Doc fix
authordeba
Fri, 29 Sep 2006 11:36:30 +0000 (2006-09-29)
changeset 2225bb3d5e6f9fcb
parent 2224 f973894da54e
child 2226 0411ac8a2d87
Doc fix
lemon/hao_orlin.h
lemon/min_cut.h
     1.1 --- a/lemon/hao_orlin.h	Fri Sep 29 11:26:29 2006 +0000
     1.2 +++ b/lemon/hao_orlin.h	Fri Sep 29 11:36:30 2006 +0000
     1.3 @@ -1,7 +1,9 @@
     1.4  /* -*- C++ -*-
     1.5 - * lemon/hao_orlin.h - Part of LEMON, a generic C++ optimization library
     1.6   *
     1.7 - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * This file is a part of LEMON, a generic C++ optimization library
     1.9 + *
    1.10 + * Copyright (C) 2003-2006
    1.11 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.12   * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.13   *
    1.14   * Permission to use, modify and distribute this software is granted
    1.15 @@ -29,30 +31,44 @@
    1.16  
    1.17  /// \file
    1.18  /// \ingroup flowalgs
    1.19 -/// Implementation of the Hao-Orlin algorithms class for testing network 
    1.20 +/// \brief Implementation of the Hao-Orlin algorithm.
    1.21 +///
    1.22 +/// Implementation of the HaoOrlin algorithms class for testing network 
    1.23  /// reliability.
    1.24  
    1.25  namespace lemon {
    1.26  
    1.27 -  /// \addtogroup flowalgs
    1.28 -  /// @{                                                   
    1.29 -
    1.30 -  /// %Hao-Orlin algorithm for calculate minimum cut in directed graphs.
    1.31 +  /// \ingroup flowalgs
    1.32 +  ///
    1.33 +  /// \brief %Hao-Orlin algorithm for calculate minimum cut in directed graphs.
    1.34    ///
    1.35    /// Hao-Orlin calculates the minimum cut in directed graphs. It
    1.36 -  /// separates the nodes of the graph into two disjoint sets and the
    1.37 -  /// summary of the edge capacities go from the first set to the
    1.38 -  /// second set is the minimum.  The algorithm is a modified
    1.39 -  /// push-relabel preflow algorithm and it calculates the minimum cat
    1.40 -  /// in \f$ O(n^3) \f$ time. The purpose of such algorithm is testing
    1.41 -  /// network reliability. For sparse undirected graph you can use the
    1.42 -  /// algorithm of Nagamochi and Ibraki which solves the undirected
    1.43 -  /// problem in \f$ O(n^3) \f$ time. 
    1.44 +  /// separates the nodes of the graph into two disjoint sets, 
    1.45 +  /// \f$ V_{out} \f$ and \f$ V_{in} \f$. This separation is the minimum
    1.46 +  /// cut if the summary of the edge capacities which source is in
    1.47 +  /// \f$ V_{out} \f$ and the target is in \f$ V_{in} \f$ is the
    1.48 +  /// minimum.  The algorithm is a modified push-relabel preflow
    1.49 +  /// algorithm and it calculates the minimum cut in \f$ O(n^3) \f$
    1.50 +  /// time. The purpose of such algorithm is testing network
    1.51 +  /// reliability. For sparse undirected graph you can use the
    1.52 +  /// algorithm of Nagamochi and Ibaraki which solves the undirected
    1.53 +  /// problem in \f$ O(ne + n^2 \log(n)) \f$ time and it is implemented in the
    1.54 +  /// MinCut algorithm class.
    1.55 +  ///
    1.56 +  /// \param _Graph is the graph type of the algorithm.
    1.57 +  /// \param _CapacityMap is an edge map of capacities which should
    1.58 +  /// be any numreric type. The default type is _Graph::EdgeMap<int>.
    1.59 +  /// \param _Tolerance is the handler of the inexact computation. The
    1.60 +  /// default type for it is Tolerance<typename CapacityMap::Value>.
    1.61    ///
    1.62    /// \author Attila Bernath and Balazs Dezso
    1.63 +#ifdef DOXYGEN
    1.64 +  template <typename _Graph, typename _CapacityMap, typename _Tolerance>
    1.65 +#else
    1.66    template <typename _Graph,
    1.67  	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
    1.68              typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
    1.69 +#endif
    1.70    class HaoOrlin {
    1.71    protected:
    1.72  
    1.73 @@ -70,6 +86,7 @@
    1.74      typedef typename Graph::InEdgeIt InEdgeIt;
    1.75  
    1.76      const Graph* _graph;
    1.77 +
    1.78      const CapacityMap* _capacity;
    1.79  
    1.80      typedef typename Graph::template EdgeMap<Value> FlowMap;
    1.81 @@ -80,18 +97,25 @@
    1.82      int _node_num;
    1.83  
    1.84      typedef ResGraphAdaptor<const Graph, Value, CapacityMap, 
    1.85 -                            FlowMap, Tolerance> ResGraph;
    1.86 -    typedef typename ResGraph::Node ResNode;
    1.87 -    typedef typename ResGraph::NodeIt ResNodeIt;
    1.88 -    typedef typename ResGraph::EdgeIt ResEdgeIt;
    1.89 -    typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
    1.90 -    typedef typename ResGraph::Edge ResEdge;
    1.91 -    typedef typename ResGraph::InEdgeIt ResInEdgeIt;
    1.92 +                            FlowMap, Tolerance> OutResGraph;
    1.93 +    typedef typename OutResGraph::Edge OutResEdge;
    1.94 +    
    1.95 +    OutResGraph* _out_res_graph;
    1.96  
    1.97 -    ResGraph* _res_graph;
    1.98 +    typedef typename Graph::template NodeMap<OutResEdge> OutCurrentEdgeMap;
    1.99 +    OutCurrentEdgeMap* _out_current_edge;  
   1.100  
   1.101 -    typedef typename Graph::template NodeMap<ResEdge> CurrentArcMap;
   1.102 -    CurrentArcMap* _current_arc;  
   1.103 +    typedef RevGraphAdaptor<const Graph> RevGraph;
   1.104 +    RevGraph* _rev_graph;
   1.105 +
   1.106 +    typedef ResGraphAdaptor<const RevGraph, Value, CapacityMap, 
   1.107 +                            FlowMap, Tolerance> InResGraph;
   1.108 +    typedef typename InResGraph::Edge InResEdge;
   1.109 +    
   1.110 +    InResGraph* _in_res_graph;
   1.111 +
   1.112 +    typedef typename Graph::template NodeMap<InResEdge> InCurrentEdgeMap;
   1.113 +    InCurrentEdgeMap* _in_current_edge;  
   1.114  
   1.115  
   1.116      typedef IterableBoolMap<Graph, Node> WakeMap;
   1.117 @@ -124,23 +148,37 @@
   1.118  
   1.119    public: 
   1.120  
   1.121 +    /// \brief Constructor
   1.122 +    ///
   1.123 +    /// Constructor of the algorithm class. 
   1.124      HaoOrlin(const Graph& graph, const CapacityMap& capacity, 
   1.125               const Tolerance& tolerance = Tolerance()) :
   1.126        _graph(&graph), _capacity(&capacity), 
   1.127 -      _preflow(0), _source(), _target(), _res_graph(0), _current_arc(0),
   1.128 +      _preflow(0), _source(), _target(), 
   1.129 +      _out_res_graph(0), _out_current_edge(0),
   1.130 +      _rev_graph(0), _in_res_graph(0), _in_current_edge(0),
   1.131        _wake(0),_dist(0), _excess(0), _source_set(0), 
   1.132        _highest_active(), _active_nodes(), _dormant_max(), _dormant(), 
   1.133        _min_cut(), _min_cut_map(0), _tolerance(tolerance) {}
   1.134  
   1.135      ~HaoOrlin() {
   1.136 -      if (_res_graph) {
   1.137 -        delete _res_graph;
   1.138 -      }
   1.139        if (_min_cut_map) {
   1.140          delete _min_cut_map;
   1.141        } 
   1.142 -      if (_current_arc) {
   1.143 -        delete _current_arc;
   1.144 +      if (_in_current_edge) {
   1.145 +        delete _in_current_edge;
   1.146 +      }
   1.147 +      if (_in_res_graph) {
   1.148 +        delete _in_res_graph;
   1.149 +      }
   1.150 +      if (_rev_graph) {
   1.151 +        delete _rev_graph;
   1.152 +      }
   1.153 +      if (_out_current_edge) {
   1.154 +        delete _out_current_edge;
   1.155 +      }
   1.156 +      if (_out_res_graph) {
   1.157 +        delete _out_res_graph;
   1.158        }
   1.159        if (_source_set) {
   1.160          delete _source_set;
   1.161 @@ -161,8 +199,103 @@
   1.162      
   1.163    private:
   1.164      
   1.165 -    void relabel(Node i) {
   1.166 -      int k = (*_dist)[i];
   1.167 +    template <typename ResGraph, typename EdgeMap>
   1.168 +    void findMinCut(const Node& target, bool out, 
   1.169 +                    ResGraph& res_graph, EdgeMap& current_edge) {
   1.170 +      typedef typename ResGraph::Edge ResEdge;
   1.171 +      typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   1.172 +
   1.173 +      for (typename Graph::EdgeIt it(*_graph); it != INVALID; ++it) {
   1.174 +        (*_preflow)[it] = 0;      
   1.175 +      }
   1.176 +      for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.177 +        (*_wake)[it] = true;
   1.178 +        (*_dist)[it] = 1;
   1.179 +        (*_excess)[it] = 0;
   1.180 +        (*_source_set)[it] = false;
   1.181 +
   1.182 +        res_graph.firstOut(current_edge[it], it);
   1.183 +      }
   1.184 +
   1.185 +      _target = target;
   1.186 +      (*_dist)[target] = 0;
   1.187 +
   1.188 +      for (ResOutEdgeIt it(res_graph, _source); it != INVALID; ++it) {
   1.189 +        Value delta = res_graph.rescap(it);
   1.190 +        if (!_tolerance.positive(delta)) continue;
   1.191 +        
   1.192 +        (*_excess)[res_graph.source(it)] -= delta;
   1.193 +        res_graph.augment(it, delta);
   1.194 +        Node a = res_graph.target(it);
   1.195 +        if (!_tolerance.positive((*_excess)[a]) && 
   1.196 +            (*_wake)[a] && a != _target) {
   1.197 +          _active_nodes[(*_dist)[a]].push_front(a);
   1.198 +          if (_highest_active < (*_dist)[a]) {
   1.199 +            _highest_active = (*_dist)[a];
   1.200 +          }
   1.201 +        }
   1.202 +        (*_excess)[a] += delta;
   1.203 +      }
   1.204 +
   1.205 +      _dormant[0].push_front(_source);
   1.206 +      (*_source_set)[_source] = true;
   1.207 +      _dormant_max = 0;
   1.208 +      (*_wake)[_source] = false;
   1.209 +
   1.210 +      _level_size[0] = 1;
   1.211 +      _level_size[1] = _node_num - 1;
   1.212 +
   1.213 +      do {
   1.214 +	Node n;
   1.215 +	while ((n = findActiveNode()) != INVALID) {
   1.216 +	  ResEdge e;
   1.217 +	  while (_tolerance.positive((*_excess)[n]) && 
   1.218 +                 (e = findAdmissibleEdge(n, res_graph, current_edge)) 
   1.219 +                 != INVALID){
   1.220 +	    Value delta;
   1.221 +	    if ((*_excess)[n] < res_graph.rescap(e)) {
   1.222 +	      delta = (*_excess)[n];
   1.223 +	    } else {
   1.224 +	      delta = res_graph.rescap(e);
   1.225 +	      res_graph.nextOut(current_edge[n]);
   1.226 +	    }
   1.227 +            if (!_tolerance.positive(delta)) continue;
   1.228 +	    res_graph.augment(e, delta);
   1.229 +	    (*_excess)[res_graph.source(e)] -= delta;
   1.230 +	    Node a = res_graph.target(e);
   1.231 +	    if (!_tolerance.positive((*_excess)[a]) && a != _target) {
   1.232 +	      _active_nodes[(*_dist)[a]].push_front(a);
   1.233 +	    }
   1.234 +	    (*_excess)[a] += delta;
   1.235 +	  }
   1.236 +	  if (_tolerance.positive((*_excess)[n])) {
   1.237 +	    relabel(n, res_graph, current_edge);
   1.238 +          }
   1.239 +	}
   1.240 +
   1.241 +	Value current_value = cutValue(out);
   1.242 + 	if (_min_cut > current_value){
   1.243 +          if (out) {
   1.244 +            for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.245 +              _min_cut_map->set(it, !(*_wake)[it]);
   1.246 +            } 
   1.247 +          } else {
   1.248 +            for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.249 +              _min_cut_map->set(it, (*_wake)[it]);
   1.250 +            } 
   1.251 +          }
   1.252 +
   1.253 +	  _min_cut = current_value;
   1.254 + 	}
   1.255 +
   1.256 +      } while (selectNewSink(res_graph));
   1.257 +    }
   1.258 +
   1.259 +    template <typename ResGraph, typename EdgeMap>
   1.260 +    void relabel(const Node& n, ResGraph& res_graph, EdgeMap& current_edge) {
   1.261 +      typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   1.262 +
   1.263 +      int k = (*_dist)[n];
   1.264        if (_level_size[k] == 1) {
   1.265  	++_dormant_max;
   1.266  	for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.267 @@ -173,39 +306,34 @@
   1.268  	  }
   1.269  	}
   1.270  	--_highest_active;
   1.271 -      } else {
   1.272 -	ResOutEdgeIt e(*_res_graph, i);
   1.273 -	while (e != INVALID && !(*_wake)[_res_graph->target(e)]) {
   1.274 -	  ++e;
   1.275 -	}
   1.276 -
   1.277 -	if (e == INVALID){
   1.278 +      } else {	
   1.279 +        int new_dist = _node_num;
   1.280 +        for (ResOutEdgeIt e(res_graph, n); e != INVALID; ++e) {
   1.281 +          Node t = res_graph.target(e);
   1.282 +          if ((*_wake)[t] && new_dist > (*_dist)[t]) {
   1.283 +            new_dist = (*_dist)[t];
   1.284 +          }
   1.285 +        }
   1.286 +        if (new_dist == _node_num) {
   1.287  	  ++_dormant_max;
   1.288 -	  (*_wake)[i] = false;
   1.289 -	  _dormant[_dormant_max].push_front(i);
   1.290 -	  --_level_size[(*_dist)[i]];
   1.291 -	} else{	    
   1.292 -	  Node j = _res_graph->target(e);
   1.293 -	  int new_dist = (*_dist)[j];
   1.294 -	  ++e;
   1.295 -	  while (e != INVALID){
   1.296 -	    Node j = _res_graph->target(e);
   1.297 -	    if ((*_wake)[j] && new_dist > (*_dist)[j]) {
   1.298 -	      new_dist = (*_dist)[j];
   1.299 -            }
   1.300 -	    ++e;
   1.301 -	  }
   1.302 -	  --_level_size[(*_dist)[i]];
   1.303 -	  (*_dist)[i] = new_dist + 1;
   1.304 -	  _highest_active = (*_dist)[i];
   1.305 -	  _active_nodes[_highest_active].push_front(i);
   1.306 -	  ++_level_size[(*_dist)[i]];
   1.307 -	  _res_graph->firstOut((*_current_arc)[i], i);
   1.308 +	  (*_wake)[n] = false;
   1.309 +	  _dormant[_dormant_max].push_front(n);
   1.310 +	  --_level_size[(*_dist)[n]];
   1.311 +	} else {	    
   1.312 +	  --_level_size[(*_dist)[n]];
   1.313 +	  (*_dist)[n] = new_dist + 1;
   1.314 +	  _highest_active = (*_dist)[n];
   1.315 +	  _active_nodes[_highest_active].push_front(n);
   1.316 +	  ++_level_size[(*_dist)[n]];
   1.317 +	  res_graph.firstOut(current_edge[n], n);
   1.318  	}
   1.319        }
   1.320      }
   1.321  
   1.322 -    bool selectNewSink(){
   1.323 +    template <typename ResGraph>
   1.324 +    bool selectNewSink(ResGraph& res_graph) {
   1.325 +      typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   1.326 +
   1.327        Node old_target = _target;
   1.328        (*_wake)[_target] = false;
   1.329        --_level_size[(*_dist)[_target]];
   1.330 @@ -249,9 +377,21 @@
   1.331  	}
   1.332        }
   1.333  
   1.334 -      for (ResOutEdgeIt e(*_res_graph, old_target); e!=INVALID; ++e){
   1.335 -	if (!(*_source_set)[_res_graph->target(e)]){
   1.336 -	  push(e, _res_graph->rescap(e));
   1.337 +      for (ResOutEdgeIt e(res_graph, old_target); e!=INVALID; ++e){
   1.338 +	if (!(*_source_set)[res_graph.target(e)]) {
   1.339 +          Value delta = res_graph.rescap(e);
   1.340 +          if (!_tolerance.positive(delta)) continue;
   1.341 +          res_graph.augment(e, delta);
   1.342 +          (*_excess)[res_graph.source(e)] -= delta;
   1.343 +          Node a = res_graph.target(e);
   1.344 +          if (!_tolerance.positive((*_excess)[a]) && 
   1.345 +              (*_wake)[a] && a != _target) {
   1.346 +            _active_nodes[(*_dist)[a]].push_front(a);
   1.347 +            if (_highest_active < (*_dist)[a]) {
   1.348 +              _highest_active = (*_dist)[a];
   1.349 +            }
   1.350 +          }
   1.351 +          (*_excess)[a] += delta;
   1.352  	}
   1.353        }
   1.354        
   1.355 @@ -271,54 +411,64 @@
   1.356        }
   1.357      }
   1.358  
   1.359 -    ResEdge findAdmissibleEdge(const Node& n){
   1.360 -      ResEdge e = (*_current_arc)[n];
   1.361 +    template <typename ResGraph, typename EdgeMap>
   1.362 +    typename ResGraph::Edge findAdmissibleEdge(const Node& n, 
   1.363 +                                               ResGraph& res_graph, 
   1.364 +                                               EdgeMap& current_edge) {
   1.365 +      typedef typename ResGraph::Edge ResEdge;
   1.366 +      ResEdge e = current_edge[n];
   1.367        while (e != INVALID && 
   1.368 -             ((*_dist)[n] <= (*_dist)[_res_graph->target(e)] || 
   1.369 -              !(*_wake)[_res_graph->target(e)])) {
   1.370 -	_res_graph->nextOut(e);
   1.371 +             ((*_dist)[n] <= (*_dist)[res_graph.target(e)] || 
   1.372 +              !(*_wake)[res_graph.target(e)])) {
   1.373 +	res_graph.nextOut(e);
   1.374        }
   1.375        if (e != INVALID) {
   1.376 -	(*_current_arc)[n] = e;	
   1.377 +	current_edge[n] = e;	
   1.378  	return e;
   1.379        } else {
   1.380  	return INVALID;
   1.381        }
   1.382      }
   1.383  
   1.384 -    void push(ResEdge& e,const Value& delta){
   1.385 -      _res_graph->augment(e, delta);
   1.386 -      if (!_tolerance.positive(delta)) return;
   1.387 -      
   1.388 -      (*_excess)[_res_graph->source(e)] -= delta;
   1.389 -      Node a = _res_graph->target(e);
   1.390 -      if (!_tolerance.positive((*_excess)[a]) && (*_wake)[a] && a != _target) {
   1.391 -	_active_nodes[(*_dist)[a]].push_front(a);
   1.392 -	if (_highest_active < (*_dist)[a]) {
   1.393 -	  _highest_active = (*_dist)[a];
   1.394 +    Value cutValue(bool out) {
   1.395 +      Value value = 0;
   1.396 +      if (out) {
   1.397 +        for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   1.398 +          for (InEdgeIt e(*_graph, it); e != INVALID; ++e) {
   1.399 +            if (!(*_wake)[_graph->source(e)]){
   1.400 +              value += (*_capacity)[e];
   1.401 +            }	
   1.402 +          }
   1.403 +        }
   1.404 +      } else {
   1.405 +        for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   1.406 +          for (OutEdgeIt e(*_graph, it); e != INVALID; ++e) {
   1.407 +            if (!(*_wake)[_graph->target(e)]){
   1.408 +              value += (*_capacity)[e];
   1.409 +            }	
   1.410 +          }
   1.411          }
   1.412        }
   1.413 -      (*_excess)[a] += delta;
   1.414 +      return value;
   1.415      }
   1.416 -    
   1.417 -    Value cutValue() {
   1.418 -      Value value = 0;
   1.419 -      for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   1.420 -	for (InEdgeIt e(*_graph, it); e != INVALID; ++e) {
   1.421 -	  if (!(*_wake)[_graph->source(e)]){
   1.422 -	    value += (*_capacity)[e];
   1.423 -	  }	
   1.424 -	}
   1.425 -      }
   1.426 -      return value;
   1.427 -    }    
   1.428 +
   1.429  
   1.430    public:
   1.431  
   1.432 +    /// \name Execution control
   1.433 +    /// The simplest way to execute the algorithm is to use
   1.434 +    /// one of the member functions called \c run(...).
   1.435 +    /// \n
   1.436 +    /// If you need more control on the execution,
   1.437 +    /// first you must call \ref init(), then the \ref calculateIn() or
   1.438 +    /// \ref calculateIn() functions.
   1.439 +
   1.440 +    /// @{
   1.441 +
   1.442      /// \brief Initializes the internal data structures.
   1.443      ///
   1.444      /// Initializes the internal data structures. It creates
   1.445 -    /// the maps, residual graph adaptor and some bucket structures
   1.446 +    /// the maps, residual graph adaptors and some bucket structures
   1.447      /// for the algorithm. 
   1.448      void init() {
   1.449        init(NodeIt(*_graph));
   1.450 @@ -353,25 +503,34 @@
   1.451        if (!_source_set) {
   1.452          _source_set = new SourceSetMap(*_graph);
   1.453        }
   1.454 -      if (!_current_arc) {
   1.455 -        _current_arc = new CurrentArcMap(*_graph);
   1.456 +      if (!_out_res_graph) {
   1.457 +        _out_res_graph = new OutResGraph(*_graph, *_capacity, *_preflow);
   1.458 +      }
   1.459 +      if (!_out_current_edge) {
   1.460 +        _out_current_edge = new OutCurrentEdgeMap(*_graph);
   1.461 +      }
   1.462 +      if (!_rev_graph) {
   1.463 +        _rev_graph = new RevGraph(*_graph);
   1.464 +      }
   1.465 +      if (!_in_res_graph) {
   1.466 +        _in_res_graph = new InResGraph(*_rev_graph, *_capacity, *_preflow);
   1.467 +      }
   1.468 +      if (!_in_current_edge) {
   1.469 +        _in_current_edge = new InCurrentEdgeMap(*_graph);
   1.470        }
   1.471        if (!_min_cut_map) {
   1.472          _min_cut_map = new MinCutMap(*_graph);
   1.473        }
   1.474 -      if (!_res_graph) {
   1.475 -        _res_graph = new ResGraph(*_graph, *_capacity, *_preflow);
   1.476 -      }
   1.477  
   1.478        _min_cut = std::numeric_limits<Value>::max();
   1.479      }
   1.480  
   1.481  
   1.482      /// \brief Calculates the minimum cut with the \c source node
   1.483 -    /// in the first partition.
   1.484 +    /// in the \f$ V_{out} \f$.
   1.485      ///
   1.486      /// Calculates the minimum cut with the \c source node
   1.487 -    /// in the first partition.
   1.488 +    /// in the \f$ V_{out} \f$.
   1.489      void calculateOut() {
   1.490        for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.491          if (it != _source) {
   1.492 @@ -382,75 +541,20 @@
   1.493      }
   1.494  
   1.495      /// \brief Calculates the minimum cut with the \c source node
   1.496 -    /// in the first partition.
   1.497 +    /// in the \f$ V_{out} \f$.
   1.498      ///
   1.499      /// Calculates the minimum cut with the \c source node
   1.500 -    /// in the first partition. The \c target is the initial target
   1.501 +    /// in the \f$ V_{out} \f$. The \c target is the initial target
   1.502      /// for the push-relabel algorithm.
   1.503      void calculateOut(const Node& target) {
   1.504 -      for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.505 -        (*_wake)[it] = true;
   1.506 -        (*_dist)[it] = 1;
   1.507 -        (*_excess)[it] = 0;
   1.508 -        (*_source_set)[it] = false;
   1.509 -
   1.510 -        _res_graph->firstOut((*_current_arc)[it], it);
   1.511 -      }
   1.512 -
   1.513 -      _target = target;
   1.514 -      (*_dist)[target] = 0;
   1.515 -
   1.516 -      for (ResOutEdgeIt it(*_res_graph, _source); it != INVALID; ++it) {
   1.517 -	push(it, _res_graph->rescap(it));
   1.518 -      }
   1.519 -
   1.520 -      _dormant[0].push_front(_source);
   1.521 -      (*_source_set)[_source] = true;
   1.522 -      _dormant_max = 0;
   1.523 -      (*_wake)[_source]=false;
   1.524 -
   1.525 -      _level_size[0] = 1;
   1.526 -      _level_size[1] = _node_num - 1;
   1.527 -
   1.528 -      do {
   1.529 -	Node n;
   1.530 -	while ((n = findActiveNode()) != INVALID) {
   1.531 -	  ResEdge e;
   1.532 -	  while (_tolerance.positive((*_excess)[n]) && 
   1.533 -                 (e = findAdmissibleEdge(n)) != INVALID){
   1.534 -	    Value delta;
   1.535 -	    if ((*_excess)[n] < _res_graph->rescap(e)) {
   1.536 -	      delta = (*_excess)[n];
   1.537 -	    } else {
   1.538 -	      delta = _res_graph->rescap(e);
   1.539 -	      _res_graph->nextOut((*_current_arc)[n]);
   1.540 -	    }
   1.541 -            if (!_tolerance.positive(delta)) continue;
   1.542 -	    _res_graph->augment(e, delta);
   1.543 -	    (*_excess)[_res_graph->source(e)] -= delta;
   1.544 -	    Node a = _res_graph->target(e);
   1.545 -	    if (!_tolerance.positive((*_excess)[a]) && a != _target) {
   1.546 -	      _active_nodes[(*_dist)[a]].push_front(a);
   1.547 -	    }
   1.548 -	    (*_excess)[a] += delta;
   1.549 -	  }
   1.550 -	  if (_tolerance.positive((*_excess)[n])) {
   1.551 -	    relabel(n);
   1.552 -          }
   1.553 -	}
   1.554 -
   1.555 -	Value current_value = cutValue();
   1.556 - 	if (_min_cut > current_value){
   1.557 -	  for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.558 -            _min_cut_map->set(it, !(*_wake)[it]);
   1.559 -	  }
   1.560 -
   1.561 -	  _min_cut = current_value;
   1.562 - 	}
   1.563 -
   1.564 -      } while (selectNewSink());
   1.565 +      findMinCut(target, true, *_out_res_graph, *_out_current_edge);
   1.566      }
   1.567  
   1.568 +    /// \brief Calculates the minimum cut with the \c source node
   1.569 +    /// in the \f$ V_{in} \f$.
   1.570 +    ///
   1.571 +    /// Calculates the minimum cut with the \c source node
   1.572 +    /// in the \f$ V_{in} \f$.
   1.573      void calculateIn() {
   1.574        for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.575          if (it != _source) {
   1.576 @@ -460,40 +564,70 @@
   1.577        }
   1.578      }
   1.579  
   1.580 +    /// \brief Calculates the minimum cut with the \c source node
   1.581 +    /// in the \f$ V_{in} \f$.
   1.582 +    ///
   1.583 +    /// Calculates the minimum cut with the \c source node
   1.584 +    /// in the \f$ V_{in} \f$. The \c target is the initial target
   1.585 +    /// for the push-relabel algorithm.
   1.586 +    void calculateIn(const Node& target) {
   1.587 +      findMinCut(target, false, *_in_res_graph, *_in_current_edge);
   1.588 +    }
   1.589 +
   1.590 +    /// \brief Runs the algorithm.
   1.591 +    ///
   1.592 +    /// Runs the algorithm. It finds a proper \c source and \c target
   1.593 +    /// and then calls the \ref init(), \ref calculateOut() and \ref
   1.594 +    /// calculateIn().
   1.595      void run() {
   1.596        init();
   1.597        for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.598          if (it != _source) {
   1.599 -          startOut(it);
   1.600 -          //          startIn(it);
   1.601 +          calculateOut(it);
   1.602 +          calculateIn(it);
   1.603            return;
   1.604          }
   1.605        }
   1.606      }
   1.607  
   1.608 +    /// \brief Runs the algorithm.
   1.609 +    ///
   1.610 +    /// Runs the algorithm. It finds a proper \c target and then calls
   1.611 +    /// the \ref init(), \ref calculateOut() and \ref calculateIn().
   1.612      void run(const Node& s) {
   1.613        init(s);
   1.614        for (NodeIt it(*_graph); it != INVALID; ++it) {
   1.615          if (it != _source) {
   1.616 -          startOut(it);
   1.617 -          //          startIn(it);
   1.618 +          calculateOut(it);
   1.619 +          calculateIn(it);
   1.620            return;
   1.621          }
   1.622        }
   1.623      }
   1.624  
   1.625 +    /// \brief Runs the algorithm.
   1.626 +    ///
   1.627 +    /// Runs the algorithm. It just calls the \ref init() and then
   1.628 +    /// \ref calculateOut() and \ref calculateIn().
   1.629      void run(const Node& s, const Node& t) {
   1.630 -      init(s);
   1.631 -      startOut(t);
   1.632 -      startIn(t);
   1.633 +      init(s); 
   1.634 +      calculateOut(t);
   1.635 +      calculateIn(t);
   1.636      }
   1.637 +
   1.638 +    /// @}
   1.639      
   1.640 -    /// \brief Returns the value of the minimum value cut with node \c
   1.641 -    /// source on the source side.
   1.642 +    /// \name Query Functions The result of the %HaoOrlin algorithm
   1.643 +    /// can be obtained using these functions.
   1.644 +    /// \n
   1.645 +    /// Before the use of these functions, either \ref run(), \ref
   1.646 +    /// calculateOut() or \ref calculateIn() must be called.
   1.647 +    
   1.648 +    /// @{
   1.649 +
   1.650 +    /// \brief Returns the value of the minimum value cut.
   1.651      /// 
   1.652 -    /// Returns the value of the minimum value cut with node \c source
   1.653 -    /// on the source side. This function can be called after running
   1.654 -    /// \ref findMinCut.
   1.655 +    /// Returns the value of the minimum value cut.
   1.656      Value minCut() const {
   1.657        return _min_cut;
   1.658      }
   1.659 @@ -502,8 +636,8 @@
   1.660      /// \brief Returns a minimum value cut.
   1.661      ///
   1.662      /// Sets \c nodeMap to the characteristic vector of a minimum
   1.663 -    /// value cut with node \c source on the source side. This
   1.664 -    /// function can be called after running \ref findMinCut.  
   1.665 +    /// value cut. The nodes in \f$ V_{out} \f$ will be set true and
   1.666 +    /// the nodes in \f$ V_{in} \f$ will be set false. 
   1.667      /// \pre nodeMap should be a bool-valued node-map.
   1.668      template <typename NodeMap>
   1.669      Value minCut(NodeMap& nodeMap) const {
   1.670 @@ -512,6 +646,8 @@
   1.671        }
   1.672        return minCut();
   1.673      }
   1.674 +
   1.675 +    /// @}
   1.676      
   1.677    }; //class HaoOrlin 
   1.678  
     2.1 --- a/lemon/min_cut.h	Fri Sep 29 11:26:29 2006 +0000
     2.2 +++ b/lemon/min_cut.h	Fri Sep 29 11:36:30 2006 +0000
     2.3 @@ -830,18 +830,19 @@
     2.4  
     2.5    /// \ingroup topology
     2.6    ///
     2.7 -  /// \brief Calculates the min cut in an undirected graph.
     2.8 +  /// \brief Calculates the minimum cut in an undirected graph.
     2.9    ///
    2.10 -  /// Calculates the min cut in an undirected graph. 
    2.11 -  /// The algorithm separates the graph's nodes into two partitions with the 
    2.12 -  /// min sum of edge capacities between the two partitions. The
    2.13 -  /// algorithm can be used to test the network reliability specifically
    2.14 -  /// to test how many links have to be destroyed in the network to split it 
    2.15 -  /// at least two distinict subnetwork.
    2.16 +  /// Calculates the minimum cut in an undirected graph with the
    2.17 +  /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
    2.18 +  /// nodes into two partitions with the minimum sum of edge capacities
    2.19 +  /// between the two partitions. The algorithm can be used to test
    2.20 +  /// the network reliability specifically to test how many links have
    2.21 +  /// to be destroyed in the network to split it at least two
    2.22 +  /// distinict subnetwork.
    2.23    ///
    2.24    /// The complexity of the algorithm is \f$ O(ne\log(n)) \f$ but with
    2.25 -  /// Fibonacci heap it can be decreased to \f$ O(ne+n^2\log(n)) \f$. When
    2.26 -  /// the neutral capacity map is used then it uses BucketHeap which
    2.27 +  /// Fibonacci heap it can be decreased to \f$ O(ne+n^2\log(n))
    2.28 +  /// \f$. When capacity map is neutral then it uses BucketHeap which
    2.29    /// results \f$ O(ne) \f$ time complexity.
    2.30  #ifdef DOXYGEN
    2.31    template <typename _Graph, typename _CapacityMap, typename _Traits>