Delete misnamed file
authordeba
Tue, 03 Jan 2006 16:05:27 +0000
changeset 1870b9c9b52f839e
parent 1869 52f5a7f9fb48
child 1871 3905d347112c
Delete misnamed file
lemon/belmann_ford.h
     1.1 --- a/lemon/belmann_ford.h	Tue Jan 03 14:56:45 2006 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,950 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
     1.6 - *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 - *
    1.10 - * Permission to use, modify and distribute this software is granted
    1.11 - * provided that this copyright notice appears in all copies. For
    1.12 - * precise terms see the accompanying LICENSE file.
    1.13 - *
    1.14 - * This software is provided "AS IS" with no warranty of any kind,
    1.15 - * express or implied, and with no claim as to its suitability for any
    1.16 - * purpose.
    1.17 - *
    1.18 - */
    1.19 -
    1.20 -#ifndef LEMON_BELMANN_FORD_H
    1.21 -#define LEMON_BELMANN_FORD_H
    1.22 -
    1.23 -/// \ingroup flowalgs
    1.24 -/// \file
    1.25 -/// \brief BelmannFord algorithm.
    1.26 -///
    1.27 -
    1.28 -#include <lemon/list_graph.h>
    1.29 -#include <lemon/invalid.h>
    1.30 -#include <lemon/error.h>
    1.31 -#include <lemon/maps.h>
    1.32 -
    1.33 -#include <limits>
    1.34 -
    1.35 -namespace lemon {
    1.36 -
    1.37 -  /// \brief Default OperationTraits for the BelmannFord algorithm class.
    1.38 -  ///  
    1.39 -  /// It defines all computational operations and constants which are
    1.40 -  /// used in the belmann ford algorithm. The default implementation
    1.41 -  /// is based on the numeric_limits class. If the numeric type does not
    1.42 -  /// have infinity value then the maximum value is used as extremal
    1.43 -  /// infinity value.
    1.44 -  template <
    1.45 -    typename Value, 
    1.46 -    bool has_infinity = std::numeric_limits<Value>::has_infinity>
    1.47 -  struct BelmannFordDefaultOperationTraits {
    1.48 -    /// \brief Gives back the zero value of the type.
    1.49 -    static Value zero() {
    1.50 -      return static_cast<Value>(0);
    1.51 -    }
    1.52 -    /// \brief Gives back the positive infinity value of the type.
    1.53 -    static Value infinity() {
    1.54 -      return std::numeric_limits<Value>::infinity();
    1.55 -    }
    1.56 -    /// \brief Gives back the sum of the given two elements.
    1.57 -    static Value plus(const Value& left, const Value& right) {
    1.58 -      return left + right;
    1.59 -    }
    1.60 -    /// \brief Gives back true only if the first value less than the second.
    1.61 -    static bool less(const Value& left, const Value& right) {
    1.62 -      return left < right;
    1.63 -    }
    1.64 -  };
    1.65 -
    1.66 -  template <typename Value>
    1.67 -  struct BelmannFordDefaultOperationTraits<Value, false> {
    1.68 -    static Value zero() {
    1.69 -      return static_cast<Value>(0);
    1.70 -    }
    1.71 -    static Value infinity() {
    1.72 -      return std::numeric_limits<Value>::max();
    1.73 -    }
    1.74 -    static Value plus(const Value& left, const Value& right) {
    1.75 -      if (left == infinity() || right == infinity()) return infinity();
    1.76 -      return left + right;
    1.77 -    }
    1.78 -    static bool less(const Value& left, const Value& right) {
    1.79 -      return left < right;
    1.80 -    }
    1.81 -  };
    1.82 -  
    1.83 -  /// \brief Default traits class of BelmannFord class.
    1.84 -  ///
    1.85 -  /// Default traits class of BelmannFord class.
    1.86 -  /// \param _Graph Graph type.
    1.87 -  /// \param _LegthMap Type of length map.
    1.88 -  template<class _Graph, class _LengthMap>
    1.89 -  struct BelmannFordDefaultTraits {
    1.90 -    /// The graph type the algorithm runs on. 
    1.91 -    typedef _Graph Graph;
    1.92 -
    1.93 -    /// \brief The type of the map that stores the edge lengths.
    1.94 -    ///
    1.95 -    /// The type of the map that stores the edge lengths.
    1.96 -    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    1.97 -    typedef _LengthMap LengthMap;
    1.98 -
    1.99 -    // The type of the length of the edges.
   1.100 -    typedef typename _LengthMap::Value Value;
   1.101 -
   1.102 -    /// \brief Operation traits for belmann-ford algorithm.
   1.103 -    ///
   1.104 -    /// It defines the infinity type on the given Value type
   1.105 -    /// and the used operation.
   1.106 -    /// \see BelmannFordDefaultOperationTraits
   1.107 -    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   1.108 - 
   1.109 -    /// \brief The type of the map that stores the last edges of the 
   1.110 -    /// shortest paths.
   1.111 -    /// 
   1.112 -    /// The type of the map that stores the last
   1.113 -    /// edges of the shortest paths.
   1.114 -    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.115 -    ///
   1.116 -    typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
   1.117 -
   1.118 -    /// \brief Instantiates a PredMap.
   1.119 -    /// 
   1.120 -    /// This function instantiates a \ref PredMap. 
   1.121 -    /// \param graph is the graph, to which we would like to define the PredMap.
   1.122 -    static PredMap *createPredMap(const _Graph& graph) {
   1.123 -      return new PredMap(graph);
   1.124 -    }
   1.125 -
   1.126 -    /// \brief The type of the map that stores the dists of the nodes.
   1.127 -    ///
   1.128 -    /// The type of the map that stores the dists of the nodes.
   1.129 -    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.130 -    ///
   1.131 -    typedef typename Graph::template NodeMap<typename _LengthMap::Value> 
   1.132 -    DistMap;
   1.133 -
   1.134 -    /// \brief Instantiates a DistMap.
   1.135 -    ///
   1.136 -    /// This function instantiates a \ref DistMap. 
   1.137 -    /// \param graph is the graph, to which we would like to define the 
   1.138 -    /// \ref DistMap
   1.139 -    static DistMap *createDistMap(const _Graph& graph) {
   1.140 -      return new DistMap(graph);
   1.141 -    }
   1.142 -
   1.143 -  };
   1.144 -  
   1.145 -  /// \brief %BelmannFord algorithm class.
   1.146 -  ///
   1.147 -  /// \ingroup flowalgs
   1.148 -  /// This class provides an efficient implementation of \c Belmann-Ford 
   1.149 -  /// algorithm. The edge lengths are passed to the algorithm using a
   1.150 -  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   1.151 -  /// kind of length.
   1.152 -  ///
   1.153 -  /// The Belmann-Ford algorithm solves the shortest path from one node
   1.154 -  /// problem when the edges can have negative length but the graph should
   1.155 -  /// not contain cycles with negative sum of length. If we can assume
   1.156 -  /// that all edge is non-negative in the graph then the dijkstra algorithm
   1.157 -  /// should be used rather.
   1.158 -  ///
   1.159 -  /// The complexity of the algorithm is O(n * e).
   1.160 -  ///
   1.161 -  /// The type of the length is determined by the
   1.162 -  /// \ref concept::ReadMap::Value "Value" of the length map.
   1.163 -  ///
   1.164 -  /// \param _Graph The graph type the algorithm runs on. The default value
   1.165 -  /// is \ref ListGraph. The value of _Graph is not used directly by
   1.166 -  /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
   1.167 -  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   1.168 -  /// edges. The default map type is \ref concept::StaticGraph::EdgeMap 
   1.169 -  /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly 
   1.170 -  /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.  
   1.171 -  /// \param _Traits Traits class to set various data types used by the 
   1.172 -  /// algorithm.  The default traits class is \ref BelmannFordDefaultTraits
   1.173 -  /// "BelmannFordDefaultTraits<_Graph,_LengthMap>".  See \ref
   1.174 -  /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
   1.175 -  /// class.
   1.176 -  ///
   1.177 -  /// \author Balazs Dezso
   1.178 -
   1.179 -#ifdef DOXYGEN
   1.180 -  template <typename _Graph, typename _LengthMap, typename _Traits>
   1.181 -#else
   1.182 -  template <typename _Graph=ListGraph,
   1.183 -	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   1.184 -	    typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
   1.185 -#endif
   1.186 -  class BelmannFord {
   1.187 -  public:
   1.188 -    
   1.189 -    /// \brief \ref Exception for uninitialized parameters.
   1.190 -    ///
   1.191 -    /// This error represents problems in the initialization
   1.192 -    /// of the parameters of the algorithms.
   1.193 -
   1.194 -    class UninitializedParameter : public lemon::UninitializedParameter {
   1.195 -    public:
   1.196 -      virtual const char* exceptionName() const {
   1.197 -	return "lemon::BelmannFord::UninitializedParameter";
   1.198 -      }
   1.199 -    };
   1.200 -
   1.201 -    typedef _Traits Traits;
   1.202 -    ///The type of the underlying graph.
   1.203 -    typedef typename _Traits::Graph Graph;
   1.204 -
   1.205 -    typedef typename Graph::Node Node;
   1.206 -    typedef typename Graph::NodeIt NodeIt;
   1.207 -    typedef typename Graph::Edge Edge;
   1.208 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
   1.209 -    
   1.210 -    /// \brief The type of the length of the edges.
   1.211 -    typedef typename _Traits::LengthMap::Value Value;
   1.212 -    /// \brief The type of the map that stores the edge lengths.
   1.213 -    typedef typename _Traits::LengthMap LengthMap;
   1.214 -    /// \brief The type of the map that stores the last
   1.215 -    /// edges of the shortest paths.
   1.216 -    typedef typename _Traits::PredMap PredMap;
   1.217 -    /// \brief The type of the map that stores the dists of the nodes.
   1.218 -    typedef typename _Traits::DistMap DistMap;
   1.219 -    /// \brief The operation traits.
   1.220 -    typedef typename _Traits::OperationTraits OperationTraits;
   1.221 -  private:
   1.222 -    /// Pointer to the underlying graph.
   1.223 -    const Graph *graph;
   1.224 -    /// Pointer to the length map
   1.225 -    const LengthMap *length;
   1.226 -    ///Pointer to the map of predecessors edges.
   1.227 -    PredMap *_pred;
   1.228 -    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   1.229 -    bool local_pred;
   1.230 -    ///Pointer to the map of distances.
   1.231 -    DistMap *_dist;
   1.232 -    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   1.233 -    bool local_dist;
   1.234 -
   1.235 -    typedef typename Graph::template NodeMap<bool> MaskMap;
   1.236 -    MaskMap *_mask;
   1.237 -
   1.238 -    std::vector<Node> _process;
   1.239 -
   1.240 -    /// Creates the maps if necessary.
   1.241 -    void create_maps() {
   1.242 -      if(!_pred) {
   1.243 -	local_pred = true;
   1.244 -	_pred = Traits::createPredMap(*graph);
   1.245 -      }
   1.246 -      if(!_dist) {
   1.247 -	local_dist = true;
   1.248 -	_dist = Traits::createDistMap(*graph);
   1.249 -      }
   1.250 -      _mask = new MaskMap(*graph, false);
   1.251 -    }
   1.252 -    
   1.253 -  public :
   1.254 - 
   1.255 -    typedef BelmannFord Create;
   1.256 -
   1.257 -    /// \name Named template parameters
   1.258 -
   1.259 -    ///@{
   1.260 -
   1.261 -    template <class T>
   1.262 -    struct DefPredMapTraits : public Traits {
   1.263 -      typedef T PredMap;
   1.264 -      static PredMap *createPredMap(const Graph&) {
   1.265 -	throw UninitializedParameter();
   1.266 -      }
   1.267 -    };
   1.268 -
   1.269 -    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   1.270 -    /// type
   1.271 -    /// \ref named-templ-param "Named parameter" for setting PredMap type
   1.272 -    ///
   1.273 -    template <class T>
   1.274 -    struct DefPredMap 
   1.275 -      : public BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > {
   1.276 -      typedef BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
   1.277 -    };
   1.278 -    
   1.279 -    template <class T>
   1.280 -    struct DefDistMapTraits : public Traits {
   1.281 -      typedef T DistMap;
   1.282 -      static DistMap *createDistMap(const Graph& graph) {
   1.283 -	throw UninitializedParameter();
   1.284 -      }
   1.285 -    };
   1.286 -
   1.287 -    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   1.288 -    /// type
   1.289 -    ///
   1.290 -    /// \ref named-templ-param "Named parameter" for setting DistMap type
   1.291 -    ///
   1.292 -    template <class T>
   1.293 -    struct DefDistMap 
   1.294 -      : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {
   1.295 -      typedef BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
   1.296 -    };
   1.297 -    
   1.298 -    template <class T>
   1.299 -    struct DefOperationTraitsTraits : public Traits {
   1.300 -      typedef T OperationTraits;
   1.301 -    };
   1.302 -    
   1.303 -    /// \brief \ref named-templ-param "Named parameter" for setting 
   1.304 -    /// OperationTraits type
   1.305 -    ///
   1.306 -    /// \ref named-templ-param "Named parameter" for setting OperationTraits
   1.307 -    /// type
   1.308 -    template <class T>
   1.309 -    struct DefOperationTraits
   1.310 -      : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   1.311 -      typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
   1.312 -      Create;
   1.313 -    };
   1.314 -    
   1.315 -    ///@}
   1.316 -
   1.317 -  protected:
   1.318 -    
   1.319 -    BelmannFord() {}
   1.320 -
   1.321 -  public:      
   1.322 -    
   1.323 -    /// \brief Constructor.
   1.324 -    ///
   1.325 -    /// \param _graph the graph the algorithm will run on.
   1.326 -    /// \param _length the length map used by the algorithm.
   1.327 -    BelmannFord(const Graph& _graph, const LengthMap& _length) :
   1.328 -      graph(&_graph), length(&_length),
   1.329 -      _pred(0), local_pred(false),
   1.330 -      _dist(0), local_dist(false) {}
   1.331 -    
   1.332 -    ///Destructor.
   1.333 -    ~BelmannFord() {
   1.334 -      if(local_pred) delete _pred;
   1.335 -      if(local_dist) delete _dist;
   1.336 -      delete _mask;
   1.337 -    }
   1.338 -
   1.339 -    /// \brief Sets the length map.
   1.340 -    ///
   1.341 -    /// Sets the length map.
   1.342 -    /// \return \c (*this)
   1.343 -    BelmannFord &lengthMap(const LengthMap &m) {
   1.344 -      length = &m;
   1.345 -      return *this;
   1.346 -    }
   1.347 -
   1.348 -    /// \brief Sets the map storing the predecessor edges.
   1.349 -    ///
   1.350 -    /// Sets the map storing the predecessor edges.
   1.351 -    /// If you don't use this function before calling \ref run(),
   1.352 -    /// it will allocate one. The destuctor deallocates this
   1.353 -    /// automatically allocated map, of course.
   1.354 -    /// \return \c (*this)
   1.355 -    BelmannFord &predMap(PredMap &m) {
   1.356 -      if(local_pred) {
   1.357 -	delete _pred;
   1.358 -	local_pred=false;
   1.359 -      }
   1.360 -      _pred = &m;
   1.361 -      return *this;
   1.362 -    }
   1.363 -
   1.364 -    /// \brief Sets the map storing the distances calculated by the algorithm.
   1.365 -    ///
   1.366 -    /// Sets the map storing the distances calculated by the algorithm.
   1.367 -    /// If you don't use this function before calling \ref run(),
   1.368 -    /// it will allocate one. The destuctor deallocates this
   1.369 -    /// automatically allocated map, of course.
   1.370 -    /// \return \c (*this)
   1.371 -    BelmannFord &distMap(DistMap &m) {
   1.372 -      if(local_dist) {
   1.373 -	delete _dist;
   1.374 -	local_dist=false;
   1.375 -      }
   1.376 -      _dist = &m;
   1.377 -      return *this;
   1.378 -    }
   1.379 -
   1.380 -    /// \name Execution control
   1.381 -    /// The simplest way to execute the algorithm is to use
   1.382 -    /// one of the member functions called \c run(...).
   1.383 -    /// \n
   1.384 -    /// If you need more control on the execution,
   1.385 -    /// first you must call \ref init(), then you can add several source nodes
   1.386 -    /// with \ref addSource().
   1.387 -    /// Finally \ref start() will perform the actual path
   1.388 -    /// computation.
   1.389 -
   1.390 -    ///@{
   1.391 -
   1.392 -    /// \brief Initializes the internal data structures.
   1.393 -    /// 
   1.394 -    /// Initializes the internal data structures.
   1.395 -    void init(const Value value = OperationTraits::infinity()) {
   1.396 -      create_maps();
   1.397 -      for (NodeIt it(*graph); it != INVALID; ++it) {
   1.398 -	_pred->set(it, INVALID);
   1.399 -	_dist->set(it, value);
   1.400 -      }
   1.401 -      _process.clear();
   1.402 -      if (OperationTraits::less(value, OperationTraits::infinity())) {
   1.403 -	for (NodeIt it(*graph); it != INVALID; ++it) {
   1.404 -	  _process.push_back(it);
   1.405 -	  _mask->set(it, true);
   1.406 -	}
   1.407 -      }
   1.408 -    }
   1.409 -    
   1.410 -    /// \brief Adds a new source node.
   1.411 -    ///
   1.412 -    /// The optional second parameter is the initial distance of the node.
   1.413 -    /// It just sets the distance of the node to the given value.
   1.414 -    void addSource(Node source, Value dst = OperationTraits::zero()) {
   1.415 -      _dist->set(source, dst);
   1.416 -      if (!(*_mask)[source]) {
   1.417 -	_process.push_back(source);
   1.418 -	_mask->set(source, true);
   1.419 -      }
   1.420 -    }
   1.421 -
   1.422 -    /// \brief Executes one round from the belmann ford algorithm.
   1.423 -    ///
   1.424 -    /// If the algoritm calculated the distances in the previous round 
   1.425 -    /// strictly for all at most k length paths then it will calculate the 
   1.426 -    /// distances strictly for all at most k + 1 length paths. With k
   1.427 -    /// iteration this function calculates the at most k length paths.
   1.428 -    /// \return %True when the algorithm have not found more shorter paths.
   1.429 -    bool processNextRound() {
   1.430 -      for (int i = 0; i < (int)_process.size(); ++i) {
   1.431 -	_mask->set(_process[i], false);
   1.432 -      }
   1.433 -      std::vector<Node> nextProcess;
   1.434 -      std::vector<Value> values(_process.size());
   1.435 -      for (int i = 0; i < (int)_process.size(); ++i) {
   1.436 -	values[i] = (*_dist)[_process[i]];
   1.437 -      }
   1.438 -      for (int i = 0; i < (int)_process.size(); ++i) {
   1.439 -	for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
   1.440 -	  Node target = graph->target(it);
   1.441 -	  Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
   1.442 -	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   1.443 -	    _pred->set(target, it);
   1.444 -	    _dist->set(target, relaxed);
   1.445 -	    if (!(*_mask)[target]) {
   1.446 -	      _mask->set(target, true);
   1.447 -	      nextProcess.push_back(target);
   1.448 -	    }
   1.449 -	  }	  
   1.450 -	}
   1.451 -      }
   1.452 -      _process.swap(nextProcess);
   1.453 -      return _process.empty();
   1.454 -    }
   1.455 -
   1.456 -    /// \brief Executes one weak round from the belmann ford algorithm.
   1.457 -    ///
   1.458 -    /// If the algorithm calculated the distances in the
   1.459 -    /// previous round at least for all at most k length paths then it will
   1.460 -    /// calculate the distances at least for all at most k + 1 length paths.
   1.461 -    /// This function does not make it possible to calculate strictly the
   1.462 -    /// at most k length minimal paths, this is why it is
   1.463 -    /// called just weak round.
   1.464 -    /// \return %True when the algorithm have not found more shorter paths.
   1.465 -    bool processNextWeakRound() {
   1.466 -      for (int i = 0; i < (int)_process.size(); ++i) {
   1.467 -	_mask->set(_process[i], false);
   1.468 -      }
   1.469 -      std::vector<Node> nextProcess;
   1.470 -      for (int i = 0; i < (int)_process.size(); ++i) {
   1.471 -	for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
   1.472 -	  Node target = graph->target(it);
   1.473 -	  Value relaxed = 
   1.474 -	    OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
   1.475 -	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   1.476 -	    _pred->set(target, it);
   1.477 -	    _dist->set(target, relaxed);
   1.478 -	    if (!(*_mask)[target]) {
   1.479 -	      _mask->set(target, true);
   1.480 -	      nextProcess.push_back(target);
   1.481 -	    }
   1.482 -	  }	  
   1.483 -	}
   1.484 -      }
   1.485 -      _process.swap(nextProcess);
   1.486 -      return _process.empty();
   1.487 -    }
   1.488 -
   1.489 -    /// \brief Executes the algorithm.
   1.490 -    ///
   1.491 -    /// \pre init() must be called and at least one node should be added
   1.492 -    /// with addSource() before using this function.
   1.493 -    ///
   1.494 -    /// This method runs the %BelmannFord algorithm from the root node(s)
   1.495 -    /// in order to compute the shortest path to each node. The algorithm 
   1.496 -    /// computes 
   1.497 -    /// - The shortest path tree.
   1.498 -    /// - The distance of each node from the root(s).
   1.499 -    void start() {
   1.500 -      int num = countNodes(*graph) - 1;
   1.501 -      for (int i = 0; i < num; ++i) {
   1.502 -	if (processNextWeakRound()) break;
   1.503 -      }
   1.504 -    }
   1.505 -
   1.506 -    /// \brief Executes the algorithm and checks the negative cycles.
   1.507 -    ///
   1.508 -    /// \pre init() must be called and at least one node should be added
   1.509 -    /// with addSource() before using this function. If there is
   1.510 -    /// a negative cycles in the graph it gives back false.
   1.511 -    ///
   1.512 -    /// This method runs the %BelmannFord algorithm from the root node(s)
   1.513 -    /// in order to compute the shortest path to each node. The algorithm 
   1.514 -    /// computes 
   1.515 -    /// - The shortest path tree.
   1.516 -    /// - The distance of each node from the root(s).
   1.517 -    bool checkedStart() {
   1.518 -      int num = countNodes(*graph);
   1.519 -      for (int i = 0; i < num; ++i) {
   1.520 -	if (processNextWeakRound()) return true;
   1.521 -      }
   1.522 -      return false;
   1.523 -    }
   1.524 -
   1.525 -    /// \brief Executes the algorithm with path length limit.
   1.526 -    ///
   1.527 -    /// \pre init() must be called and at least one node should be added
   1.528 -    /// with addSource() before using this function.
   1.529 -    ///
   1.530 -    /// This method runs the %BelmannFord algorithm from the root node(s)
   1.531 -    /// in order to compute the shortest path with at most \c length edge 
   1.532 -    /// long paths to each node. The algorithm computes 
   1.533 -    /// - The shortest path tree.
   1.534 -    /// - The limited distance of each node from the root(s).
   1.535 -    void limitedStart(int length) {
   1.536 -      for (int i = 0; i < length; ++i) {
   1.537 -	if (processNextRound()) break;
   1.538 -      }
   1.539 -    }
   1.540 -    
   1.541 -    /// \brief Runs %BelmannFord algorithm from node \c s.
   1.542 -    ///    
   1.543 -    /// This method runs the %BelmannFord algorithm from a root node \c s
   1.544 -    /// in order to compute the shortest path to each node. The algorithm 
   1.545 -    /// computes
   1.546 -    /// - The shortest path tree.
   1.547 -    /// - The distance of each node from the root.
   1.548 -    ///
   1.549 -    /// \note d.run(s) is just a shortcut of the following code.
   1.550 -    /// \code
   1.551 -    ///  d.init();
   1.552 -    ///  d.addSource(s);
   1.553 -    ///  d.start();
   1.554 -    /// \endcode
   1.555 -    void run(Node s) {
   1.556 -      init();
   1.557 -      addSource(s);
   1.558 -      start();
   1.559 -    }
   1.560 -    
   1.561 -    /// \brief Runs %BelmannFord algorithm with limited path length 
   1.562 -    /// from node \c s.
   1.563 -    ///    
   1.564 -    /// This method runs the %BelmannFord algorithm from a root node \c s
   1.565 -    /// in order to compute the shortest path with at most \c len edges 
   1.566 -    /// to each node. The algorithm computes
   1.567 -    /// - The shortest path tree.
   1.568 -    /// - The distance of each node from the root.
   1.569 -    ///
   1.570 -    /// \note d.run(s, len) is just a shortcut of the following code.
   1.571 -    /// \code
   1.572 -    ///  d.init();
   1.573 -    ///  d.addSource(s);
   1.574 -    ///  d.limitedStart(len);
   1.575 -    /// \endcode
   1.576 -    void run(Node s, int len) {
   1.577 -      init();
   1.578 -      addSource(s);
   1.579 -      limitedStart(len);
   1.580 -    }
   1.581 -    
   1.582 -    ///@}
   1.583 -
   1.584 -    /// \name Query Functions
   1.585 -    /// The result of the %BelmannFord algorithm can be obtained using these
   1.586 -    /// functions.\n
   1.587 -    /// Before the use of these functions,
   1.588 -    /// either run() or start() must be called.
   1.589 -    
   1.590 -    ///@{
   1.591 -
   1.592 -    /// \brief Copies the shortest path to \c t into \c p
   1.593 -    ///    
   1.594 -    /// This function copies the shortest path to \c t into \c p.
   1.595 -    /// If it \c t is a source itself or unreachable, then it does not
   1.596 -    /// alter \c p.
   1.597 -    ///
   1.598 -    /// \return Returns \c true if a path to \c t was actually copied to \c p,
   1.599 -    /// \c false otherwise.
   1.600 -    /// \sa DirPath
   1.601 -    template <typename Path>
   1.602 -    bool getPath(Path &p, Node t) {
   1.603 -      if(reached(t)) {
   1.604 -	p.clear();
   1.605 -	typename Path::Builder b(p);
   1.606 -	for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
   1.607 -	  b.pushFront(predEdge(t));
   1.608 -	b.commit();
   1.609 -	return true;
   1.610 -      }
   1.611 -      return false;
   1.612 -    }
   1.613 -	  
   1.614 -    /// \brief The distance of a node from the root.
   1.615 -    ///
   1.616 -    /// Returns the distance of a node from the root.
   1.617 -    /// \pre \ref run() must be called before using this function.
   1.618 -    /// \warning If node \c v in unreachable from the root the return value
   1.619 -    /// of this funcion is undefined.
   1.620 -    Value dist(Node v) const { return (*_dist)[v]; }
   1.621 -
   1.622 -    /// \brief Returns the 'previous edge' of the shortest path tree.
   1.623 -    ///
   1.624 -    /// For a node \c v it returns the 'previous edge' of the shortest path 
   1.625 -    /// tree, i.e. it returns the last edge of a shortest path from the root 
   1.626 -    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
   1.627 -    /// if \c v=s. The shortest path tree used here is equal to the shortest 
   1.628 -    /// path tree used in \ref predNode(). 
   1.629 -    /// \pre \ref run() must be called before using
   1.630 -    /// this function.
   1.631 -    Edge predEdge(Node v) const { return (*_pred)[v]; }
   1.632 -
   1.633 -    /// \brief Returns the 'previous node' of the shortest path tree.
   1.634 -    ///
   1.635 -    /// For a node \c v it returns the 'previous node' of the shortest path 
   1.636 -    /// tree, i.e. it returns the last but one node from a shortest path from 
   1.637 -    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
   1.638 -    /// or if \c v=s. The shortest path tree used here is equal to the 
   1.639 -    /// shortest path tree used in \ref predEdge().  \pre \ref run() must be 
   1.640 -    /// called before using this function.
   1.641 -    Node predNode(Node v) const { 
   1.642 -      return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); 
   1.643 -    }
   1.644 -    
   1.645 -    /// \brief Returns a reference to the NodeMap of distances.
   1.646 -    ///
   1.647 -    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.648 -    /// be called before using this function.
   1.649 -    const DistMap &distMap() const { return *_dist;}
   1.650 - 
   1.651 -    /// \brief Returns a reference to the shortest path tree map.
   1.652 -    ///
   1.653 -    /// Returns a reference to the NodeMap of the edges of the
   1.654 -    /// shortest path tree.
   1.655 -    /// \pre \ref run() must be called before using this function.
   1.656 -    const PredMap &predMap() const { return *_pred; }
   1.657 - 
   1.658 -    /// \brief Checks if a node is reachable from the root.
   1.659 -    ///
   1.660 -    /// Returns \c true if \c v is reachable from the root.
   1.661 -    /// \pre \ref run() must be called before using this function.
   1.662 -    ///
   1.663 -    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
   1.664 -    
   1.665 -    ///@}
   1.666 -  };
   1.667 - 
   1.668 -  /// \brief Default traits class of BelmannFord function.
   1.669 -  ///
   1.670 -  /// Default traits class of BelmannFord function.
   1.671 -  /// \param _Graph Graph type.
   1.672 -  /// \param _LengthMap Type of length map.
   1.673 -  template <typename _Graph, typename _LengthMap>
   1.674 -  struct BelmannFordWizardDefaultTraits {
   1.675 -    /// \brief The graph type the algorithm runs on. 
   1.676 -    typedef _Graph Graph;
   1.677 -
   1.678 -    /// \brief The type of the map that stores the edge lengths.
   1.679 -    ///
   1.680 -    /// The type of the map that stores the edge lengths.
   1.681 -    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
   1.682 -    typedef _LengthMap LengthMap;
   1.683 -
   1.684 -    /// \brief The value type of the length map.
   1.685 -    typedef typename _LengthMap::Value Value;
   1.686 -
   1.687 -    /// \brief Operation traits for belmann-ford algorithm.
   1.688 -    ///
   1.689 -    /// It defines the infinity type on the given Value type
   1.690 -    /// and the used operation.
   1.691 -    /// \see BelmannFordDefaultOperationTraits
   1.692 -    typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
   1.693 -
   1.694 -    /// \brief The type of the map that stores the last
   1.695 -    /// edges of the shortest paths.
   1.696 -    /// 
   1.697 -    /// The type of the map that stores the last
   1.698 -    /// edges of the shortest paths.
   1.699 -    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.700 -    typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
   1.701 -
   1.702 -    /// \brief Instantiates a PredMap.
   1.703 -    /// 
   1.704 -    /// This function instantiates a \ref PredMap. 
   1.705 -    static PredMap *createPredMap(const _Graph &) {
   1.706 -      return new PredMap();
   1.707 -    }
   1.708 -    /// \brief The type of the map that stores the dists of the nodes.
   1.709 -    ///
   1.710 -    /// The type of the map that stores the dists of the nodes.
   1.711 -    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   1.712 -    typedef NullMap<typename Graph::Node, Value> DistMap;
   1.713 -    /// \brief Instantiates a DistMap.
   1.714 -    ///
   1.715 -    /// This function instantiates a \ref DistMap. 
   1.716 -    static DistMap *createDistMap(const _Graph &) {
   1.717 -      return new DistMap();
   1.718 -    }
   1.719 -  };
   1.720 -  
   1.721 -  /// \brief Default traits used by \ref BelmannFordWizard
   1.722 -  ///
   1.723 -  /// To make it easier to use BelmannFord algorithm
   1.724 -  /// we have created a wizard class.
   1.725 -  /// This \ref BelmannFordWizard class needs default traits,
   1.726 -  /// as well as the \ref BelmannFord class.
   1.727 -  /// The \ref BelmannFordWizardBase is a class to be the default traits of the
   1.728 -  /// \ref BelmannFordWizard class.
   1.729 -  /// \todo More named parameters are required...
   1.730 -  template<class _Graph,class _LengthMap>
   1.731 -  class BelmannFordWizardBase 
   1.732 -    : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
   1.733 -
   1.734 -    typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
   1.735 -  protected:
   1.736 -    /// Type of the nodes in the graph.
   1.737 -    typedef typename Base::Graph::Node Node;
   1.738 -
   1.739 -    /// Pointer to the underlying graph.
   1.740 -    void *_graph;
   1.741 -    /// Pointer to the length map
   1.742 -    void *_length;
   1.743 -    ///Pointer to the map of predecessors edges.
   1.744 -    void *_pred;
   1.745 -    ///Pointer to the map of distances.
   1.746 -    void *_dist;
   1.747 -    ///Pointer to the source node.
   1.748 -    Node _source;
   1.749 -
   1.750 -    public:
   1.751 -    /// Constructor.
   1.752 -    
   1.753 -    /// This constructor does not require parameters, therefore it initiates
   1.754 -    /// all of the attributes to default values (0, INVALID).
   1.755 -    BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
   1.756 -			   _dist(0), _source(INVALID) {}
   1.757 -
   1.758 -    /// Constructor.
   1.759 -    
   1.760 -    /// This constructor requires some parameters,
   1.761 -    /// listed in the parameters list.
   1.762 -    /// Others are initiated to 0.
   1.763 -    /// \param graph is the initial value of  \ref _graph
   1.764 -    /// \param length is the initial value of  \ref _length
   1.765 -    /// \param source is the initial value of  \ref _source
   1.766 -    BelmannFordWizardBase(const _Graph& graph, 
   1.767 -			  const _LengthMap& length, 
   1.768 -			  Node source = INVALID) :
   1.769 -      _graph((void *)&graph), _length((void *)&length), _pred(0),
   1.770 -      _dist(0), _source(source) {}
   1.771 -
   1.772 -  };
   1.773 -  
   1.774 -  /// A class to make the usage of BelmannFord algorithm easier
   1.775 -
   1.776 -  /// This class is created to make it easier to use BelmannFord algorithm.
   1.777 -  /// It uses the functions and features of the plain \ref BelmannFord,
   1.778 -  /// but it is much simpler to use it.
   1.779 -  ///
   1.780 -  /// Simplicity means that the way to change the types defined
   1.781 -  /// in the traits class is based on functions that returns the new class
   1.782 -  /// and not on templatable built-in classes.
   1.783 -  /// When using the plain \ref BelmannFord
   1.784 -  /// the new class with the modified type comes from
   1.785 -  /// the original class by using the ::
   1.786 -  /// operator. In the case of \ref BelmannFordWizard only
   1.787 -  /// a function have to be called and it will
   1.788 -  /// return the needed class.
   1.789 -  ///
   1.790 -  /// It does not have own \ref run method. When its \ref run method is called
   1.791 -  /// it initiates a plain \ref BelmannFord class, and calls the \ref 
   1.792 -  /// BelmannFord::run method of it.
   1.793 -  template<class _Traits>
   1.794 -  class BelmannFordWizard : public _Traits {
   1.795 -    typedef _Traits Base;
   1.796 -
   1.797 -    ///The type of the underlying graph.
   1.798 -    typedef typename _Traits::Graph Graph;
   1.799 -
   1.800 -    typedef typename Graph::Node Node;
   1.801 -    typedef typename Graph::NodeIt NodeIt;
   1.802 -    typedef typename Graph::Edge Edge;
   1.803 -    typedef typename Graph::OutEdgeIt EdgeIt;
   1.804 -    
   1.805 -    ///The type of the map that stores the edge lengths.
   1.806 -    typedef typename _Traits::LengthMap LengthMap;
   1.807 -
   1.808 -    ///The type of the length of the edges.
   1.809 -    typedef typename LengthMap::Value Value;
   1.810 -
   1.811 -    ///\brief The type of the map that stores the last
   1.812 -    ///edges of the shortest paths.
   1.813 -    typedef typename _Traits::PredMap PredMap;
   1.814 -
   1.815 -    ///The type of the map that stores the dists of the nodes.
   1.816 -    typedef typename _Traits::DistMap DistMap;
   1.817 -
   1.818 -  public:
   1.819 -    /// Constructor.
   1.820 -    BelmannFordWizard() : _Traits() {}
   1.821 -
   1.822 -    /// \brief Constructor that requires parameters.
   1.823 -    ///
   1.824 -    /// Constructor that requires parameters.
   1.825 -    /// These parameters will be the default values for the traits class.
   1.826 -    BelmannFordWizard(const Graph& graph, const LengthMap& length, 
   1.827 -		      Node source = INVALID) 
   1.828 -      : _Traits(graph, length, source) {}
   1.829 -
   1.830 -    /// \brief Copy constructor
   1.831 -    BelmannFordWizard(const _Traits &b) : _Traits(b) {}
   1.832 -
   1.833 -    ~BelmannFordWizard() {}
   1.834 -
   1.835 -    /// \brief Runs BelmannFord algorithm from a given node.
   1.836 -    ///    
   1.837 -    /// Runs BelmannFord algorithm from a given node.
   1.838 -    /// The node can be given by the \ref source function.
   1.839 -    void run() {
   1.840 -      if(Base::_source == INVALID) throw UninitializedParameter();
   1.841 -      BelmannFord<Graph,LengthMap,_Traits> 
   1.842 -	bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
   1.843 -      if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
   1.844 -      if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
   1.845 -      bf.run(Base::_source);
   1.846 -    }
   1.847 -
   1.848 -    /// \brief Runs BelmannFord algorithm from the given node.
   1.849 -    ///
   1.850 -    /// Runs BelmannFord algorithm from the given node.
   1.851 -    /// \param source is the given source.
   1.852 -    void run(Node source) {
   1.853 -      Base::_source = source;
   1.854 -      run();
   1.855 -    }
   1.856 -
   1.857 -    template<class T>
   1.858 -    struct DefPredMapBase : public Base {
   1.859 -      typedef T PredMap;
   1.860 -      static PredMap *createPredMap(const Graph &) { return 0; };
   1.861 -      DefPredMapBase(const _Traits &b) : _Traits(b) {}
   1.862 -    };
   1.863 -    
   1.864 -    ///\brief \ref named-templ-param "Named parameter"
   1.865 -    ///function for setting PredMap type
   1.866 -    ///
   1.867 -    /// \ref named-templ-param "Named parameter"
   1.868 -    ///function for setting PredMap type
   1.869 -    ///
   1.870 -    template<class T>
   1.871 -    BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) 
   1.872 -    {
   1.873 -      Base::_pred=(void *)&t;
   1.874 -      return BelmannFordWizard<DefPredMapBase<T> >(*this);
   1.875 -    }
   1.876 -    
   1.877 -    template<class T>
   1.878 -    struct DefDistMapBase : public Base {
   1.879 -      typedef T DistMap;
   1.880 -      static DistMap *createDistMap(const Graph &) { return 0; };
   1.881 -      DefDistMapBase(const _Traits &b) : _Traits(b) {}
   1.882 -    };
   1.883 -    
   1.884 -    ///\brief \ref named-templ-param "Named parameter"
   1.885 -    ///function for setting DistMap type
   1.886 -    ///
   1.887 -    /// \ref named-templ-param "Named parameter"
   1.888 -    ///function for setting DistMap type
   1.889 -    ///
   1.890 -    template<class T>
   1.891 -    BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
   1.892 -      Base::_dist=(void *)&t;
   1.893 -      return BelmannFordWizard<DefDistMapBase<T> >(*this);
   1.894 -    }
   1.895 -
   1.896 -    template<class T>
   1.897 -    struct DefOperationTraitsBase : public Base {
   1.898 -      typedef T OperationTraits;
   1.899 -      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
   1.900 -    };
   1.901 -    
   1.902 -    ///\brief \ref named-templ-param "Named parameter"
   1.903 -    ///function for setting OperationTraits type
   1.904 -    ///
   1.905 -    /// \ref named-templ-param "Named parameter"
   1.906 -    ///function for setting OperationTraits type
   1.907 -    ///
   1.908 -    template<class T>
   1.909 -    BelmannFordWizard<DefOperationTraitsBase<T> > distMap() {
   1.910 -      return BelmannFordWizard<DefDistMapBase<T> >(*this);
   1.911 -    }
   1.912 -    
   1.913 -    /// \brief Sets the source node, from which the BelmannFord algorithm runs.
   1.914 -    ///
   1.915 -    /// Sets the source node, from which the BelmannFord algorithm runs.
   1.916 -    /// \param source is the source node.
   1.917 -    BelmannFordWizard<_Traits>& source(Node source) {
   1.918 -      Base::_source = source;
   1.919 -      return *this;
   1.920 -    }
   1.921 -    
   1.922 -  };
   1.923 -  
   1.924 -  /// \brief Function type interface for BelmannFord algorithm.
   1.925 -  ///
   1.926 -  /// \ingroup flowalgs
   1.927 -  /// Function type interface for BelmannFord algorithm.
   1.928 -  ///
   1.929 -  /// This function also has several \ref named-templ-func-param 
   1.930 -  /// "named parameters", they are declared as the members of class 
   1.931 -  /// \ref BelmannFordWizard.
   1.932 -  /// The following
   1.933 -  /// example shows how to use these parameters.
   1.934 -  /// \code
   1.935 -  /// belmannford(g,length,source).predMap(preds).run();
   1.936 -  /// \endcode
   1.937 -  /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
   1.938 -  /// to the end of the parameter list.
   1.939 -  /// \sa BelmannFordWizard
   1.940 -  /// \sa BelmannFord
   1.941 -  template<class _Graph, class _LengthMap>
   1.942 -  BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   1.943 -  belmannFord(const _Graph& graph,
   1.944 -	      const _LengthMap& length, 
   1.945 -	      typename _Graph::Node source = INVALID) {
   1.946 -    return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
   1.947 -      (graph, length, source);
   1.948 -  }
   1.949 -
   1.950 -} //END OF NAMESPACE LEMON
   1.951 -
   1.952 -#endif
   1.953 -