Slight modifications.
1.1 --- a/lemon/ssp_min_cost_flow.h Fri Apr 06 22:50:27 2007 +0000
1.2 +++ b/lemon/ssp_min_cost_flow.h Tue Apr 10 09:01:30 2007 +0000
1.3 @@ -179,7 +179,7 @@
1.4 /// \todo May be it does make sense to be able to start with a
1.5 /// nonzero feasible primal-dual solution pair as well.
1.6 ///
1.7 - /// \todo If the actual flow value is bigger than k, then
1.8 + /// \todo If the current flow value is bigger than k, then
1.9 /// everything is cleared and the algorithm starts from zero
1.10 /// flow. Is it a good approach?
1.11 int run(int k) {
1.12 @@ -195,7 +195,7 @@
1.13 for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);
1.14 }
1.15
1.16 - /// \brief Returns the value of the actual flow.
1.17 + /// \brief Returns the value of the current flow.
1.18 int flowValue() const {
1.19 int i=0;
1.20 for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];