Doc changes
authoralpar
Mon, 20 Feb 2006 06:38:18 +0000
changeset 1970bd88ea06ab69
parent 1969 68c2c1176e9e
child 1971 9a59a6cacfd9
Doc changes
lemon/euler.h
     1.1 --- a/lemon/euler.h	Mon Feb 20 06:32:15 2006 +0000
     1.2 +++ b/lemon/euler.h	Mon Feb 20 06:38:18 2006 +0000
     1.3 @@ -34,19 +34,22 @@
     1.4  
     1.5    /// \ingroup topology
     1.6    ///This iterator converts to the \c Edge type of the graph and using
     1.7 -  ///operator ++ it provides an Euler tour of the graph (if there exists).
     1.8 +  ///operator ++ it provides an Euler tour of a \e directed
     1.9 +  ///graph (if there exists).
    1.10    ///
    1.11    ///For example
    1.12    ///if the given graph if Euler (i.e it has only one nontrivial component
    1.13    ///and the in-degree is equal to the out-degree for all nodes),
    1.14 -  ///the following code will print the edge IDs according to an
    1.15 +  ///the following code will put the edges of \c g
    1.16 +  ///to the vector \c et according to an
    1.17    ///Euler tour of \c g.
    1.18    ///\code
    1.19 -  ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
    1.20 -  ///    std::cout << g.id(e) << std::eol;
    1.21 -  ///  }
    1.22 +  ///  std::vector<ListGraph::Edge> et;
    1.23 +  ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e)
    1.24 +  ///    et.push_back(e);
    1.25    ///\endcode
    1.26    ///If \c g is not Euler then the resulted tour will not be full or closed.
    1.27 +  ///\sa UEulerIt
    1.28    ///\todo Test required
    1.29    template<class Graph>
    1.30    class EulerIt 
    1.31 @@ -118,8 +121,10 @@
    1.32    ///Euler iterator for undirected graphs.
    1.33  
    1.34    /// \ingroup topology
    1.35 -  ///This iterator converts to the \c Edge type of the graph and using
    1.36 -  ///operator ++ it provides an Euler tour of the graph (if there exists).
    1.37 +  ///This iterator converts to the \c Edge (or \cUEdge)
    1.38 +  ///type of the graph and using
    1.39 +  ///operator ++ it provides an Euler tour of an \undirected
    1.40 +  ///graph (if there exists).
    1.41    ///
    1.42    ///For example
    1.43    ///if the given graph if Euler (i.e it has only one nontrivial component
    1.44 @@ -136,6 +141,7 @@
    1.45    ///returns directed edges (that convert to the undirected ones, of course).
    1.46    ///
    1.47    ///If \c g is not Euler then the resulted tour will not be full or closed.
    1.48 +  ///\sa EulerIt
    1.49    ///\todo Test required
    1.50    template<class Graph>
    1.51    class UEulerIt