Improvements in MinCostFlow and MinCostMaxFlow.
Main changes:
- MinCostMaxFlow also provides dual solution.
- Change the name of private members to start with "_".
- Change the name of function parameters not to start with "_".
- Remove unnecessary documentation for private members.
- Doc improvements.
1.1 --- a/lemon/min_cost_flow.h Mon Feb 18 03:32:06 2008 +0000
1.2 +++ b/lemon/min_cost_flow.h Mon Feb 18 03:32:56 2008 +0000
1.3 @@ -36,33 +36,35 @@
1.4 /// \ref MinCostFlow provides an efficient algorithm for finding
1.5 /// a minimum cost flow.
1.6 ///
1.7 - /// \note \ref MinCostFlow is just an alias for \ref NetworkSimplex,
1.8 - /// which is the most efficient implementation for the minimum cost
1.9 - /// flow problem in the LEMON library according to our benchmark
1.10 - /// tests.
1.11 - ///
1.12 - /// \note There are three implementations for the minimum cost flow
1.13 - /// problem, that can be used exactly the same way.
1.14 - /// - \ref CapacityScaling
1.15 - /// - \ref CycleCanceling
1.16 - /// - \ref NetworkSimplex
1.17 - ///
1.18 - /// \note For the detailed documentation of this class see
1.19 + /// This class is just an alias for \ref NetworkSimplex,
1.20 + /// which is the most efficient algorithm for the minimum cost
1.21 + /// flow problem in LEMON according to our benchmark tests.
1.22 + /// For the detailed documentation of this class see
1.23 /// \ref NetworkSimplex.
1.24 ///
1.25 - /// \param Graph The directed graph type the algorithm runs on.
1.26 - /// \param LowerMap The type of the lower bound map.
1.27 - /// \param CapacityMap The type of the capacity (upper bound) map.
1.28 - /// \param CostMap The type of the cost (length) map.
1.29 - /// \param SupplyMap The type of the supply map.
1.30 + /// There are four implementations for the minimum cost flow problem,
1.31 + /// which can be used exactly the same way except for the fact that
1.32 + /// \ref CycleCanceling does not provide dual solution (node
1.33 + /// potentials) since it is a pure primal method.
1.34 + /// - \ref CapacityScaling The capacity scaling algorithm.
1.35 + /// - \ref CostScaling The cost scaling algorithm.
1.36 + /// - \ref CycleCanceling A cycle-canceling algorithm.
1.37 + /// - \ref NetworkSimplex The network simplex algorithm.
1.38 + ///
1.39 + /// \tparam Graph The directed graph type the algorithm runs on.
1.40 + /// \tparam LowerMap The type of the lower bound map.
1.41 + /// \tparam CapacityMap The type of the capacity (upper bound) map.
1.42 + /// \tparam CostMap The type of the cost (length) map.
1.43 + /// \tparam SupplyMap The type of the supply map.
1.44 ///
1.45 /// \warning
1.46 - /// - Edge capacities and costs should be non-negative integers.
1.47 - /// However \c CostMap::Value should be signed type.
1.48 - /// - Supply values should be signed integers.
1.49 - /// - \c LowerMap::Value must be convertible to
1.50 - /// \c CapacityMap::Value and \c CapacityMap::Value must be
1.51 - /// convertible to \c SupplyMap::Value.
1.52 + /// - Edge capacities and costs should be \e non-negative \e integers.
1.53 + /// - Supply values should be \e signed \e integers.
1.54 + /// - \c LowerMap::Value must be convertible to \c CapacityMap::Value.
1.55 + /// - \c CapacityMap::Value and \c SupplyMap::Value must be
1.56 + /// convertible to each other.
1.57 + /// - All value types must be convertible to \c CostMap::Value, which
1.58 + /// must be signed type.
1.59 ///
1.60 /// \author Peter Kovacs
1.61
2.1 --- a/lemon/min_cost_max_flow.h Mon Feb 18 03:32:06 2008 +0000
2.2 +++ b/lemon/min_cost_max_flow.h Mon Feb 18 03:32:56 2008 +0000
2.3 @@ -40,17 +40,22 @@
2.4 /// finding a maximum flow having minimal total cost from a given
2.5 /// source node to a given target node in a directed graph.
2.6 ///
2.7 - /// \note \ref MinCostMaxFlow uses \ref Preflow algorithm for finding
2.8 - /// the maximum flow value and \ref NetworkSimplex algorithm for
2.9 - /// finding a minimum cost flow of that value.
2.10 + /// \ref MinCostMaxFlow uses \ref Preflow for finding the maximum
2.11 + /// flow value and \ref NetworkSimplex for finding a minimum cost
2.12 + /// flow of that value.
2.13 + /// According to our benchmark tests \ref Preflow is generally the
2.14 + /// most efficient algorithm for the maximum flow problem and
2.15 + /// \ref NetworkSimplex is the most efficient for the minimum cost
2.16 + /// flow problem in LEMON.
2.17 ///
2.18 - /// \param Graph The directed graph type the algorithm runs on.
2.19 - /// \param CapacityMap The type of the capacity (upper bound) map.
2.20 - /// \param CostMap The type of the cost (length) map.
2.21 + /// \tparam Graph The directed graph type the algorithm runs on.
2.22 + /// \tparam CapacityMap The type of the capacity (upper bound) map.
2.23 + /// \tparam CostMap The type of the cost (length) map.
2.24 ///
2.25 /// \warning
2.26 - /// - Edge capacities and costs should be non-negative integers.
2.27 - /// However \c CostMap::Value should be signed type.
2.28 + /// - Edge capacities and costs should be \e non-negative \e integers.
2.29 + /// However \c CostMap::Value must be signed type.
2.30 + /// - \c CapacityMap::Value must be convertible to \c CostMap::Value.
2.31 ///
2.32 /// \author Peter Kovacs
2.33
2.34 @@ -64,34 +69,37 @@
2.35
2.36 typedef typename CapacityMap::Value Capacity;
2.37 typedef typename CostMap::Value Cost;
2.38 - typedef typename Graph::template NodeMap<Capacity> SupplyMap;
2.39 + typedef typename Graph::template NodeMap<Cost> SupplyMap;
2.40 +
2.41 + typedef Preflow<Graph, CapacityMap> MaxFlowImpl;
2.42 typedef NetworkSimplex< Graph, CapacityMap, CapacityMap,
2.43 - CostMap, SupplyMap >
2.44 - MinCostFlowImpl;
2.45 + CostMap, SupplyMap > MinCostFlowImpl;
2.46
2.47 public:
2.48
2.49 /// The type of the flow map.
2.50 typedef typename Graph::template EdgeMap<Capacity> FlowMap;
2.51 + /// The type of the potential map.
2.52 + typedef typename Graph::template NodeMap<Cost> PotentialMap;
2.53
2.54 private:
2.55
2.56 - /// The directed graph the algorithm runs on.
2.57 - const Graph &graph;
2.58 - /// The modified capacity map.
2.59 - const CapacityMap &capacity;
2.60 - /// The cost map.
2.61 - const CostMap &cost;
2.62 - /// The edge map of the found flow.
2.63 - FlowMap flow;
2.64 - /// The source node.
2.65 - Node source;
2.66 - /// The target node.
2.67 - Node target;
2.68 + // The directed graph the algorithm runs on
2.69 + const Graph &_graph;
2.70 + // The modified capacity map
2.71 + const CapacityMap &_capacity;
2.72 + // The cost map
2.73 + const CostMap &_cost;
2.74
2.75 - typedef Preflow<Graph, CapacityMap> MaxFlowImpl;
2.76 - /// \brief \ref Preflow class for finding the maximum flow value.
2.77 - MaxFlowImpl preflow;
2.78 + // Edge map of the found flow
2.79 + FlowMap _flow;
2.80 + // Node map of the found potentials
2.81 + PotentialMap _potential;
2.82 +
2.83 + // The source node
2.84 + Node _source;
2.85 + // The target node
2.86 + Node _target;
2.87
2.88 public:
2.89
2.90 @@ -104,22 +112,46 @@
2.91 /// \param _cost The cost (length) values of the edges.
2.92 /// \param _s The source node.
2.93 /// \param _t The target node.
2.94 - MinCostMaxFlow( const Graph &_graph,
2.95 - const CapacityMap &_capacity,
2.96 - const CostMap &_cost,
2.97 - Node _s, Node _t ) :
2.98 - graph(_graph), capacity(_capacity), cost(_cost),
2.99 - source(_s), target(_t), flow(_graph),
2.100 - preflow(_graph, _capacity, _s, _t)
2.101 + MinCostMaxFlow( const Graph &graph,
2.102 + const CapacityMap &capacity,
2.103 + const CostMap &cost,
2.104 + Node s, Node t ) :
2.105 + _graph(graph), _capacity(capacity), _cost(cost), _flow(graph),
2.106 + _potential(graph), _source(s), _target(t)
2.107 {}
2.108
2.109 - /// \brief Returns a const reference to the flow map.
2.110 + /// \brief Runs the algorithm.
2.111 ///
2.112 - /// Returns a const reference to the flow map.
2.113 + /// Runs the algorithm.
2.114 + void run() {
2.115 + MaxFlowImpl preflow(_graph, _capacity, _source, _target);
2.116 + preflow.flowMap(_flow).runMinCut();
2.117 + MinCostFlowImpl mcf( _graph, _capacity, _cost,
2.118 + _source, _target, preflow.flowValue() );
2.119 + mcf.run();
2.120 + _flow = mcf.flowMap();
2.121 + _potential = mcf.potentialMap();
2.122 + }
2.123 +
2.124 + /// \brief Returns a const reference to the edge map storing the
2.125 + /// found flow.
2.126 + ///
2.127 + /// Returns a const reference to the edge map storing the found flow.
2.128 ///
2.129 /// \pre \ref run() must be called before using this function.
2.130 const FlowMap& flowMap() const {
2.131 - return flow;
2.132 + return _flow_result;
2.133 + }
2.134 +
2.135 + /// \brief Returns a const reference to the node map storing the
2.136 + /// found potentials (the dual solution).
2.137 + ///
2.138 + /// Returns a const reference to the node map storing the found
2.139 + /// potentials (the dual solution).
2.140 + ///
2.141 + /// \pre \ref run() must be called before using this function.
2.142 + const PotentialMap& potentialMap() const {
2.143 + return _potential_result;
2.144 }
2.145
2.146 /// \brief Returns the total cost of the found flow.
2.147 @@ -131,20 +163,10 @@
2.148 Cost totalCost() const {
2.149 Cost c = 0;
2.150 for (typename Graph::EdgeIt e(graph); e != INVALID; ++e)
2.151 - c += flow[e] * cost[e];
2.152 + c += _flow[e] * _cost[e];
2.153 return c;
2.154 }
2.155
2.156 - /// \brief Runs the algorithm.
2.157 - void run() {
2.158 - preflow.flowMap(flow);
2.159 - preflow.runMinCut();
2.160 - MinCostFlowImpl mcf_impl( graph, capacity, cost,
2.161 - source, target, preflow.flowValue() );
2.162 - mcf_impl.run();
2.163 - flow = mcf_impl.flowMap();
2.164 - }
2.165 -
2.166 }; //class MinCostMaxFlow
2.167
2.168 ///@}