Bezier classes are made more consistent
authoralpar
Tue, 12 Jul 2005 16:17:16 +0000
changeset 1548b96c5b7a0e92
parent 1547 dd57a540ff5f
child 1549 8bf39d55b1db
Bezier classes are made more consistent
lemon/bezier.h
     1.1 --- a/lemon/bezier.h	Tue Jul 12 16:16:19 2005 +0000
     1.2 +++ b/lemon/bezier.h	Tue Jul 12 16:17:16 2005 +0000
     1.3 @@ -58,11 +58,13 @@
     1.4    {
     1.5      return Bezier1(conv(p1,p2,t),p2);
     1.6    }
     1.7 -  Bezier1 revert() { return Bezier1(p2,p1);}
     1.8 -  Bezier1 operator()(double a,double b) { return before(b).after(a/b); }
     1.9 -  xy grad() { return p2-p1; }
    1.10 -  xy grad(double) { return grad(); }
    1.11  
    1.12 +  Bezier1 revert() const { return Bezier1(p2,p1);}
    1.13 +  Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
    1.14 +  xy grad() const { return p2-p1; }
    1.15 +  xy norm() const { return rot90(p2-p1); }
    1.16 +  xy grad(double) const { return grad(); }
    1.17 +  xy norm(double t) const { return rot90(grad(t)); }
    1.18  };
    1.19  
    1.20  class Bezier2 : public BezierBase
    1.21 @@ -91,10 +93,12 @@
    1.22      xy r(conv(p2,p3,t));
    1.23      return Bezier2(conv(q,r,t),r,p3);
    1.24    }
    1.25 -  Bezier2 revert() { return Bezier2(p3,p2,p1);}
    1.26 -  Bezier2 operator()(double a,double b) { return before(b).after(a/b); }
    1.27 -  Bezier1 grad() { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
    1.28 -  xy grad(double t) { return grad()(t); }  
    1.29 +  Bezier2 revert() const { return Bezier2(p3,p2,p1);}
    1.30 +  Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
    1.31 +  Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
    1.32 +  Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
    1.33 +  xy grad(double t) const { return grad()(t); }
    1.34 +  xy norm(double t) const { return rot90(grad(t)); }
    1.35  };
    1.36  
    1.37  class Bezier3 : public BezierBase
    1.38 @@ -136,10 +140,29 @@
    1.39        xy c(conv(a,b,t));
    1.40        return Bezier3(c,b,r,p4);
    1.41      }
    1.42 -  Bezier3 revert() { return Bezier3(p4,p3,p2,p1);}
    1.43 -  Bezier3 operator()(double a,double b) { return before(b).after(a/b); }
    1.44 -  Bezier2 grad() { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
    1.45 -  xy grad(double t) { return grad()(t); }
    1.46 +  Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
    1.47 +  Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
    1.48 +  Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
    1.49 +  Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
    1.50 +				  3.0*rot90(p3-p2),
    1.51 +				  3.0*rot90(p4-p3)); }
    1.52 +  xy grad(double t) const { return grad()(t); }
    1.53 +  xy norm(double t) const { return rot90(grad(t)); }
    1.54 +
    1.55 +  template<class R,class F,class S,class D>
    1.56 +  R recSplit(F &_f,const S &_s,D _d) const 
    1.57 +  {
    1.58 +    const xy a=(p1+p2)/2;
    1.59 +    const xy b=(p2+p3)/2;
    1.60 +    const xy c=(p3+p4)/2;
    1.61 +    const xy d=(a+b)/2;
    1.62 +    const xy e=(b+c)/2;
    1.63 +    const xy f=(d+e)/2;
    1.64 +    R f1=_f(Bezier3(p1,a,d,e),_d);
    1.65 +    R f2=_f(Bezier3(e,d,c,p4),_d);
    1.66 +    return _s(f1,f2);
    1.67 +  }
    1.68 +  
    1.69  };
    1.70  
    1.71  } //END OF NAMESPACE LEMON