1.545 -// {
1.546 -// //Reverse_bfs from t, to find the starting level.
1.547 -// level.set(t,0);
1.548 -// bfs_queue.push(t);
1.549 -
1.550 -// while (!bfs_queue.empty()) {
1.551 -
1.552 -// Node v=bfs_queue.front();
1.553 -// bfs_queue.pop();
1.554 -// int l=level[v]+1;
1.555 -
1.556 -// InEdgeIt e;
1.557 -// for(g->first(e,v); g->valid(e); g->next(e)) {
1.558 -// Node w=g->tail(e);
1.559 -// if ( level[w] == n && w != s ) {
1.560 -// bfs_queue.push(w);
1.561 -// Node first=level_list[l];
1.562 -// if ( g->valid(first) ) left.set(first,w);
1.563 -// right.set(w,first);
1.564 -// level_list[l]=w;
1.565 -// level.set(w, l);
1.566 -// }
1.567 -// }
1.568 -// }
1.569 -
1.570 -// //the starting flow
1.571 -// OutEdgeIt e;
1.572 -// for(g->first(e,s); g->valid(e); g->next(e))
1.573 -// {
1.574 -// Num c=(*capacity)[e];
1.575 -// if ( c <= 0 ) continue;
1.576 -// Node w=g->head(e);
1.577 -// if ( level[w] < n ) {
1.578 -// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
1.579 -// flow->set(e, c);
1.580 -// excess.set(w, excess[w]+c);
1.581 -// }
1.582 -// }
1.583 -// break;
1.584 -// }
1.585 -
1.586 -// case GEN_FLOW:
1.587 -// case PRE_FLOW:
1.588 -// {
1.589 -// //Reverse_bfs from t in the residual graph,
1.590 -// //to find the starting level.
1.591 -// level.set(t,0);
1.592 -// bfs_queue.push(t);
1.593 -
1.594 -// while (!bfs_queue.empty()) {
1.595 -
1.596 -// Node v=bfs_queue.front();
1.597 -// bfs_queue.pop();
1.598 -// int l=level[v]+1;
1.599 -
1.600 -// InEdgeIt e;
1.601 -// for(g->first(e,v); g->valid(e); g->next(e)) {
1.602 -// if ( (*capacity)[e] <= (*flow)[e] ) continue;
1.603 -// Node w=g->tail(e);
1.604 -// if ( level[w] == n && w != s ) {
1.605 -// bfs_queue.push(w);
1.606 -// Node first=level_list[l];
1.607 -// if ( g->valid(first) ) left.set(first,w);
1.608 -// right.set(w,first);
1.609 -// level_list[l]=w;
1.610 -// level.set(w, l);
1.611 -// }
1.612 -// }
1.613 -
1.614 -// OutEdgeIt f;
1.615 -// for(g->first(f,v); g->valid(f); g->next(f)) {
1.616 -// if ( 0 >= (*flow)[f] ) continue;
1.617 -// Node w=g->head(f);
1.618 -// if ( level[w] == n && w != s ) {
1.619 -// bfs_queue.push(w);
1.620 -// Node first=level_list[l];
1.621 -// if ( g->valid(first) ) left.set(first,w);
1.622 -// right.set(w,first);
1.623 -// level_list[l]=w;
1.624 -// level.set(w, l);
1.625 -// }
1.626 -// }
1.627 -// }
1.628 -
1.629 -
1.630 -// //the starting flow
1.631 -// OutEdgeIt e;
1.632 -// for(g->first(e,s); g->valid(e); g->next(e))
1.633 -// {
1.634 -// Num rem=(*capacity)[e]-(*flow)[e];
1.635 -// if ( rem <= 0 ) continue;
1.636 -// Node w=g->head(e);
1.637 -// if ( level[w] < n ) {
1.638 -// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
1.639 -// flow->set(e, (*capacity)[e]);
1.640 -// excess.set(w, excess[w]+rem);
1.641 -// }
1.642 -// }
1.643 -
1.644 -// InEdgeIt f;
1.645 -// for(g->first(f,s); g->valid(f); g->next(f))
1.646 -// {
1.647 -// if ( (*flow)[f] <= 0 ) continue;
1.648 -// Node w=g->tail(f);
1.649 -// if ( level[w] < n ) {
1.650 -// if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
1.651 -// excess.set(w, excess[w]+(*flow)[f]);
1.652 -// flow->set(f, 0);
1.653 -// }
1.654 -// }
1.655 -// break;
1.656 -// } //case PRE_FLOW
1.657 -// }
1.658 -// } //preflowPreproc
1.659 -
1.660 -
1.661 -
1.662 -// void relabel(Node w, int newlevel, VecStack& active,
1.663 -// VecNode& level_list, NNMap& left,
1.664 -// NNMap& right, int& b, int& k, bool what_heur )
1.665 -// {
1.666 -
1.667 -// //FIXME jacint: ez mitol num
1.668 -// // Num lev=level[w];
1.669 -// int lev=level[w];
1.670 -
1.671 -// Node right_n=right[w];
1.672 -// Node left_n=left[w];
1.673 -
1.674 -// //unlacing starts
1.675 -// if ( g->valid(right_n) ) {
1.676 -// if ( g->valid(left_n) ) {
1.677 -// right.set(left_n, right_n);
1.678 -// left.set(right_n, left_n);
1.679 -// } else {
1.680 -// level_list[lev]=right_n;
1.681 -// left.set(right_n, INVALID);
1.682 -// }
1.683 -// } else {
1.684 -// if ( g->valid(left_n) ) {
1.685 -// right.set(left_n, INVALID);
1.686 -// } else {
1.687 -// level_list[lev]=INVALID;
1.688 -// }
1.689 -// }
1.690 -// //unlacing ends
1.691 -
1.692 -// if ( !g->valid(level_list[lev]) ) {
1.693 -
1.694 -// //gapping starts
1.695 -// for (int i=lev; i!=k ; ) {
1.696 -// Node v=level_list[++i];
1.697 -// while ( g->valid(v) ) {
1.698 -// level.set(v,n);
1.699 -// v=right[v];
1.700 -// }
1.701 -// level_list[i]=INVALID;
1.702 -// if ( !what_heur ) {
1.703 -// while ( !active[i].empty() ) {
1.704 -// active[i].pop(); //FIXME: ezt szebben kene
1.705 -// }
1.706 -// }
1.707 -// }
1.708 -
1.709 -// level.set(w,n);
1.710 -// b=lev-1;
1.711 -// k=b;
1.712 -// //gapping ends
1.713 -
1.714 -// } else {
1.715 -
1.716 -// if ( newlevel == n ) level.set(w,n);
1.717 -// else {
1.718 -// level.set(w,++newlevel);
1.719 -// active[newlevel].push(w);
1.720 -// if ( what_heur ) b=newlevel;
1.721 -// if ( k < newlevel ) ++k; //now k=newlevel
1.722 -// Node first=level_list[newlevel];
1.723 -// if ( g->valid(first) ) left.set(first,w);
1.724 -// right.set(w,first);
1.725 -// left.set(w,INVALID);
1.726 -// level_list[newlevel]=w;
1.727 -// }
1.728 -// }
1.729 -
1.730 -// } //relabel
1.731 -
1.732 -// };
1.733 -
1.734 -
1.735 -
1.736 -// template <typename Graph, typename Num, typename CapMap, typename FlowMap>
1.737 -// void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
1.738 -// {
1.739 -
1.740 -// int heur0=(int)(H0*n); //time while running 'bound decrease'
1.741 -// int heur1=(int)(H1*n); //time while running 'highest label'
1.742 -// int heur=heur1; //starting time interval (#of relabels)
1.743 -// int numrelabel=0;
1.744 -
1.745 -// bool what_heur=1;
1.746 -// //It is 0 in case 'bound decrease' and 1 in case 'highest label'
1.747 -
1.748 -// bool end=false;
1.749 -// //Needed for 'bound decrease', true means no active nodes are above bound
1.750 -// //b.
1.751 -
1.752 -// int k=n-2; //bound on the highest level under n containing a node
1.753 -// int b=k; //bound on the highest level under n of an active node
1.754 -
1.755 -// VecStack active(n);
1.756 -
1.757 -// NNMap left(*g, INVALID);
1.758 -// NNMap right(*g, INVALID);
1.759 -// VecNode level_list(n,INVALID);
1.760 -// //List of the nodes in level i<n, set to n.
1.761 -
1.762 -// NodeIt v;
1.763 -// for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
1.764 -// //setting each node to level n
1.765 -
1.766 -// if ( fe == NO_FLOW ) {
1.767 -// EdgeIt e;
1.768 -// for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
1.769 -// }
1.770 -
1.771 -// switch (fe) { //computing the excess
1.772 -// case PRE_FLOW:
1.773 -// {
1.774 -// NodeIt v;
1.775 -// for(g->first(v); g->valid(v); g->next(v)) {
1.776 -// Num exc=0;
1.777 -
1.778 -// InEdgeIt e;
1.779 -// for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
1.780 -// OutEdgeIt f;
1.781 -// for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
1.782 -
1.783 -// excess.set(v,exc);
1.784 -
1.785 -// //putting the active nodes into the stack
1.786 -// int lev=level[v];
1.787 -// if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
1.788 -// }
1.789 -// break;
1.790 -// }
1.791 -// case GEN_FLOW:
1.792 -// {
1.793 -// NodeIt v;
1.794 -// for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
1.795 -
1.796 -// Num exc=0;
1.797 -// InEdgeIt e;
1.798 -// for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
1.799 -// OutEdgeIt f;
1.800 -// for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
1.801 -// excess.set(t,exc);
1.802 -// break;
1.803 -// }
1.804 -// case ZERO_FLOW:
1.805 -// case NO_FLOW:
1.806 -// {
1.807 -// NodeIt v;
1.808 -// for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
1.809 -// break;
1.810 -// }
1.811 -// }
1.812 -
1.813 -// preflowPreproc(fe, active, level_list, left, right);
1.814 -// //End of preprocessing
1.815 -
1.816 -
1.817 -// //Push/relabel on the highest level active nodes.
1.818 -// while ( true ) {
1.819 -// if ( b == 0 ) {
1.820 -// if ( !what_heur && !end && k > 0 ) {
1.821 -// b=k;
1.822 -// end=true;
1.823 -// } else break;
1.824 -// }
1.825 -
1.826 -// if ( active[b].empty() ) --b;
1.827 -// else {
1.828 -// end=false;
1.829 -// Node w=active[b].top();
1.830 -// active[b].pop();
1.831 -// int newlevel=push(w,active);
1.832 -// if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
1.833 -// left, right, b, k, what_heur);
1.834 -
1.835 -// ++numrelabel;
1.836 -// if ( numrelabel >= heur ) {
1.837 -// numrelabel=0;
1.838 -// if ( what_heur ) {
1.839 -// what_heur=0;
1.840 -// heur=heur0;
1.841 -// end=false;
1.842 -// } else {
1.843 -// what_heur=1;
1.844 -// heur=heur1;
1.845 -// b=k;
1.846 -// }
1.847 -// }
1.848 -// }
1.849 -// }
1.850 -
1.851 -// status=AFTER_PRE_FLOW_PHASE_1;
1.852 -// }
1.853 -
1.854 -
1.855 -
1.856 -// template <typename Graph, typename Num, typename CapMap, typename FlowMap>
1.857 -// void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
1.858 -// {
1.859 -
1.860 -// int k=n-2; //bound on the highest level under n containing a node
1.861 -// int b=k; //bound on the highest level under n of an active node
1.862 -
1.863 -// VecStack active(n);
1.864 -// level.set(s,0);
1.865 -// std::queue<Node> bfs_queue;
1.866 -// bfs_queue.push(s);
1.867 -
1.868 -// while (!bfs_queue.empty()) {
1.869 -
1.870 -// Node v=bfs_queue.front();
1.871 -// bfs_queue.pop();
1.872 -// int l=level[v]+1;
1.873 -
1.874 -// InEdgeIt e;
1.875 -// for(g->first(e,v); g->valid(e); g->next(e)) {
1.876 -// if ( (*capacity)[e] <= (*flow)[e] ) continue;
1.877 -// Node u=g->tail(e);
1.878 -// if ( level[u] >= n ) {
1.879 -// bfs_queue.push(u);
1.880 -// level.set(u, l);
1.881 -// if ( excess[u] > 0 ) active[l].push(u);
1.882 -// }
1.883 -// }
1.884 -
1.885 -// OutEdgeIt f;
1.886 -// for(g->first(f,v); g->valid(f); g->next(f)) {
1.887 -// if ( 0 >= (*flow)[f] ) continue;
1.888 -// Node u=g->head(f);
1.889 -// if ( level[u] >= n ) {
1.890 -// bfs_queue.push(u);
1.891 -// level.set(u, l);
1.892 -// if ( excess[u] > 0 ) active[l].push(u);
1.893 -// }
1.894 -// }
1.895 -// }
1.896 -// b=n-2;
1.897 -
1.898 -// while ( true ) {
1.899 -
1.900 -// if ( b == 0 ) break;
1.901 -
1.902 -// if ( active[b].empty() ) --b;
1.903 -// else {
1.904 -// Node w=active[b].top();
1.905 -// active[b].pop();
1.906 -// int newlevel=push(w,active);
1.907 -
1.908 -// //relabel
1.909 -// if ( excess[w] > 0 ) {
1.910 -// level.set(w,++newlevel);
1.911 -// active[newlevel].push(w);
1.912 -// b=newlevel;
1.913 -// }
1.914 -// } // if stack[b] is nonempty
1.915 -// } // while(true)
1.916 -
1.917 -// status=AFTER_PRE_FLOW_PHASE_2;
1.918 -// }
1.919 -
1.920 -
1.921 + ///\author Marton Makai
1.922 template <typename Graph, typename Num,
1.923 typename CapMap=typename Graph::template EdgeMap<Num>,
1.924 typename FlowMap=typename Graph::template EdgeMap<Num> >
1.925 @@ -873,10 +91,6 @@
1.926 typedef typename Graph::OutEdgeIt OutEdgeIt;
1.927 typedef typename Graph::InEdgeIt InEdgeIt;
1.928
1.929 -// typedef typename std::vector<std::stack<Node> > VecStack;
1.930 -// typedef typename Graph::template NodeMap<Node> NNMap;
1.931 -// typedef typename std::vector<Node> VecNode;
1.932 -
1.933 const Graph* g;
1.934 Node s;
1.935 Node t;
1.936 @@ -890,37 +104,12 @@
1.937 //typedef typename ResGW::template NodeMap<bool> ReachedMap;
1.938 typedef typename Graph::template NodeMap<int> ReachedMap;
1.939
1.940 -
1.941 //level works as a bool map in augmenting path algorithms and is
1.942 //used by bfs for storing reached information. In preflow, it
1.943 //shows the levels of nodes.
1.944 ReachedMap level;
1.945
1.946 - //excess is needed only in preflow
1.947 -// typename Graph::template NodeMap<Num> excess;
1.948 -
1.949 - //fixme
1.950 -// protected:
1.951 - // MaxFlow() { }
1.952 - // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
1.953 - // FlowMap& _flow)
1.954 - // {
1.955 - // g=&_G;
1.956 - // s=_s;
1.957 - // t=_t;
1.958 - // capacity=&_capacity;
1.959 - // flow=&_flow;
1.960 - // n=_G.nodeNum;
1.961 - // level.set (_G); //kellene vmi ilyesmi fv
1.962 - // excess(_G,0); //itt is
1.963 - // }
1.964 -
1.965 - // constants used for heuristics
1.966 -// static const int H0=20;
1.967 -// static const int H1=1;
1.968 -
1.969 public:
1.970 -
1.971 ///Indicates the property of the starting flow.
1.972
1.973 ///Indicates the property of the starting flow. The meanings are as follows:
1.974 @@ -1088,28 +277,6 @@
1.975 //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan
1.976 }
1.977
1.978 - template<typename MapGraphWrapper>
1.979 - class DistanceMap {
1.980 - protected:
1.981 - const MapGraphWrapper* g;
1.982 - typename MapGraphWrapper::template NodeMap<int> dist;
1.983 - public:
1.984 - DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
1.985 - void set(const typename MapGraphWrapper::Node& n, int a) {
1.986 - dist.set(n, a);
1.987 - }
1.988 - int operator[](const typename MapGraphWrapper::Node& n) const {
1.989 - return dist[n];
1.990 - }
1.991 - // int get(const typename MapGraphWrapper::Node& n) const {
1.992 - // return dist[n]; }
1.993 - // bool get(const typename MapGraphWrapper::Edge& e) const {
1.994 - // return (dist.get(g->tail(e))<dist.get(g->head(e))); }
1.995 - bool operator[](const typename MapGraphWrapper::Edge& e) const {
1.996 - return (dist[g->tail(e)]<dist[g->head(e)]);
1.997 - }
1.998 - };
1.999 -
1.1000 };
1.1001
1.1002
1.1003 @@ -1244,9 +411,8 @@
1.1004 res_graph_to_F(res_graph);
1.1005 {
1.1006 typename ResGW::NodeIt n;
1.1007 - for(res_graph.first(n); n!=INVALID; ++n) {
1.1008 + for(res_graph.first(n); n!=INVALID; ++n)
1.1009 res_graph_to_F.set(n, F.addNode());
1.1010 - }
1.1011 }
1.1012
1.1013 typename MG::Node sF=res_graph_to_F[s];
1.1014 @@ -1336,7 +502,8 @@
1.1015 return _augment;
1.1016 }
1.1017
1.1018 -
1.1019 + /// Blocking flow augmentation without constructing the layered
1.1020 + /// graph physically in which the blocking flow is computed.
1.1021 template <typename Graph, typename Num, typename CapMap, typename FlowMap>
1.1022 bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
1.1023 {
1.1024 @@ -1344,37 +511,41 @@
1.1025
1.1026 ResGW res_graph(*g, *capacity, *flow);
1.1027
1.1028 - //ReachedMap level(res_graph);
1.1029 + //Potential map, for distances from s
1.1030 + typename ResGW::template NodeMap<int> potential(res_graph, 0);
1.1031 + typedef ConstMap<typename ResGW::Edge, int> Const1Map;
1.1032 + Const1Map const_1_map(1);
1.1033 + TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
1.1034 + Const1Map> tight_edge_filter(res_graph, potential, const_1_map);
1.1035 +
1.1036 for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
1.1037 BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
1.1038 + bfs.pushAndSetReached(s);
1.1039
1.1040 - bfs.pushAndSetReached(s);
1.1041 - DistanceMap<ResGW> dist(res_graph);
1.1042 + //computing distances from s in the residual graph
1.1043 while ( !bfs.finished() ) {
1.1044 ResGWEdge e=bfs;
1.1045 - if (e!=INVALID && bfs.isBNodeNewlyReached()) {
1.1046 - dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
1.1047 - }
1.1048 + if (e!=INVALID && bfs.isBNodeNewlyReached())
1.1049 + potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1);
1.1050 ++bfs;
1.1051 - } //computing distances from s in the residual graph
1.1052 + }
1.1053
1.1054 - //Subgraph containing the edges on some shortest paths
1.1055 + //Subgraph containing the edges on some shortest paths
1.1056 + //(i.e. tight edges)
1.1057 ConstMap<typename ResGW::Node, bool> true_map(true);
1.1058 typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
1.1059 - DistanceMap<ResGW> > FilterResGW;
1.1060 - FilterResGW filter_res_graph(res_graph, true_map, dist);
1.1061 + TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
1.1062 + Const1Map> > FilterResGW;
1.1063 + FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter);
1.1064
1.1065 //Subgraph, which is able to delete edges which are already
1.1066 //met by the dfs
1.1067 typename FilterResGW::template NodeMap<typename FilterResGW::Edge>
1.1068 first_out_edges(filter_res_graph);
1.1069 - typename FilterResGW::NodeIt v;
1.1070 - for(filter_res_graph.first(v); v!=INVALID; ++v)
1.1071 - {
1.1072 - typename FilterResGW::OutEdgeIt e;
1.1073 - filter_res_graph.first(e, v);
1.1074 - first_out_edges.set(v, e);
1.1075 - }
1.1076 + for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v)
1.1077 + first_out_edges.set
1.1078 + (v, typename FilterResGW::OutEdgeIt(filter_res_graph, v));
1.1079 +
1.1080 typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
1.1081 template NodeMap<typename FilterResGW::Edge> > ErasingResGW;
1.1082 ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
1.1083 @@ -1407,47 +578,37 @@
1.1084
1.1085 while (!dfs.finished()) {
1.1086 ++dfs;
1.1087 - if (typename ErasingResGW::Edge(dfs)!=INVALID)
1.1088 - {
1.1089 - if (dfs.isBNodeNewlyReached()) {
1.1090 + if (typename ErasingResGW::Edge(dfs)!=INVALID) {
1.1091 + if (dfs.isBNodeNewlyReached()) {
1.1092 +
1.1093 + typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
1.1094 + typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
1.1095
1.1096 - typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
1.1097 - typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
1.1098 + pred.set(w, typename ErasingResGW::Edge(dfs));
1.1099 + if (pred[v]!=INVALID) {
1.1100 + free1.set
1.1101 + (w, std::min(free1[v], res_graph.resCap
1.1102 + (typename ErasingResGW::Edge(dfs))));
1.1103 + } else {
1.1104 + free1.set
1.1105 + (w, res_graph.resCap
1.1106 + (typename ErasingResGW::Edge(dfs)));
1.1107 + }
1.1108
1.1109 - pred.set(w, typename ErasingResGW::Edge(dfs));
1.1110 - if (pred[v]!=INVALID) {
1.1111 - free1.set
1.1112 - (w, std::min(free1[v], res_graph.resCap
1.1113 - (typename ErasingResGW::Edge(dfs))));
1.1114 - } else {
1.1115 - free1.set
1.1116 - (w, res_graph.resCap
1.1117 - (typename ErasingResGW::Edge(dfs)));
1.1118 - }
1.1119 -
1.1120 - if (w==t) {
1.1121 - __augment=true;
1.1122 - _augment=true;
1.1123 - break;
1.1124 - }
1.1125 - } else {
1.1126 - erasing_res_graph.erase(dfs);
1.1127 + if (w==t) {
1.1128 + __augment=true;
1.1129 + _augment=true;
1.1130 + break;
1.1131 }
1.1132 + } else {
1.1133 + erasing_res_graph.erase(dfs);
1.1134 }
1.1135 + }
1.1136 }
1.1137
1.1138 if (__augment) {
1.1139 typename ErasingResGW::Node
1.1140 n=typename FilterResGW::Node(typename ResGW::Node(t));
1.1141 - // typename ResGW::NodeMap<Num> a(res_graph);
1.1142 - // typename ResGW::Node b;
1.1143 - // Num j=a[b];
1.1144 - // typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
1.1145 - // typename FilterResGW::Node b1;
1.1146 - // Num j1=a1[b1];
1.1147 - // typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
1.1148 - // typename ErasingResGW::Node b2;
1.1149 - // Num j2=a2[b2];
1.1150 Num augment_value=free1[n];
1.1151 while (pred[n]!=INVALID) {
1.1152 typename ErasingResGW::Edge e=pred[n];
1.1153 @@ -1470,5 +631,3 @@
1.1154 #endif //HUGO_AUGMENTING_FLOW_H
1.1155
1.1156
1.1157 -
1.1158 -