updating
authorjacint
Fri, 19 Mar 2004 22:16:05 +0000 (2004-03-19)
changeset 2119222a9b8b323
parent 210 6bc65a8a99c6
child 212 c07e4dd32438
updating
src/work/jacint/dijkstra.cc
src/work/jacint/dijkstra.h
src/work/jacint/fib_heap.h
src/work/jacint/makefile
src/work/jacint/preflow.cc
src/work/jacint/preflow.h
src/work/jacint/prim.cc
src/work/jacint/prim.h
     1.1 --- a/src/work/jacint/dijkstra.cc	Fri Mar 19 21:15:14 2004 +0000
     1.2 +++ b/src/work/jacint/dijkstra.cc	Fri Mar 19 22:16:05 2004 +0000
     1.3 @@ -1,8 +1,9 @@
     1.4  #include <iostream>
     1.5  #include <fstream>
     1.6  
     1.7 -#include <list_graph.hh>
     1.8 -#include <dimacs.hh>
     1.9 +#include <smart_graph.h>
    1.10 +#include <list_graph.h>
    1.11 +#include <dimacs.h>
    1.12  #include <dijkstra.h>
    1.13  #include <time_measure.h>
    1.14  
    1.15 @@ -12,30 +13,30 @@
    1.16  using namespace hugo;
    1.17  
    1.18  int main(int, char **) {
    1.19 -  typedef ListGraph::NodeIt NodeIt;
    1.20 -  typedef ListGraph::EachNodeIt EachNodeIt;
    1.21 -  typedef ListGraph::InEdgeIt InEdgeIt; 
    1.22 +  typedef SmartGraph::Node Node;
    1.23 +  typedef SmartGraph::NodeIt NodeIt;
    1.24 +  typedef SmartGraph::InEdgeIt InEdgeIt; 
    1.25  
    1.26 -  ListGraph G;
    1.27 -  NodeIt s, t;
    1.28 -  ListGraph::EdgeMap<int> cap(G);
    1.29 +  SmartGraph G;
    1.30 +  Node s, t;
    1.31 +  SmartGraph::EdgeMap<int> cap(G);
    1.32    readDimacsMaxFlow(std::cin, G, s, t, cap);
    1.33  
    1.34    std::cout << "dijkstra demo ..." << std::endl;
    1.35    
    1.36    double pre_time=currTime();
    1.37 -    Dijkstra<ListGraph, int, FibHeap<ListGraph::NodeIt, int, 
    1.38 -    ListGraph::NodeMap<int> > > dijkstra_test(G, s, cap);
    1.39 -    dijkstra_test.run();
    1.40 +    Dijkstra<SmartGraph, int, FibHeap<SmartGraph::Node, int, 
    1.41 +    SmartGraph::NodeMap<int> > > dijkstra_test(G, cap); 
    1.42 +    dijkstra_test.run(s);
    1.43    double post_time=currTime();
    1.44      
    1.45    std::cout << "running time with fib_heap: " 
    1.46  	    << post_time-pre_time << " sec"<< std::endl; 
    1.47   
    1.48    pre_time=currTime();
    1.49 -  Dijkstra<ListGraph, int, BinHeap<ListGraph::NodeIt, int, 
    1.50 -    ListGraph::NodeMap<int> > > dijkstra_test2(G, s, cap);
    1.51 -  dijkstra_test2.run();
    1.52 +  Dijkstra<SmartGraph, int, BinHeap<SmartGraph::Node, int, 
    1.53 +    SmartGraph::NodeMap<int> > > dijkstra_test2(G, cap);
    1.54 +  dijkstra_test2.run(s);
    1.55    post_time=currTime();
    1.56    
    1.57    std::cout << "running time with bin_heap: " 
    1.58 @@ -44,11 +45,11 @@
    1.59  
    1.60    int hiba_fib=0;
    1.61    int hiba_bin=0;
    1.62 -  EachNodeIt u;
    1.63 -  for ( G.getFirst(u) ; G.valid(u); G.next(u) ) {
    1.64 +  NodeIt u;
    1.65 +  for ( G.first(u) ; G.valid(u); G.next(u) ) {
    1.66      InEdgeIt e;
    1.67 -    for ( G.getFirst(e,u); G.valid(e); G.next(e) ) {
    1.68 -      NodeIt v=G.tail(e);
    1.69 +    for ( G.first(e,u); G.valid(e); G.next(e) ) {
    1.70 +      Node v=G.tail(e);
    1.71        if ( dijkstra_test.dist(u) - dijkstra_test.dist(v) > cap.get(e) )
    1.72  	{
    1.73  	  std::cout<<"Hibas el a fibonaccis Dijkstraban: " 
    1.74 @@ -87,10 +88,10 @@
    1.75  
    1.76    std::cout << "Hibas elek szama a fibonaccis Dijkstraban: " 
    1.77  	    << hiba_fib << " a " << G.edgeNum() <<"-bol."<< std::endl;
    1.78 -
    1.79 +  
    1.80    std::cout << "Hibas elek szama a binarisos Dijkstraban: " 
    1.81  	    << hiba_bin << " a " << G.edgeNum() <<"-bol."<< std::endl;
    1.82 -
    1.83 +  
    1.84  
    1.85  
    1.86  
     2.1 --- a/src/work/jacint/dijkstra.h	Fri Mar 19 21:15:14 2004 +0000
     2.2 +++ b/src/work/jacint/dijkstra.h	Fri Mar 19 22:16:05 2004 +0000
     2.3 @@ -1,119 +1,120 @@
     2.4  // -*- C++ -*-
     2.5 -
     2.6 -//ha predecessor az elejen nem invalid, akkor hagyd csak ugy
     2.7 -//scanned mutatja hogy jo ertek van-e benne vagy szemet
     2.8 -
     2.9  /* 
    2.10 - *template <Graph, T, Heap=FibHeap>
    2.11 + *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
    2.12   *
    2.13   *Constructor: 
    2.14   *
    2.15 - *Dijkstra(Graph G, NodeIt s, Graph::EdgeMap<T> length)
    2.16 + *Dijkstra(Graph G, LengthMap length)
    2.17   *
    2.18   *
    2.19 - *Member functions:
    2.20 + *Methods:
    2.21   *
    2.22 - *void run()
    2.23 + *void run(Node s)
    2.24   *
    2.25 - *  The following function should be used after run() was already run.
    2.26 + *T dist(Node v) : After run(s) was run, it returns the distance from s to v. 
    2.27 + *   Returns T() if v is not reachable from s.
    2.28   *
    2.29 - *T dist(NodeIt v) : returns the distance from s to v. 
    2.30 - *   It is 0 if v is not reachable from s.
    2.31 + *Edge pred(Node v) : After run(s) was run, it returns the last 
    2.32 + *   edge of a shortest s-v path. It is INVALID for s and for 
    2.33 + *   the nodes not reachable from s.
    2.34   *
    2.35 - *EdgeIt pred(NodeIt v) : returns the last edge 
    2.36 - *   of a shortest s-v path. Returns an invalid iterator 
    2.37 - *   if v=s or v is not reachable from s.
    2.38 - *
    2.39 - *bool reach(NodeIt v) : true iff v is reachable from s
    2.40 + *bool reached(Node v) : After run(s) was run, it is true iff v is 
    2.41 + *   reachable from s
    2.42   *
    2.43   */
    2.44  
    2.45 -#ifndef DIJKSTRA_H
    2.46 -#define DIJKSTRA_H
    2.47 +#ifndef HUGO_DIJKSTRA_H
    2.48 +#define HUGO_DIJKSTRA_H
    2.49  
    2.50  #include <fib_heap.h>
    2.51 +#include <invalid.h>
    2.52  
    2.53  namespace hugo {
    2.54 -
    2.55 +  
    2.56    template <typename Graph, typename T, 
    2.57 -    typename Heap=FibHeap<typename Graph::NodeIt, T, 
    2.58 -    typename Graph::NodeMap<int> > >
    2.59 -    class Dijkstra{
    2.60 -      typedef typename Graph::NodeIt NodeIt;
    2.61 -      typedef typename Graph::EdgeIt EdgeIt;
    2.62 -      typedef typename Graph::OutEdgeIt OutEdgeIt;
    2.63 -      
    2.64 -      Graph& G;
    2.65 -      NodeIt s;
    2.66 -      typename Graph::NodeMap<EdgeIt> predecessor;
    2.67 -      typename Graph::NodeMap<T> distance;
    2.68 -      typename Graph::EdgeMap<T>& length;
    2.69 -      typename Graph::NodeMap<bool> reached;
    2.70 -          
    2.71 +    typename Heap=FibHeap<typename Graph::Node, T, 
    2.72 +    typename Graph::NodeMap<int> >, 
    2.73 +    typename LengthMap=typename Graph::EdgeMap<T> >
    2.74 +  class Dijkstra{
    2.75 +    typedef typename Graph::Node Node;
    2.76 +    typedef typename Graph::NodeIt NodeIt;
    2.77 +    typedef typename Graph::Edge Edge;
    2.78 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    2.79 +    
    2.80 +    const Graph& G;
    2.81 +    const LengthMap& length;
    2.82 +    typename Graph::NodeMap<Edge> predecessor;
    2.83 +    typename Graph::NodeMap<T> distance;
    2.84 +    typename Graph::NodeMap<bool> reach;
    2.85 +    
    2.86    public :
    2.87 -
    2.88 +    
    2.89      /*
    2.90        The distance of the nodes is 0.
    2.91      */
    2.92 -    Dijkstra(Graph& _G, NodeIt const _s, 
    2.93 -	     typename Graph::EdgeMap<T>& _length) : 
    2.94 -      G(_G), s(_s), predecessor(G), distance(G), 
    2.95 -      length(_length), reached(G, false) { }
    2.96 +    Dijkstra(Graph& _G, LengthMap& _length) : G(_G), 
    2.97 +      length(_length), predecessor(_G), distance(_G), reach(_G) { }
    2.98      
    2.99 +
   2.100 +    void run(Node s) {
   2.101        
   2.102 -      void run() {
   2.103 +      NodeIt u;
   2.104 +      for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   2.105 +	predecessor.set(u,INVALID);
   2.106 +	distance.set(u,0);
   2.107 +	reach.set(u,false);
   2.108 +      }
   2.109 +     
   2.110 +      typename Graph::NodeMap<bool> scanned(G,false);
   2.111 +      typename Graph::NodeMap<int> heap_map(G,-1);
   2.112 +      
   2.113 +      Heap heap(heap_map);
   2.114 +
   2.115 +      heap.push(s,0); 
   2.116 +      reach.set(s, true);
   2.117 +
   2.118 +      while ( !heap.empty() ) {
   2.119  	
   2.120 -	typename Graph::NodeMap<bool> scanned(G, false);
   2.121 -	typename Graph::NodeMap<int> heap_map(G,-1);
   2.122 +	Node v=heap.top(); 
   2.123 +	T oldvalue=heap.get(v);
   2.124 +	heap.pop();
   2.125 +	distance.set(v, oldvalue);
   2.126 +	scanned.set(v,true);
   2.127  
   2.128 -	Heap heap(heap_map);
   2.129 -
   2.130 -	heap.push(s,0); 
   2.131 -	reached.set(s, true);
   2.132 -
   2.133 -	while ( !heap.empty() ) {
   2.134 -
   2.135 -	  NodeIt v=heap.top(); 
   2.136 -	  T oldvalue=heap.get(v);
   2.137 -	  heap.pop();
   2.138 -	  distance.set(v, oldvalue);
   2.139 -	  scanned.set(v,true);
   2.140 -
   2.141 -	  OutEdgeIt e;
   2.142 -	  for( G.getFirst(e,v); G.valid(e); G.next(e)) {
   2.143 -	    NodeIt w=G.bNode(e); 
   2.144 +	OutEdgeIt e;
   2.145 +	for( G.first(e,v); G.valid(e); G.next(e)) {
   2.146 +	  Node w=G.head(e); 
   2.147  	    
   2.148 -	    if ( !scanned.get(w) ) {
   2.149 -	      if ( !reached.get(w) ) {
   2.150 -		reached.set(w,true);
   2.151 -		heap.push(w,oldvalue+length.get(e)); 
   2.152 -		predecessor.set(w,e);
   2.153 -	      } else if ( oldvalue+length.get(e) < heap.get(w) ) {
   2.154 -		predecessor.set(w,e);
   2.155 -		heap.decrease(w, oldvalue+length.get(e)); 
   2.156 -	      }
   2.157 +	  if ( !scanned[w] ) {
   2.158 +	    if ( !reach[w] ) {
   2.159 +	      reach.set(w,true);
   2.160 +	      heap.push(w,oldvalue+length[e]); 
   2.161 +	      predecessor.set(w,e);
   2.162 +	    } else if ( oldvalue+length[e] < heap.get(w) ) {
   2.163 +	      predecessor.set(w,e);
   2.164 +	      heap.decrease(w, oldvalue+length[e]); 
   2.165  	    }
   2.166  	  }
   2.167  	}
   2.168 -      } 
   2.169 -      
   2.170 +      }
   2.171 +    } 
   2.172 +    
   2.173  
   2.174 -      T dist(NodeIt v) {
   2.175 -	return distance.get(v);
   2.176 -      }
   2.177 +    T dist(Node v) {
   2.178 +      return distance[v];
   2.179 +    }
   2.180  
   2.181  
   2.182 -      EdgeIt pred(NodeIt v) {
   2.183 -	if ( v!=s ) return predecessor.get(v);
   2.184 -	else return EdgeIt();
   2.185 -      }
   2.186 +    Edge pred(Node v) {
   2.187 +      return predecessor[v];
   2.188 +    }
   2.189       
   2.190  
   2.191 -      bool reach(NodeIt v) {
   2.192 -	return reached.get(v);
   2.193 -      }
   2.194 -      
   2.195 -    };
   2.196 +    bool reached(Node v) {
   2.197 +      return reach[v];
   2.198 +    }
   2.199 +    
   2.200 +  };
   2.201    
   2.202  }
   2.203  
     3.1 --- a/src/work/jacint/fib_heap.h	Fri Mar 19 21:15:14 2004 +0000
     3.2 +++ b/src/work/jacint/fib_heap.h	Fri Mar 19 22:16:05 2004 +0000
     3.3 @@ -143,11 +143,22 @@
     3.4      }
     3.5      
     3.6  
     3.7 +
     3.8 +
     3.9 +    PrioType& operator[](const Item& it) const {
    3.10 +      return container[iimap.get(it)].prio;
    3.11 +    }
    3.12 +    
    3.13 +    const PrioType& operator[](const Item& it) const {
    3.14 +      return container[iimap.get(it)].prio;
    3.15 +    }
    3.16 +
    3.17      const PrioType get(const Item& it) const {
    3.18        return container[iimap.get(it)].prio;
    3.19      }
    3.20  
    3.21  
    3.22 +
    3.23      void pop() {
    3.24        /*The first case is that there are only one root.*/
    3.25        if ( container[minimum].left_neighbor==minimum ) {
     4.1 --- a/src/work/jacint/makefile	Fri Mar 19 21:15:14 2004 +0000
     4.2 +++ b/src/work/jacint/makefile	Fri Mar 19 22:16:05 2004 +0000
     4.3 @@ -1,9 +1,9 @@
     4.4  CXX3 := $(shell type -p g++-3.3 || type -p g++-3.2 || type -p g++-3.0 || type -p g++-3 || echo g++)
     4.5  CXX2 = g++-2.95
     4.6  CXXFLAGS = -W -Wall -ansi -pedantic
     4.7 -LEDAROOT = /ledasrc/LEDA-4.1
     4.8 +LEDAROOT ?= /ledasrc/LEDA-4.1
     4.9  
    4.10 -BINARIES = preflow dijkstra prim
    4.11 +BINARIES = dijkstra prim preflow
    4.12  
    4.13  all: $(BINARIES)
    4.14  
    4.15 @@ -11,13 +11,13 @@
    4.16  sinclude .depend
    4.17  
    4.18  preflow: 
    4.19 -	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -o preflow preflow.cc
    4.20 +	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -I../alpar -o preflow preflow.cc 
    4.21  
    4.22  dijkstra: 
    4.23 -	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -o dijkstra dijkstra.cc
    4.24 +	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -I../alpar  -o dijkstra dijkstra.cc
    4.25  
    4.26  prim: 
    4.27 -	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -o prim prim.cc
    4.28 +	$(CXX3) $(CXXFLAGS) -O3 -I. -I.. -I../marci -I../alpar -o prim prim.cc
    4.29  
    4.30  clean:
    4.31  	$(RM) *.o $(BINARIES) .depend
     5.1 --- a/src/work/jacint/preflow.cc	Fri Mar 19 21:15:14 2004 +0000
     5.2 +++ b/src/work/jacint/preflow.cc	Fri Mar 19 22:16:05 2004 +0000
     5.3 @@ -1,8 +1,8 @@
     5.4  #include <iostream>
     5.5  #include <fstream>
     5.6  
     5.7 -#include <list_graph.hh>
     5.8 -#include <dimacs.hh>
     5.9 +#include <list_graph.h>
    5.10 +#include <dimacs.h>
    5.11  #include <preflow.h>
    5.12  #include <time_measure.h>
    5.13  
    5.14 @@ -11,11 +11,11 @@
    5.15  // Use a DIMACS max flow file as stdin.
    5.16  // read_dimacs_demo < dimacs_max_flow_file
    5.17  int main(int, char **) {
    5.18 -  typedef ListGraph::NodeIt NodeIt;
    5.19 -  typedef ListGraph::EachEdgeIt EachEdgeIt;
    5.20 +  typedef ListGraph::Node Node;
    5.21 +  typedef ListGraph::EdgeIt EdgeIt;
    5.22  
    5.23    ListGraph G;
    5.24 -  NodeIt s, t;
    5.25 +  Node s, t;
    5.26    ListGraph::EdgeMap<int> cap(G);
    5.27    readDimacsMaxFlow(std::cin, G, s, t, cap);
    5.28  
    5.29 @@ -24,27 +24,30 @@
    5.30    double mintime=1000000;
    5.31  
    5.32    for ( int i=1; i!=11; ++i ) {
    5.33 +    ListGraph::EdgeMap<int> flow(G);
    5.34      double pre_time=currTime();
    5.35 -    preflow<ListGraph, int> max_flow_test(G, s, t, cap);
    5.36 +    Preflow<ListGraph, int> max_flow_test(G, s, t, cap, flow);
    5.37 +    max_flow_test.run();
    5.38      double post_time=currTime();
    5.39      if ( mintime > post_time-pre_time ) mintime = post_time-pre_time;
    5.40    }
    5.41  
    5.42 -  double pre_time=currTime();
    5.43 -    preflow<ListGraph, int> max_flow_test(G, s, t, cap);
    5.44 -  double post_time=currTime();
    5.45 -    
    5.46 +  ListGraph::EdgeMap<int> flow(G);
    5.47 +  Preflow<ListGraph, int> max_flow_test(G, s, t, cap, flow);
    5.48 +  max_flow_test.run();
    5.49 +  
    5.50    ListGraph::NodeMap<bool> cut(G);
    5.51    max_flow_test.minCut(cut); 
    5.52    int min_cut_value=0;
    5.53 -  for(EachEdgeIt e=G.first<EachEdgeIt>(); e.valid(); ++e) {
    5.54 +  EdgeIt e;
    5.55 +  for(G.first(e); G.valid(e); G.next(e)) {
    5.56      if (cut.get(G.tail(e)) && !cut.get(G.head(e))) min_cut_value+=cap.get(e);
    5.57    }
    5.58  
    5.59    ListGraph::NodeMap<bool> cut1(G);
    5.60    max_flow_test.minMinCut(cut1); 
    5.61    int min_min_cut_value=0;
    5.62 -  for(EachEdgeIt e=G.first<EachEdgeIt>(); e.valid(); ++e) {
    5.63 +  for(G.first(e); G.valid(e); G.next(e)) {
    5.64      if (cut.get(G.tail(e)) && !cut.get(G.head(e))) 
    5.65        min_min_cut_value+=cap.get(e);
    5.66    }
    5.67 @@ -52,17 +55,13 @@
    5.68    ListGraph::NodeMap<bool> cut2(G);
    5.69    max_flow_test.maxMinCut(cut2); 
    5.70    int max_min_cut_value=0;
    5.71 -  for(EachEdgeIt e=G.first<EachEdgeIt>(); e.valid(); ++e) {
    5.72 +  for(G.first(e); G.valid(e); G.next(e)) {
    5.73      if (cut2.get(G.tail(e)) && !cut2.get(G.head(e))) 
    5.74        max_min_cut_value+=cap.get(e);
    5.75        }
    5.76    
    5.77    std::cout << "min time of 10 runs: " << mintime << " sec"<< std::endl; 
    5.78 -  std::cout << "phase 0: " << max_flow_test.time-pre_time 
    5.79 -	    << " sec"<< std::endl; 
    5.80 -  std::cout << "phase 1: " << post_time-max_flow_test.time 
    5.81 -	    << " sec"<< std::endl; 
    5.82 -  std::cout << "flow value: "<< max_flow_test.maxFlow() << std::endl;
    5.83 +  std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl;
    5.84    std::cout << "min cut value: "<< min_cut_value << std::endl;
    5.85    std::cout << "min min cut value: "<< min_min_cut_value << std::endl;
    5.86    std::cout << "max min cut value: "<< max_min_cut_value << 
     6.1 --- a/src/work/jacint/preflow.h	Fri Mar 19 21:15:14 2004 +0000
     6.2 +++ b/src/work/jacint/preflow.h	Fri Mar 19 22:16:05 2004 +0000
     6.3 @@ -1,7 +1,5 @@
     6.4  // -*- C++ -*-
     6.5  /*
     6.6 -preflow.h
     6.7 -by jacint. 
     6.8  Heuristics: 
     6.9   2 phase
    6.10   gap
    6.11 @@ -12,17 +10,15 @@
    6.12   
    6.13  Parameters H0 and H1 are initialized to 20 and 10.
    6.14  
    6.15 -The best preflow I could ever write.
    6.16 +Constructors:
    6.17  
    6.18 -The constructor runs the algorithm.
    6.19 +Preflow(Graph, Node, Node, CapMap, FlowMap)
    6.20  
    6.21  Members:
    6.22  
    6.23 -T maxFlow() : returns the value of a maximum flow
    6.24 +void run()
    6.25  
    6.26 -T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    6.27 -
    6.28 -FlowMap Flow() : returns the fixed maximum flow x
    6.29 +T flowValue() : returns the value of a maximum flow
    6.30  
    6.31  void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    6.32       minimum min cut. M should be a map of bools initialized to false.
    6.33 @@ -35,8 +31,8 @@
    6.34  
    6.35  */
    6.36  
    6.37 -#ifndef PREFLOW_H
    6.38 -#define PREFLOW_H
    6.39 +#ifndef HUGO_PREFLOW_H
    6.40 +#define HUGO_PREFLOW_H
    6.41  
    6.42  #define H0 20
    6.43  #define H1 1
    6.44 @@ -44,33 +40,32 @@
    6.45  #include <vector>
    6.46  #include <queue>
    6.47  
    6.48 -#include <time_measure.h>
    6.49 -
    6.50  namespace hugo {
    6.51  
    6.52    template <typename Graph, typename T, 
    6.53      typename FlowMap=typename Graph::EdgeMap<T>,
    6.54      typename CapMap=typename Graph::EdgeMap<T> >
    6.55 -  class preflow {
    6.56 +  class Preflow {
    6.57      
    6.58 +    typedef typename Graph::Node Node;
    6.59 +    typedef typename Graph::Edge Edge;
    6.60      typedef typename Graph::NodeIt NodeIt;
    6.61 -    typedef typename Graph::EdgeIt EdgeIt;
    6.62 -    typedef typename Graph::EachNodeIt EachNodeIt;
    6.63      typedef typename Graph::OutEdgeIt OutEdgeIt;
    6.64      typedef typename Graph::InEdgeIt InEdgeIt;
    6.65      
    6.66 -    Graph& G;
    6.67 -    NodeIt s;
    6.68 -    NodeIt t;
    6.69 -    FlowMap flow;
    6.70 -    CapMap& capacity;  
    6.71 +    const Graph& G;
    6.72 +    Node s;
    6.73 +    Node t;
    6.74 +    FlowMap& flow;
    6.75 +    const CapMap& capacity;  
    6.76      T value;
    6.77  
    6.78    public:
    6.79 -    double time;
    6.80 -    preflow(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity ) :
    6.81 -      G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity)
    6.82 -    {
    6.83 +    Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, FlowMap& _flow ) :
    6.84 +      G(_G), s(_s), t(_t), flow(_flow), capacity(_capacity) {}
    6.85 +
    6.86 +
    6.87 +    void run() {
    6.88  
    6.89        bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    6.90        int n=G.nodeNum(); 
    6.91 @@ -94,35 +89,36 @@
    6.92        typename Graph::NodeMap<int> level(G,n);      
    6.93        typename Graph::NodeMap<T> excess(G); 
    6.94  
    6.95 -      std::vector<NodeIt> active(n);
    6.96 -      typename Graph::NodeMap<NodeIt> next(G);
    6.97 +      std::vector<Node> active(n,INVALID);
    6.98 +      typename Graph::NodeMap<Node> next(G,INVALID);
    6.99        //Stack of the active nodes in level i < n.
   6.100        //We use it in both phases.
   6.101  
   6.102 -      typename Graph::NodeMap<NodeIt> left(G);
   6.103 -      typename Graph::NodeMap<NodeIt> right(G);
   6.104 -      std::vector<NodeIt> level_list(n);
   6.105 +      typename Graph::NodeMap<Node> left(G,INVALID);
   6.106 +      typename Graph::NodeMap<Node> right(G,INVALID);
   6.107 +      std::vector<Node> level_list(n,INVALID);
   6.108        /*
   6.109  	List of the nodes in level i<n.
   6.110        */
   6.111  
   6.112        /*Reverse_bfs from t, to find the starting level.*/
   6.113        level.set(t,0);
   6.114 -      std::queue<NodeIt> bfs_queue;
   6.115 +      std::queue<Node> bfs_queue;
   6.116        bfs_queue.push(t);
   6.117  
   6.118        while (!bfs_queue.empty()) {
   6.119  
   6.120 -	NodeIt v=bfs_queue.front();	
   6.121 +	Node v=bfs_queue.front();	
   6.122  	bfs_queue.pop();
   6.123 -	int l=level.get(v)+1;
   6.124 +	int l=level[v]+1;
   6.125  
   6.126 -	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   6.127 -	  NodeIt w=G.tail(e);
   6.128 -	  if ( level.get(w) == n && w != s ) {
   6.129 +	InEdgeIt e;
   6.130 +	for(G.first(e,v); G.valid(e); G.next(e)) {
   6.131 +	  Node w=G.tail(e);
   6.132 +	  if ( level[w] == n && w != s ) {
   6.133  	    bfs_queue.push(w);
   6.134 -	    NodeIt first=level_list[l];
   6.135 -	    if ( first != 0 ) left.set(first,w);
   6.136 +	    Node first=level_list[l];
   6.137 +	    if ( G.valid(first) ) left.set(first,w);
   6.138  	    right.set(w,first);
   6.139  	    level_list[l]=w;
   6.140  	    level.set(w, l);
   6.141 @@ -134,18 +130,19 @@
   6.142        
   6.143  
   6.144        /* Starting flow. It is everywhere 0 at the moment. */     
   6.145 -      for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   6.146 +      OutEdgeIt e;
   6.147 +      for(G.first(e,s); G.valid(e); G.next(e)) 
   6.148  	{
   6.149 -	  T c=capacity.get(e);
   6.150 +	  T c=capacity[e];
   6.151  	  if ( c == 0 ) continue;
   6.152 -	  NodeIt w=G.head(e);
   6.153 -	  if ( level.get(w) < n ) {	  
   6.154 -	    if ( excess.get(w) == 0 && w!=t ) {
   6.155 -	      next.set(w,active[level.get(w)]);
   6.156 -	      active[level.get(w)]=w;
   6.157 +	  Node w=G.head(e);
   6.158 +	  if ( level[w] < n ) {	  
   6.159 +	    if ( excess[w] == 0 && w!=t ) {
   6.160 +	      next.set(w,active[level[w]]);
   6.161 +	      active[level[w]]=w;
   6.162  	    }
   6.163  	    flow.set(e, c); 
   6.164 -	    excess.set(w, excess.get(w)+c);
   6.165 +	    excess.set(w, excess[w]+c);
   6.166  	  }
   6.167  	}
   6.168  
   6.169 @@ -168,37 +165,38 @@
   6.170  	    end=true;
   6.171  	  } else {
   6.172  	    phase=1;
   6.173 -	    time=currTime();
   6.174  	    level.set(s,0);
   6.175 -	    std::queue<NodeIt> bfs_queue;
   6.176 +	    std::queue<Node> bfs_queue;
   6.177  	    bfs_queue.push(s);
   6.178  	    
   6.179  	    while (!bfs_queue.empty()) {
   6.180  	      
   6.181 -	      NodeIt v=bfs_queue.front();	
   6.182 +	      Node v=bfs_queue.front();	
   6.183  	      bfs_queue.pop();
   6.184 -	      int l=level.get(v)+1;
   6.185 +	      int l=level[v]+1;
   6.186  	      
   6.187 -	      for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   6.188 -		if ( capacity.get(e) == flow.get(e) ) continue;
   6.189 -		NodeIt u=G.tail(e);
   6.190 -		if ( level.get(u) >= n ) { 
   6.191 +	      InEdgeIt e;
   6.192 +	      for(G.first(e,v); G.valid(e); G.next(e)) {
   6.193 +		if ( capacity[e] == flow[e] ) continue;
   6.194 +		Node u=G.tail(e);
   6.195 +		if ( level[u] >= n ) { 
   6.196  		  bfs_queue.push(u);
   6.197  		  level.set(u, l);
   6.198 -		  if ( excess.get(u) > 0 ) {
   6.199 +		  if ( excess[u] > 0 ) {
   6.200  		    next.set(u,active[l]);
   6.201  		    active[l]=u;
   6.202  		  }
   6.203  		}
   6.204  	      }
   6.205  	    
   6.206 -	      for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
   6.207 -		if ( 0 == flow.get(e) ) continue;
   6.208 -		NodeIt u=G.head(e);
   6.209 -		if ( level.get(u) >= n ) { 
   6.210 +	      OutEdgeIt f;
   6.211 +	      for(G.first(f,v); G.valid(f); G.next(f)) {
   6.212 +		if ( 0 == flow[f] ) continue;
   6.213 +		Node u=G.head(f);
   6.214 +		if ( level[u] >= n ) { 
   6.215  		  bfs_queue.push(u);
   6.216  		  level.set(u, l);
   6.217 -		  if ( excess.get(u) > 0 ) {
   6.218 +		  if ( excess[u] > 0 ) {
   6.219  		    next.set(u,active[l]);
   6.220  		    active[l]=u;
   6.221  		  }
   6.222 @@ -211,40 +209,41 @@
   6.223  	}
   6.224  	  
   6.225  	  
   6.226 -	if ( active[b] == 0 ) --b; 
   6.227 +	if ( !G.valid(active[b]) ) --b; 
   6.228  	else {
   6.229  	  end=false;  
   6.230  
   6.231 -	  NodeIt w=active[b];
   6.232 -	  active[b]=next.get(w);
   6.233 -	  int lev=level.get(w);
   6.234 -	  T exc=excess.get(w);
   6.235 +	  Node w=active[b];
   6.236 +	  active[b]=next[w];
   6.237 +	  int lev=level[w];
   6.238 +	  T exc=excess[w];
   6.239  	  int newlevel=n;       //bound on the next level of w
   6.240  	  
   6.241 -	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   6.242 +	  OutEdgeIt e;
   6.243 +	  for(G.first(e,w); G.valid(e); G.next(e)) {
   6.244  	    
   6.245 -	    if ( flow.get(e) == capacity.get(e) ) continue; 
   6.246 -	    NodeIt v=G.head(e);            
   6.247 +	    if ( flow[e] == capacity[e] ) continue; 
   6.248 +	    Node v=G.head(e);            
   6.249  	    //e=wv	    
   6.250  	    
   6.251 -	    if( lev > level.get(v) ) {      
   6.252 +	    if( lev > level[v] ) {      
   6.253  	      /*Push is allowed now*/
   6.254  	      
   6.255 -	      if ( excess.get(v)==0 && v!=t && v!=s ) {
   6.256 -		int lev_v=level.get(v);
   6.257 +	      if ( excess[v]==0 && v!=t && v!=s ) {
   6.258 +		int lev_v=level[v];
   6.259  		next.set(v,active[lev_v]);
   6.260  		active[lev_v]=v;
   6.261  	      }
   6.262  	      
   6.263 -	      T cap=capacity.get(e);
   6.264 -	      T flo=flow.get(e);
   6.265 +	      T cap=capacity[e];
   6.266 +	      T flo=flow[e];
   6.267  	      T remcap=cap-flo;
   6.268  	      
   6.269  	      if ( remcap >= exc ) {       
   6.270  		/*A nonsaturating push.*/
   6.271  		
   6.272  		flow.set(e, flo+exc);
   6.273 -		excess.set(v, excess.get(v)+exc);
   6.274 +		excess.set(v, excess[v]+exc);
   6.275  		exc=0;
   6.276  		break; 
   6.277  		
   6.278 @@ -252,50 +251,51 @@
   6.279  		/*A saturating push.*/
   6.280  		
   6.281  		flow.set(e, cap);
   6.282 -		excess.set(v, excess.get(v)+remcap);
   6.283 +		excess.set(v, excess[v]+remcap);
   6.284  		exc-=remcap;
   6.285  	      }
   6.286 -	    } else if ( newlevel > level.get(v) ){
   6.287 -	      newlevel = level.get(v);
   6.288 +	    } else if ( newlevel > level[v] ){
   6.289 +	      newlevel = level[v];
   6.290  	    }	    
   6.291  	    
   6.292  	  } //for out edges wv 
   6.293  	
   6.294  	
   6.295  	if ( exc > 0 ) {	
   6.296 -	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   6.297 +	  InEdgeIt e;
   6.298 +	  for(G.first(e,w); G.valid(e); G.next(e)) {
   6.299  	    
   6.300 -	    if( flow.get(e) == 0 ) continue; 
   6.301 -	    NodeIt v=G.tail(e);  
   6.302 +	    if( flow[e] == 0 ) continue; 
   6.303 +	    Node v=G.tail(e);  
   6.304  	    //e=vw
   6.305  	    
   6.306 -	    if( lev > level.get(v) ) {  
   6.307 +	    if( lev > level[v] ) {  
   6.308  	      /*Push is allowed now*/
   6.309  	      
   6.310 -	      if ( excess.get(v)==0 && v!=t && v!=s ) {
   6.311 -		int lev_v=level.get(v);
   6.312 +	      if ( excess[v]==0 && v!=t && v!=s ) {
   6.313 +		int lev_v=level[v];
   6.314  		next.set(v,active[lev_v]);
   6.315  		active[lev_v]=v;
   6.316  	      }
   6.317  	      
   6.318 -	      T flo=flow.get(e);
   6.319 +	      T flo=flow[e];
   6.320  	      
   6.321  	      if ( flo >= exc ) { 
   6.322  		/*A nonsaturating push.*/
   6.323  		
   6.324  		flow.set(e, flo-exc);
   6.325 -		excess.set(v, excess.get(v)+exc);
   6.326 +		excess.set(v, excess[v]+exc);
   6.327  		exc=0;
   6.328  		break; 
   6.329  	      } else {                                               
   6.330  		/*A saturating push.*/
   6.331  		
   6.332 -		excess.set(v, excess.get(v)+flo);
   6.333 +		excess.set(v, excess[v]+flo);
   6.334  		exc-=flo;
   6.335  		flow.set(e,0);
   6.336  	      }  
   6.337 -	    } else if ( newlevel > level.get(v) ) {
   6.338 -	      newlevel = level.get(v);
   6.339 +	    } else if ( newlevel > level[v] ) {
   6.340 +	      newlevel = level[v];
   6.341  	    }	    
   6.342  	  } //for in edges vw
   6.343  	  
   6.344 @@ -318,38 +318,37 @@
   6.345  	    b=newlevel;
   6.346  	  } else {
   6.347  	    //unlacing starts
   6.348 -	    NodeIt right_n=right.get(w);
   6.349 -	    NodeIt left_n=left.get(w);
   6.350 +	    Node right_n=right[w];
   6.351 +	    Node left_n=left[w];
   6.352  
   6.353 -	    if ( right_n != 0 ) {
   6.354 -	      if ( left_n != 0 ) {
   6.355 +	    if ( G.valid(right_n) ) {
   6.356 +	      if ( G.valid(left_n) ) {
   6.357  		right.set(left_n, right_n);
   6.358  		left.set(right_n, left_n);
   6.359  	      } else {
   6.360  		level_list[lev]=right_n;   
   6.361 -		left.set(right_n, 0);
   6.362 +		left.set(right_n, INVALID);
   6.363  	      } 
   6.364  	    } else {
   6.365 -	      if ( left_n != 0 ) {
   6.366 -		right.set(left_n, 0);
   6.367 +	      if ( G.valid(left_n) ) {
   6.368 +		right.set(left_n, INVALID);
   6.369  	      } else { 
   6.370 -		level_list[lev]=0;   
   6.371 -
   6.372 +		level_list[lev]=INVALID;   
   6.373  	      } 
   6.374  	    } 
   6.375  	    //unlacing ends
   6.376  		
   6.377  	    //gapping starts
   6.378 -	    if ( level_list[lev]==0 ) {
   6.379 +	    if ( !G.valid(level_list[lev]) ) {
   6.380  	      
   6.381  	      for (int i=lev; i!=k ; ) {
   6.382 -		NodeIt v=level_list[++i];
   6.383 -		while ( v != 0 ) {
   6.384 +		Node v=level_list[++i];
   6.385 +		while ( G.valid(v) ) {
   6.386  		  level.set(v,n);
   6.387 -		  v=right.get(v);
   6.388 +		  v=right[v];
   6.389  		}
   6.390 -		level_list[i]=0;
   6.391 -		if ( !what_heur ) active[i]=0;
   6.392 +		level_list[i]=INVALID;
   6.393 +		if ( !what_heur ) active[i]=INVALID;
   6.394  	      }	     
   6.395  
   6.396  	      level.set(w,n);
   6.397 @@ -365,10 +364,10 @@
   6.398  		active[newlevel]=w;
   6.399  		if ( what_heur ) b=newlevel;
   6.400  		if ( k < newlevel ) ++k;
   6.401 -		NodeIt first=level_list[newlevel];
   6.402 -		if ( first != 0 ) left.set(first,w);
   6.403 +		Node first=level_list[newlevel];
   6.404 +		if ( G.valid(first) ) left.set(first,w);
   6.405  		right.set(w,first);
   6.406 -		left.set(w,0);
   6.407 +		left.set(w,INVALID);
   6.408  		level_list[newlevel]=w;
   6.409  	      }
   6.410  	    }
   6.411 @@ -398,7 +397,7 @@
   6.412        } // while(true)
   6.413  
   6.414  
   6.415 -      value = excess.get(t);
   6.416 +      value = excess[t];
   6.417        /*Max flow value.*/
   6.418       
   6.419      } //void run()
   6.420 @@ -411,23 +410,11 @@
   6.421        Returns the maximum value of a flow.
   6.422       */
   6.423  
   6.424 -    T maxFlow() {
   6.425 +    T flowValue() {
   6.426        return value;
   6.427      }
   6.428  
   6.429  
   6.430 -
   6.431 -    /*
   6.432 -      For the maximum flow x found by the algorithm, 
   6.433 -      it returns the flow value on edge e, i.e. x(e). 
   6.434 -    */
   6.435 -   
   6.436 -    T flowOnEdge(EdgeIt e) {
   6.437 -      return flow.get(e);
   6.438 -    }
   6.439 -
   6.440 -
   6.441 -
   6.442      FlowMap Flow() {
   6.443        return flow;
   6.444        }
   6.445 @@ -435,9 +422,10 @@
   6.446  
   6.447      
   6.448      void Flow(FlowMap& _flow ) {
   6.449 -      for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
   6.450 -	_flow.set(v,flow.get(v));
   6.451 -	}
   6.452 +      NodeIt v;
   6.453 +      for(G.first(v) ; G.valid(v); G.next(v))
   6.454 +	_flow.set(v,flow[v]);
   6.455 +    }
   6.456  
   6.457  
   6.458  
   6.459 @@ -448,26 +436,28 @@
   6.460      template<typename _CutMap>
   6.461      void minMinCut(_CutMap& M) {
   6.462      
   6.463 -      std::queue<NodeIt> queue;
   6.464 +      std::queue<Node> queue;
   6.465        
   6.466        M.set(s,true);      
   6.467        queue.push(s);
   6.468  
   6.469        while (!queue.empty()) {
   6.470 -        NodeIt w=queue.front();
   6.471 +        Node w=queue.front();
   6.472  	queue.pop();
   6.473  
   6.474 -	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   6.475 -	  NodeIt v=G.head(e);
   6.476 -	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   6.477 +	OutEdgeIt e;
   6.478 +	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   6.479 +	  Node v=G.head(e);
   6.480 +	  if (!M[v] && flow[e] < capacity[e] ) {
   6.481  	    queue.push(v);
   6.482  	    M.set(v, true);
   6.483  	  }
   6.484  	} 
   6.485  
   6.486 -	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   6.487 -	  NodeIt v=G.tail(e);
   6.488 -	  if (!M.get(v) && flow.get(e) > 0 ) {
   6.489 +	InEdgeIt f;
   6.490 +	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   6.491 +	  Node v=G.tail(f);
   6.492 +	  if (!M[v] && flow[f] > 0 ) {
   6.493  	    queue.push(v);
   6.494  	    M.set(v, true);
   6.495  	  }
   6.496 @@ -485,34 +475,38 @@
   6.497      template<typename _CutMap>
   6.498      void maxMinCut(_CutMap& M) {
   6.499      
   6.500 -      std::queue<NodeIt> queue;
   6.501 +      std::queue<Node> queue;
   6.502        
   6.503        M.set(t,true);        
   6.504        queue.push(t);
   6.505  
   6.506        while (!queue.empty()) {
   6.507 -        NodeIt w=queue.front();
   6.508 +        Node w=queue.front();
   6.509  	queue.pop();
   6.510  
   6.511 -	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   6.512 -	  NodeIt v=G.tail(e);
   6.513 -	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   6.514 +
   6.515 +	InEdgeIt e;
   6.516 +	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   6.517 +	  Node v=G.tail(e);
   6.518 +	  if (!M[v] && flow[e] < capacity[e] ) {
   6.519  	    queue.push(v);
   6.520  	    M.set(v, true);
   6.521  	  }
   6.522  	}
   6.523 -
   6.524 -	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   6.525 -	  NodeIt v=G.head(e);
   6.526 -	  if (!M.get(v) && flow.get(e) > 0 ) {
   6.527 +	
   6.528 +	OutEdgeIt f;
   6.529 +	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   6.530 +	  Node v=G.head(f);
   6.531 +	  if (!M[v] && flow[f] > 0 ) {
   6.532  	    queue.push(v);
   6.533  	    M.set(v, true);
   6.534  	  }
   6.535  	}
   6.536        }
   6.537  
   6.538 -      for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   6.539 -	M.set(v, !M.get(v));
   6.540 +      NodeIt v;
   6.541 +      for(G.first(v) ; G.valid(v); G.next(v)) {
   6.542 +	M.set(v, !M[v]);
   6.543        }
   6.544  
   6.545      }
     7.1 --- a/src/work/jacint/prim.cc	Fri Mar 19 21:15:14 2004 +0000
     7.2 +++ b/src/work/jacint/prim.cc	Fri Mar 19 22:16:05 2004 +0000
     7.3 @@ -1,8 +1,8 @@
     7.4  #include <iostream>
     7.5  #include <fstream>
     7.6  
     7.7 -#include <list_graph.hh>
     7.8 -#include <dimacs.hh>
     7.9 +#include <list_graph.h>
    7.10 +#include <dimacs.h>
    7.11  #include <prim.h>
    7.12  #include <time_measure.h>
    7.13  
    7.14 @@ -12,17 +12,17 @@
    7.15  using namespace hugo;
    7.16  
    7.17  int main(int, char **) {
    7.18 -  typedef ListGraph::NodeIt NodeIt;
    7.19 +  typedef ListGraph::Node Node;
    7.20  
    7.21    ListGraph G;
    7.22 -  NodeIt s, t;
    7.23 +  Node s, t;
    7.24    ListGraph::EdgeMap<int> cap(G);
    7.25    readDimacsMaxFlow(std::cin, G, s, t, cap);
    7.26  
    7.27    std::cout << "prim demo ..." << std::endl;
    7.28    
    7.29    double pre_time=currTime();
    7.30 -    Prim<ListGraph, int, FibHeap<ListGraph::NodeIt, int, 
    7.31 +    Prim<ListGraph, int, FibHeap<ListGraph::Node, int, 
    7.32      ListGraph::NodeMap<int> > > prim_test(G, cap);
    7.33      prim_test.run();
    7.34    double post_time=currTime();
    7.35 @@ -31,7 +31,7 @@
    7.36  	    << post_time-pre_time << " sec"<< std::endl; 
    7.37   
    7.38    pre_time=currTime();
    7.39 -  Prim<ListGraph, int, BinHeap<ListGraph::NodeIt, int, 
    7.40 +  Prim<ListGraph, int, BinHeap<ListGraph::Node, int, 
    7.41      ListGraph::NodeMap<int> > > prim_test2(G, cap);
    7.42    prim_test2.run();
    7.43    post_time=currTime();
     8.1 --- a/src/work/jacint/prim.h	Fri Mar 19 21:15:14 2004 +0000
     8.2 +++ b/src/work/jacint/prim.h	Fri Mar 19 22:16:05 2004 +0000
     8.3 @@ -1,81 +1,82 @@
     8.4  // -*- C++ -*-
     8.5 -
     8.6 -//kell hogy tree_edge invalid elekbol alljon, Szep 
     8.7 -//lenne ha az elejen a konstrualas ilyet adna, de
     8.8 -//ugy fest nem igy lesz, ekkor invalidalni kell
     8.9 -
    8.10  /* 
    8.11 - *template <Graph, T, Heap=FibHeap>
    8.12 + *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
    8.13   *
    8.14   *Constructor: 
    8.15   *
    8.16 - *Prim(Graph G, Graph::EdgeMap<T> weight, NodeIt root=[G.first()])
    8.17 + *Prim(Graph G, LengthMap weight)
    8.18   *
    8.19   *
    8.20   *Methods:
    8.21   *
    8.22 - *void run()
    8.23 + *void run() : Runs the Prim-algorithm from a random node
    8.24   *
    8.25 - *  The followings functions should be used after run() was already run.
    8.26 + *void run(Node r) : Runs the Prim-algorithm from node s
    8.27   *
    8.28 - *T weight() : returns the minimum weight of a spanning tree of the
    8.29 - *   component of the root. 
    8.30 + *T weight() : After run(r) was run, it returns the minimum 
    8.31 + *   weight of a spanning tree of the component of the root. 
    8.32   *
    8.33 - *EdgeIt tree(NodeIt v) : returns the first edge in the path from v
    8.34 - *   to the root. Returns an invalid iterator if v=s or v is 
    8.35 - *   not reachable from the root.
    8.36 + *Edge tree(Node v) : After run(r) was run, it returns the 
    8.37 + *   first edge in the path from v to the root. Returns 
    8.38 + *   INVALID if v=r or v is not reachable from the root.
    8.39   *
    8.40 - *bool conn() : true iff G is connected
    8.41 + *bool conn() : After run(r) was run, it is true iff G is connected
    8.42   *
    8.43 - *bool reach(NodeIt v) : true iff v is in the same component as the root
    8.44 + *bool reached(Node v) : After run(r) was run, it is true 
    8.45 + *   iff v is in the same component as the root
    8.46   *
    8.47 - *NodeIt root() : returns the root
    8.48 + *Node root() : returns the root
    8.49   *
    8.50   */
    8.51  
    8.52 -#ifndef PRIM_H
    8.53 -#define PRIM_H
    8.54 +#ifndef HUGO_PRIM_H
    8.55 +#define HUGO_PRIM_H
    8.56  
    8.57  #include <fib_heap.h>
    8.58 -
    8.59 -#include <iostream>
    8.60 +#include <invalid.h>
    8.61  
    8.62  namespace hugo {
    8.63  
    8.64    template <typename Graph, typename T, 
    8.65 -    typename Heap=FibHeap<typename Graph::NodeIt, T, 
    8.66 -    typename Graph::NodeMap<int> > >
    8.67 +    typename Heap=FibHeap<typename Graph::Node, T, 
    8.68 +    typename Graph::NodeMap<int> >, 
    8.69 +    typename LengthMap=typename Graph::EdgeMap<T> >
    8.70      class Prim{
    8.71 +      typedef typename Graph::Node Node;
    8.72        typedef typename Graph::NodeIt NodeIt;
    8.73 -      typedef typename Graph::EachNodeIt EachNodeIt;
    8.74 -      typedef typename Graph::EdgeIt EdgeIt;
    8.75 +      typedef typename Graph::Edge Edge;
    8.76        typedef typename Graph::OutEdgeIt OutEdgeIt;
    8.77        typedef typename Graph::InEdgeIt InEdgeIt;  
    8.78  
    8.79 -      Graph& G;
    8.80 -      NodeIt r;
    8.81 -      typename Graph::NodeMap<EdgeIt> tree_edge;
    8.82 +      const Graph& G;
    8.83 +      const LengthMap& edge_weight;
    8.84 +      typename Graph::NodeMap<Edge> tree_edge;
    8.85        typename Graph::NodeMap<T> min_weight;
    8.86 -      typename Graph::EdgeMap<T>& edge_weight;
    8.87 -      typename Graph::NodeMap<bool> reached;
    8.88 +      typename Graph::NodeMap<bool> reach;
    8.89            
    8.90    public :
    8.91  
    8.92 -      Prim(Graph& _G, typename Graph::EdgeMap<T>& _edge_weight, 
    8.93 -	   NodeIt const _r) : 
    8.94 -      G(_G), r(_r), tree_edge(G), min_weight(G), 
    8.95 -      edge_weight(_edge_weight), reached(G, false) { }
    8.96 +      Prim(Graph& _G, LengthMap& _edge_weight) : 
    8.97 +	G(_G), edge_weight(_edge_weight), 
    8.98 +	tree_edge(_G,INVALID), min_weight(_G), reach(_G, false) { }
    8.99  
   8.100 -      Prim(Graph& _G, typename Graph::EdgeMap<T>& _edge_weight) : 
   8.101 -      G(_G), tree_edge(G), min_weight(G), edge_weight(_edge_weight), reached(G, false)
   8.102 -      { 
   8.103 -	EachNodeIt _r;	   //FIXME
   8.104 -	G.getFirst(_r);
   8.105 -	r=_r;
   8.106 +
   8.107 +      void run() {
   8.108 +	NodeIt _r;	
   8.109 +	G.first(_r);
   8.110 +	run(_r);
   8.111        }
   8.112  
   8.113  
   8.114 -      void run() {
   8.115 +      void run(Node r) {
   8.116 +
   8.117 +	NodeIt u;
   8.118 +	for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   8.119 +	  tree_edge.set(u,INVALID);
   8.120 +	  min_weight.set(u,0);
   8.121 +	  reach.set(u,false);
   8.122 +	}
   8.123 +
   8.124  
   8.125  	typename Graph::NodeMap<bool> scanned(G, false);
   8.126  	typename Graph::NodeMap<int> heap_map(G,-1);
   8.127 @@ -83,43 +84,43 @@
   8.128  	Heap heap(heap_map);
   8.129  
   8.130  	heap.push(r,0); 
   8.131 -	reached.set(r, true);
   8.132 +	reach.set(r, true);
   8.133  
   8.134  	while ( !heap.empty() ) {
   8.135  
   8.136 -	  NodeIt v=heap.top(); 
   8.137 +	  Node v=heap.top(); 
   8.138  	  min_weight.set(v, heap.get(v));
   8.139  	  heap.pop();
   8.140  	  scanned.set(v,true);
   8.141  
   8.142  	  OutEdgeIt e;
   8.143 -	  for( G.getFirst(e,v); G.valid(e); G.next(e)) {
   8.144 -	    NodeIt w=G.head(e); 
   8.145 +	  for( G.first(e,v); G.valid(e); G.next(e)) {
   8.146 +	    Node w=G.head(e); 
   8.147  	    
   8.148 -	    if ( !scanned.get(w) ) {
   8.149 -	      if ( !reached.get(w) ) {
   8.150 -		reached.set(w,true);
   8.151 -		heap.push(w, edge_weight.get(e)); 
   8.152 +	    if ( !scanned[w] ) {
   8.153 +	      if ( !reach[w] ) {
   8.154 +		reach.set(w,true);
   8.155 +		heap.push(w, edge_weight[e]); 
   8.156  		tree_edge.set(w,e);
   8.157 -	      } else if ( edge_weight.get(e) < heap.get(w) ) {
   8.158 +	      } else if ( edge_weight[e] < heap.get(w) ) {
   8.159  		tree_edge.set(w,e);
   8.160 -		heap.decrease(w, edge_weight.get(e)); 
   8.161 +		heap.decrease(w, edge_weight[e]); 
   8.162  	      }
   8.163  	    }
   8.164  	  }
   8.165  
   8.166  	  InEdgeIt f;
   8.167 -	  for( G.getFirst(f,v); G.valid(f); G.next(f)) {
   8.168 -	    NodeIt w=G.tail(f); 
   8.169 +	  for( G.first(f,v); G.valid(f); G.next(f)) {
   8.170 +	    Node w=G.tail(f); 
   8.171  	    
   8.172 -	    if ( !scanned.get(w) ) {
   8.173 -	      if ( !reached.get(w) ) {
   8.174 -		reached.set(w,true);
   8.175 -		heap.push(w, edge_weight.get(f)); 
   8.176 +	    if ( !scanned[w] ) {
   8.177 +	      if ( !reach[w] ) {
   8.178 +		reach.set(w,true);
   8.179 +		heap.push(w, edge_weight[f]); 
   8.180  		tree_edge.set(w,f);
   8.181 -	      } else if ( edge_weight.get(f) < heap.get(w) ) {
   8.182 +	      } else if ( edge_weight[f] < heap.get(w) ) {
   8.183  		tree_edge.set(w,f);
   8.184 -		heap.decrease(w, edge_weight.get(f)); 
   8.185 +		heap.decrease(w, edge_weight[f]); 
   8.186  	      }
   8.187  	    }
   8.188  	  }
   8.189 @@ -129,22 +130,22 @@
   8.190  
   8.191        T weight() {
   8.192  	T w=0;
   8.193 -	EachNodeIt u;
   8.194 -	for ( G.getFirst(u) ; G.valid(u) ; G.next(u) ) w+=min_weight.get(u);
   8.195 +	NodeIt u;
   8.196 +	for ( G.first(u) ; G.valid(u) ; G.next(u) ) w+=min_weight[u];
   8.197  	return w;
   8.198        }
   8.199       
   8.200  
   8.201 -      EdgeIt tree(NodeIt v) {
   8.202 -	return tree_edge.get(v);
   8.203 +      Edge tree(Node v) {
   8.204 +	return tree_edge[v];
   8.205        } 
   8.206  
   8.207  
   8.208        bool conn() {
   8.209  	bool c=true;
   8.210 -	EachNodeIt u;
   8.211 -	for ( G.getFirst(u) ; G.valid(u) ; G.next(u) ) 
   8.212 -	  if ( !reached.get(u) ) { 
   8.213 +	NodeIt u;
   8.214 +	for ( G.first(u) ; G.valid(u) ; G.next(u) ) 
   8.215 +	  if ( !reached[u] ) { 
   8.216  	    c=false;
   8.217  	    break;
   8.218  	  }
   8.219 @@ -152,12 +153,12 @@
   8.220        }
   8.221  
   8.222  
   8.223 -      bool reach(NodeIt v) {
   8.224 -	return reached.get(v);
   8.225 +      bool reached(Node v) {
   8.226 +	return reached[v];
   8.227        }
   8.228  
   8.229  
   8.230 -      NodeIt root() {
   8.231 +      Node root() {
   8.232  	return r;
   8.233        }
   8.234