1.1 --- a/lemon/Makefile.am Wed Aug 16 14:24:20 2006 +0000
1.2 +++ b/lemon/Makefile.am Fri Sep 15 12:23:16 2006 +0000
1.3 @@ -40,6 +40,7 @@
1.4 ## lemon/dag_shortest_path.h \
1.5 ## lemon/dfs.h \
1.6 ## lemon/dijkstra.h \
1.7 + lemon/dim2.h \
1.8 ## lemon/dimacs.h \
1.9 ## lemon/edge_set.h \
1.10 ## lemon/edmonds_karp.h \
2.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
2.2 +++ b/lemon/dim2.h Fri Sep 15 12:23:16 2006 +0000
2.3 @@ -0,0 +1,665 @@
2.4 +/* -*- C++ -*-
2.5 + *
2.6 + * This file is a part of LEMON, a generic C++ optimization library
2.7 + *
2.8 + * Copyright (C) 2003-2006
2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
2.11 + *
2.12 + * Permission to use, modify and distribute this software is granted
2.13 + * provided that this copyright notice appears in all copies. For
2.14 + * precise terms see the accompanying LICENSE file.
2.15 + *
2.16 + * This software is provided "AS IS" with no warranty of any kind,
2.17 + * express or implied, and with no claim as to its suitability for any
2.18 + * purpose.
2.19 + *
2.20 + */
2.21 +
2.22 +#ifndef LEMON_DIM2_H
2.23 +#define LEMON_DIM2_H
2.24 +
2.25 +#include <iostream>
2.26 +#include <lemon/bits/utility.h>
2.27 +
2.28 +///\ingroup misc
2.29 +///\file
2.30 +///\brief A simple two dimensional vector and a bounding box implementation
2.31 +///
2.32 +/// The class \ref lemon::dim2::Point "dim2::Point" implements
2.33 +///a two dimensional vector with the usual
2.34 +/// operations.
2.35 +///
2.36 +/// The class \ref lemon::dim2::BoundingBox "dim2::BoundingBox"
2.37 +/// can be used to determine
2.38 +/// the rectangular bounding box of a set of
2.39 +/// \ref lemon::dim2::Point "dim2::Point"'s.
2.40 +///
2.41 +///\author Attila Bernath
2.42 +
2.43 +
2.44 +namespace lemon {
2.45 +
2.46 + ///Tools for handling two dimensional coordinates
2.47 +
2.48 + ///This namespace is a storage of several
2.49 + ///tools for handling two dimensional coordinates
2.50 + namespace dim2 {
2.51 +
2.52 + /// \addtogroup misc
2.53 + /// @{
2.54 +
2.55 + /// A simple two dimensional vector (plainvector) implementation
2.56 +
2.57 + /// A simple two dimensional vector (plainvector) implementation
2.58 + ///with the usual vector
2.59 + /// operators.
2.60 + ///
2.61 + template<typename T>
2.62 + class Point {
2.63 +
2.64 + public:
2.65 +
2.66 + typedef T Value;
2.67 +
2.68 + ///First co-ordinate
2.69 + T x;
2.70 + ///Second co-ordinate
2.71 + T y;
2.72 +
2.73 + ///Default constructor
2.74 + Point() {}
2.75 +
2.76 + ///Construct an instance from coordinates
2.77 + Point(T a, T b) : x(a), y(b) { }
2.78 +
2.79 + ///The dimension of the vector.
2.80 +
2.81 + ///This class give back always 2.
2.82 + ///
2.83 + int size() const { return 2; }
2.84 +
2.85 + ///Subscripting operator
2.86 +
2.87 + ///\c p[0] is \c p.x and \c p[1] is \c p.y
2.88 + ///
2.89 + T& operator[](int idx) { return idx == 0 ? x : y; }
2.90 +
2.91 + ///Const subscripting operator
2.92 +
2.93 + ///\c p[0] is \c p.x and \c p[1] is \c p.y
2.94 + ///
2.95 + const T& operator[](int idx) const { return idx == 0 ? x : y; }
2.96 +
2.97 + ///Conversion constructor
2.98 + template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
2.99 +
2.100 + ///Give back the square of the norm of the vector
2.101 + T normSquare() const {
2.102 + return x*x+y*y;
2.103 + }
2.104 +
2.105 + ///Increment the left hand side by u
2.106 + Point<T>& operator +=(const Point<T>& u) {
2.107 + x += u.x;
2.108 + y += u.y;
2.109 + return *this;
2.110 + }
2.111 +
2.112 + ///Decrement the left hand side by u
2.113 + Point<T>& operator -=(const Point<T>& u) {
2.114 + x -= u.x;
2.115 + y -= u.y;
2.116 + return *this;
2.117 + }
2.118 +
2.119 + ///Multiply the left hand side with a scalar
2.120 + Point<T>& operator *=(const T &u) {
2.121 + x *= u;
2.122 + y *= u;
2.123 + return *this;
2.124 + }
2.125 +
2.126 + ///Divide the left hand side by a scalar
2.127 + Point<T>& operator /=(const T &u) {
2.128 + x /= u;
2.129 + y /= u;
2.130 + return *this;
2.131 + }
2.132 +
2.133 + ///Return the scalar product of two vectors
2.134 + T operator *(const Point<T>& u) const {
2.135 + return x*u.x+y*u.y;
2.136 + }
2.137 +
2.138 + ///Return the sum of two vectors
2.139 + Point<T> operator+(const Point<T> &u) const {
2.140 + Point<T> b=*this;
2.141 + return b+=u;
2.142 + }
2.143 +
2.144 + ///Return the neg of the vectors
2.145 + Point<T> operator-() const {
2.146 + Point<T> b=*this;
2.147 + b.x=-b.x; b.y=-b.y;
2.148 + return b;
2.149 + }
2.150 +
2.151 + ///Return the difference of two vectors
2.152 + Point<T> operator-(const Point<T> &u) const {
2.153 + Point<T> b=*this;
2.154 + return b-=u;
2.155 + }
2.156 +
2.157 + ///Return a vector multiplied by a scalar
2.158 + Point<T> operator*(const T &u) const {
2.159 + Point<T> b=*this;
2.160 + return b*=u;
2.161 + }
2.162 +
2.163 + ///Return a vector divided by a scalar
2.164 + Point<T> operator/(const T &u) const {
2.165 + Point<T> b=*this;
2.166 + return b/=u;
2.167 + }
2.168 +
2.169 + ///Test equality
2.170 + bool operator==(const Point<T> &u) const {
2.171 + return (x==u.x) && (y==u.y);
2.172 + }
2.173 +
2.174 + ///Test inequality
2.175 + bool operator!=(Point u) const {
2.176 + return (x!=u.x) || (y!=u.y);
2.177 + }
2.178 +
2.179 + };
2.180 +
2.181 + ///Return an Point
2.182 +
2.183 + ///Return an Point
2.184 + ///\relates Point
2.185 + template <typename T>
2.186 + inline Point<T> makePoint(const T& x, const T& y) {
2.187 + return Point<T>(x, y);
2.188 + }
2.189 +
2.190 + ///Return a vector multiplied by a scalar
2.191 +
2.192 + ///Return a vector multiplied by a scalar
2.193 + ///\relates Point
2.194 + template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
2.195 + return x*u;
2.196 + }
2.197 +
2.198 + ///Read a plainvector from a stream
2.199 +
2.200 + ///Read a plainvector from a stream
2.201 + ///\relates Point
2.202 + ///
2.203 + template<typename T>
2.204 + inline std::istream& operator>>(std::istream &is, Point<T> &z) {
2.205 + char c;
2.206 + if (is >> c) {
2.207 + if (c != '(') is.putback(c);
2.208 + } else {
2.209 + is.clear();
2.210 + }
2.211 + if (!(is >> z.x)) return is;
2.212 + if (is >> c) {
2.213 + if (c != ',') is.putback(c);
2.214 + } else {
2.215 + is.clear();
2.216 + }
2.217 + if (!(is >> z.y)) return is;
2.218 + if (is >> c) {
2.219 + if (c != ')') is.putback(c);
2.220 + } else {
2.221 + is.clear();
2.222 + }
2.223 + return is;
2.224 + }
2.225 +
2.226 + ///Write a plainvector to a stream
2.227 +
2.228 + ///Write a plainvector to a stream
2.229 + ///\relates Point
2.230 + ///
2.231 + template<typename T>
2.232 + inline std::ostream& operator<<(std::ostream &os, const Point<T>& z)
2.233 + {
2.234 + os << "(" << z.x << ", " << z.y << ")";
2.235 + return os;
2.236 + }
2.237 +
2.238 + ///Rotate by 90 degrees
2.239 +
2.240 + ///Returns its parameter rotated by 90 degrees in positive direction.
2.241 + ///\relates Point
2.242 + ///
2.243 + template<typename T>
2.244 + inline Point<T> rot90(const Point<T> &z)
2.245 + {
2.246 + return Point<T>(-z.y,z.x);
2.247 + }
2.248 +
2.249 + ///Rotate by 180 degrees
2.250 +
2.251 + ///Returns its parameter rotated by 180 degrees.
2.252 + ///\relates Point
2.253 + ///
2.254 + template<typename T>
2.255 + inline Point<T> rot180(const Point<T> &z)
2.256 + {
2.257 + return Point<T>(-z.x,-z.y);
2.258 + }
2.259 +
2.260 + ///Rotate by 270 degrees
2.261 +
2.262 + ///Returns its parameter rotated by 90 degrees in negative direction.
2.263 + ///\relates Point
2.264 + ///
2.265 + template<typename T>
2.266 + inline Point<T> rot270(const Point<T> &z)
2.267 + {
2.268 + return Point<T>(z.y,-z.x);
2.269 + }
2.270 +
2.271 +
2.272 +
2.273 + /// A class to calculate or store the bounding box of plainvectors.
2.274 +
2.275 + /// A class to calculate or store the bounding box of plainvectors.
2.276 + ///
2.277 + ///\author Attila Bernath
2.278 + template<typename T>
2.279 + class BoundingBox {
2.280 + Point<T> bottom_left, top_right;
2.281 + bool _empty;
2.282 + public:
2.283 +
2.284 + ///Default constructor: creates an empty bounding box
2.285 + BoundingBox() { _empty = true; }
2.286 +
2.287 + ///Construct an instance from one point
2.288 + BoundingBox(Point<T> a) { bottom_left=top_right=a; _empty = false; }
2.289 +
2.290 + ///Were any points added?
2.291 + bool empty() const {
2.292 + return _empty;
2.293 + }
2.294 +
2.295 + ///Make the BoundingBox empty
2.296 + void clear() {
2.297 + _empty=1;
2.298 + }
2.299 +
2.300 + ///Give back the bottom left corner
2.301 +
2.302 + ///Give back the bottom left corner.
2.303 + ///If the bounding box is empty, then the return value is not defined.
2.304 + Point<T> bottomLeft() const {
2.305 + return bottom_left;
2.306 + }
2.307 +
2.308 + ///Set the bottom left corner
2.309 +
2.310 + ///Set the bottom left corner.
2.311 + ///It should only bee used for non-empty box.
2.312 + void bottomLeft(Point<T> p) {
2.313 + bottom_left = p;
2.314 + }
2.315 +
2.316 + ///Give back the top right corner
2.317 +
2.318 + ///Give back the top right corner.
2.319 + ///If the bounding box is empty, then the return value is not defined.
2.320 + Point<T> topRight() const {
2.321 + return top_right;
2.322 + }
2.323 +
2.324 + ///Set the top right corner
2.325 +
2.326 + ///Set the top right corner.
2.327 + ///It should only bee used for non-empty box.
2.328 + void topRight(Point<T> p) {
2.329 + top_right = p;
2.330 + }
2.331 +
2.332 + ///Give back the bottom right corner
2.333 +
2.334 + ///Give back the bottom right corner.
2.335 + ///If the bounding box is empty, then the return value is not defined.
2.336 + Point<T> bottomRight() const {
2.337 + return Point<T>(top_right.x,bottom_left.y);
2.338 + }
2.339 +
2.340 + ///Set the bottom right corner
2.341 +
2.342 + ///Set the bottom right corner.
2.343 + ///It should only bee used for non-empty box.
2.344 + void bottomRight(Point<T> p) {
2.345 + top_right.x = p.x;
2.346 + bottom_left.y = p.y;
2.347 + }
2.348 +
2.349 + ///Give back the top left corner
2.350 +
2.351 + ///Give back the top left corner.
2.352 + ///If the bounding box is empty, then the return value is not defined.
2.353 + Point<T> topLeft() const {
2.354 + return Point<T>(bottom_left.x,top_right.y);
2.355 + }
2.356 +
2.357 + ///Set the top left corner
2.358 +
2.359 + ///Set the top left corner.
2.360 + ///It should only bee used for non-empty box.
2.361 + void topLeft(Point<T> p) {
2.362 + top_right.y = p.y;
2.363 + bottom_left.x = p.x;
2.364 + }
2.365 +
2.366 + ///Give back the bottom of the box
2.367 +
2.368 + ///Give back the bottom of the box.
2.369 + ///If the bounding box is empty, then the return value is not defined.
2.370 + T bottom() const {
2.371 + return bottom_left.y;
2.372 + }
2.373 +
2.374 + ///Set the bottom of the box
2.375 +
2.376 + ///Set the bottom of the box.
2.377 + ///It should only bee used for non-empty box.
2.378 + void bottom(T t) {
2.379 + bottom_left.y = t;
2.380 + }
2.381 +
2.382 + ///Give back the top of the box
2.383 +
2.384 + ///Give back the top of the box.
2.385 + ///If the bounding box is empty, then the return value is not defined.
2.386 + T top() const {
2.387 + return top_right.y;
2.388 + }
2.389 +
2.390 + ///Set the top of the box
2.391 +
2.392 + ///Set the top of the box.
2.393 + ///It should only bee used for non-empty box.
2.394 + void top(T t) {
2.395 + top_right.y = t;
2.396 + }
2.397 +
2.398 + ///Give back the left side of the box
2.399 +
2.400 + ///Give back the left side of the box.
2.401 + ///If the bounding box is empty, then the return value is not defined.
2.402 + T left() const {
2.403 + return bottom_left.x;
2.404 + }
2.405 +
2.406 + ///Set the left side of the box
2.407 +
2.408 + ///Set the left side of the box.
2.409 + ///It should only bee used for non-empty box
2.410 + void left(T t) {
2.411 + bottom_left.x = t;
2.412 + }
2.413 +
2.414 + /// Give back the right side of the box
2.415 +
2.416 + /// Give back the right side of the box.
2.417 + ///If the bounding box is empty, then the return value is not defined.
2.418 + T right() const {
2.419 + return top_right.x;
2.420 + }
2.421 +
2.422 + ///Set the right side of the box
2.423 +
2.424 + ///Set the right side of the box.
2.425 + ///It should only bee used for non-empty box
2.426 + void right(T t) {
2.427 + top_right.x = t;
2.428 + }
2.429 +
2.430 + ///Give back the height of the box
2.431 +
2.432 + ///Give back the height of the box.
2.433 + ///If the bounding box is empty, then the return value is not defined.
2.434 + T height() const {
2.435 + return top_right.y-bottom_left.y;
2.436 + }
2.437 +
2.438 + ///Give back the width of the box
2.439 +
2.440 + ///Give back the width of the box.
2.441 + ///If the bounding box is empty, then the return value is not defined.
2.442 + T width() const {
2.443 + return top_right.x-bottom_left.x;
2.444 + }
2.445 +
2.446 + ///Checks whether a point is inside a bounding box
2.447 + bool inside(const Point<T>& u){
2.448 + if (_empty)
2.449 + return false;
2.450 + else{
2.451 + return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
2.452 + (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
2.453 + }
2.454 + }
2.455 +
2.456 + ///Increments a bounding box with a point
2.457 + BoundingBox& add(const Point<T>& u){
2.458 + if (_empty){
2.459 + bottom_left=top_right=u;
2.460 + _empty = false;
2.461 + }
2.462 + else{
2.463 + if (bottom_left.x > u.x) bottom_left.x = u.x;
2.464 + if (bottom_left.y > u.y) bottom_left.y = u.y;
2.465 + if (top_right.x < u.x) top_right.x = u.x;
2.466 + if (top_right.y < u.y) top_right.y = u.y;
2.467 + }
2.468 + return *this;
2.469 + }
2.470 +
2.471 + ///Increments a bounding to contain another bounding box
2.472 + BoundingBox& add(const BoundingBox &u){
2.473 + if ( !u.empty() ){
2.474 + this->add(u.bottomLeft());
2.475 + this->add(u.topRight());
2.476 + }
2.477 + return *this;
2.478 + }
2.479 +
2.480 + ///Intersection of two bounding boxes
2.481 + BoundingBox operator &(const BoundingBox& u){
2.482 + BoundingBox b;
2.483 + b.bottom_left.x=std::max(this->bottom_left.x,u.bottom_left.x);
2.484 + b.bottom_left.y=std::max(this->bottom_left.y,u.bottom_left.y);
2.485 + b.top_right.x=std::min(this->top_right.x,u.top_right.x);
2.486 + b.top_right.y=std::min(this->top_right.y,u.top_right.y);
2.487 + b._empty = this->_empty || u._empty ||
2.488 + b.bottom_left.x>top_right.x && b.bottom_left.y>top_right.y;
2.489 + return b;
2.490 + }
2.491 +
2.492 + };//class Boundingbox
2.493 +
2.494 +
2.495 + ///Map of x-coordinates of a dim2::Point<>-map
2.496 +
2.497 + ///\ingroup maps
2.498 + ///Map of x-coordinates of a dim2::Point<>-map
2.499 + ///
2.500 + template<class M>
2.501 + class XMap
2.502 + {
2.503 + M& _map;
2.504 + public:
2.505 +
2.506 + typedef typename M::Value::Value Value;
2.507 + typedef typename M::Key Key;
2.508 + ///\e
2.509 + XMap(M& map) : _map(map) {}
2.510 + Value operator[](Key k) const {return _map[k].x;}
2.511 + void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
2.512 + };
2.513 +
2.514 + ///Returns an \ref XMap class
2.515 +
2.516 + ///This function just returns an \ref XMap class.
2.517 + ///
2.518 + ///\ingroup maps
2.519 + ///\relates XMap
2.520 + template<class M>
2.521 + inline XMap<M> xMap(M &m)
2.522 + {
2.523 + return XMap<M>(m);
2.524 + }
2.525 +
2.526 + template<class M>
2.527 + inline XMap<M> xMap(const M &m)
2.528 + {
2.529 + return XMap<M>(m);
2.530 + }
2.531 +
2.532 + ///Constant (read only) version of \ref XMap
2.533 +
2.534 + ///\ingroup maps
2.535 + ///Constant (read only) version of \ref XMap
2.536 + ///
2.537 + template<class M>
2.538 + class ConstXMap
2.539 + {
2.540 + const M& _map;
2.541 + public:
2.542 +
2.543 + typedef typename M::Value::Value Value;
2.544 + typedef typename M::Key Key;
2.545 + ///\e
2.546 + ConstXMap(const M &map) : _map(map) {}
2.547 + Value operator[](Key k) const {return _map[k].x;}
2.548 + };
2.549 +
2.550 + ///Returns a \ref ConstXMap class
2.551 +
2.552 + ///This function just returns an \ref ConstXMap class.
2.553 + ///
2.554 + ///\ingroup maps
2.555 + ///\relates ConstXMap
2.556 + template<class M>
2.557 + inline ConstXMap<M> xMap(const M &m)
2.558 + {
2.559 + return ConstXMap<M>(m);
2.560 + }
2.561 +
2.562 + ///Map of y-coordinates of a dim2::Point<>-map
2.563 +
2.564 + ///\ingroup maps
2.565 + ///Map of y-coordinates of a dim2::Point<>-map
2.566 + ///
2.567 + template<class M>
2.568 + class YMap
2.569 + {
2.570 + M& _map;
2.571 + public:
2.572 +
2.573 + typedef typename M::Value::Value Value;
2.574 + typedef typename M::Key Key;
2.575 + ///\e
2.576 + YMap(M& map) : _map(map) {}
2.577 + Value operator[](Key k) const {return _map[k].y;}
2.578 + void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
2.579 + };
2.580 +
2.581 + ///Returns an \ref YMap class
2.582 +
2.583 + ///This function just returns an \ref YMap class.
2.584 + ///
2.585 + ///\ingroup maps
2.586 + ///\relates YMap
2.587 + template<class M>
2.588 + inline YMap<M> yMap(M &m)
2.589 + {
2.590 + return YMap<M>(m);
2.591 + }
2.592 +
2.593 + template<class M>
2.594 + inline YMap<M> yMap(const M &m)
2.595 + {
2.596 + return YMap<M>(m);
2.597 + }
2.598 +
2.599 + ///Constant (read only) version of \ref YMap
2.600 +
2.601 + ///\ingroup maps
2.602 + ///Constant (read only) version of \ref YMap
2.603 + ///
2.604 + template<class M>
2.605 + class ConstYMap
2.606 + {
2.607 + const M& _map;
2.608 + public:
2.609 +
2.610 + typedef typename M::Value::Value Value;
2.611 + typedef typename M::Key Key;
2.612 + ///\e
2.613 + ConstYMap(const M &map) : _map(map) {}
2.614 + Value operator[](Key k) const {return _map[k].y;}
2.615 + };
2.616 +
2.617 + ///Returns a \ref ConstYMap class
2.618 +
2.619 + ///This function just returns an \ref ConstYMap class.
2.620 + ///
2.621 + ///\ingroup maps
2.622 + ///\relates ConstYMap
2.623 + template<class M>
2.624 + inline ConstYMap<M> yMap(const M &m)
2.625 + {
2.626 + return ConstYMap<M>(m);
2.627 + }
2.628 +
2.629 +
2.630 + ///\brief Map of the \ref Point::normSquare() "normSquare()"
2.631 + ///of an \ref Point "Point"-map
2.632 + ///
2.633 + ///Map of the \ref Point::normSquare() "normSquare()"
2.634 + ///of an \ref Point "Point"-map
2.635 + ///\ingroup maps
2.636 + ///
2.637 + template<class M>
2.638 + class NormSquareMap
2.639 + {
2.640 + const M& _map;
2.641 + public:
2.642 +
2.643 + typedef typename M::Value::Value Value;
2.644 + typedef typename M::Key Key;
2.645 + ///\e
2.646 + NormSquareMap(const M &map) : _map(map) {}
2.647 + Value operator[](Key k) const {return _map[k].normSquare();}
2.648 + };
2.649 +
2.650 + ///Returns a \ref NormSquareMap class
2.651 +
2.652 + ///This function just returns an \ref NormSquareMap class.
2.653 + ///
2.654 + ///\ingroup maps
2.655 + ///\relates NormSquareMap
2.656 + template<class M>
2.657 + inline NormSquareMap<M> normSquareMap(const M &m)
2.658 + {
2.659 + return NormSquareMap<M>(m);
2.660 + }
2.661 +
2.662 + /// @}
2.663 +
2.664 + } //namespce dim2
2.665 +
2.666 +} //namespace lemon
2.667 +
2.668 +#endif //LEMON_DIM2_H
3.1 --- a/test/Makefile.am Wed Aug 16 14:24:20 2006 +0000
3.2 +++ b/test/Makefile.am Fri Sep 15 12:23:16 2006 +0000
3.3 @@ -18,6 +18,7 @@
3.4 ## test/counter_test \
3.5 ## test/dfs_test \
3.6 ## test/dijkstra_test \
3.7 + test/dim_test
3.8 ## test/edge_set_test \
3.9 ## test/graph_adaptor_test \
3.10 ## test/graph_test \
3.11 @@ -39,8 +40,7 @@
3.12 ## test/test_tools_pass \
3.13 ## test/time_measure_test \
3.14 ## test/ugraph_test \
3.15 -## test/unionfind_test \
3.16 -## test/xy_test
3.17 +## test/unionfind_test
3.18
3.19 if HAVE_GLPK
3.20 ##check_PROGRAMS += test/lp_test
3.21 @@ -60,6 +60,7 @@
3.22 ##test_counter_test_SOURCES = test/counter_test.cc
3.23 ##test_dfs_test_SOURCES = test/dfs_test.cc
3.24 ##test_dijkstra_test_SOURCES = test/dijkstra_test.cc
3.25 +test_dim_test_SOURCES = test/dim_test.cc
3.26 ##test_edge_set_test_SOURCES = test/edge_set_test.cc
3.27 ##test_graph_adaptor_test_SOURCES = test/graph_adaptor_test.cc
3.28 ##test_graph_test_SOURCES = test/graph_test.cc
3.29 @@ -82,7 +83,6 @@
3.30 ##test_time_measure_test_SOURCES = test/time_measure_test.cc
3.31 ##test_ugraph_test_SOURCES = test/ugraph_test.cc
3.32 ##test_unionfind_test_SOURCES = test/unionfind_test.cc
3.33 -##test_xy_test_SOURCES = test/xy_test.cc
3.34
3.35 ##test_lp_test_SOURCES = test/lp_test.cc
3.36 ##test_lp_test_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS)
4.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
4.2 +++ b/test/dim_test.cc Fri Sep 15 12:23:16 2006 +0000
4.3 @@ -0,0 +1,86 @@
4.4 +/* -*- C++ -*-
4.5 + *
4.6 + * This file is a part of LEMON, a generic C++ optimization library
4.7 + *
4.8 + * Copyright (C) 2003-2006
4.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
4.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
4.11 + *
4.12 + * Permission to use, modify and distribute this software is granted
4.13 + * provided that this copyright notice appears in all copies. For
4.14 + * precise terms see the accompanying LICENSE file.
4.15 + *
4.16 + * This software is provided "AS IS" with no warranty of any kind,
4.17 + * express or implied, and with no claim as to its suitability for any
4.18 + * purpose.
4.19 + *
4.20 + */
4.21 +
4.22 +#include <lemon/dim2.h>
4.23 +#include <iostream>
4.24 +#include "test_tools.h"
4.25 +
4.26 +using namespace std;
4.27 +using namespace lemon;
4.28 +int main()
4.29 +{
4.30 +
4.31 + cout << "Testing classes `dim2::Point' and `dim2::BoundingBox'." << endl;
4.32 +
4.33 + typedef dim2::Point<int> Point;
4.34 +
4.35 + Point seged;
4.36 + check(seged.size()==2, "Wrong vector addition");
4.37 +
4.38 + Point a(1,2);
4.39 + Point b(3,4);
4.40 +
4.41 + check(a[0]==1 && a[1]==2, "Wrong vector addition");
4.42 +
4.43 + seged = a+b;
4.44 + check(seged.x==4 && seged.y==6, "Wrong vector addition");
4.45 +
4.46 + seged = a-b;
4.47 + check(seged.x==-2 && seged.y==-2, "a-b");
4.48 +
4.49 + check(a.normSquare()==5,"Wrong norm calculation");
4.50 + check(a*b==11, "a*b");
4.51 +
4.52 + int l=2;
4.53 + seged = a*l;
4.54 + check(seged.x==2 && seged.y==4, "a*l");
4.55 +
4.56 + seged = b/l;
4.57 + check(seged.x==1 && seged.y==2, "b/l");
4.58 +
4.59 + typedef dim2::BoundingBox<int> BB;
4.60 + BB doboz1;
4.61 + check(doboz1.empty(), "It should be empty.");
4.62 +
4.63 + doboz1.add(a);
4.64 + check(!doboz1.empty(), "It should not be empty.");
4.65 + doboz1.add(b);
4.66 +
4.67 + check(doboz1.bottomLeft().x==1 &&
4.68 + doboz1.bottomLeft().y==2 &&
4.69 + doboz1.topRight().x==3 &&
4.70 + doboz1.topRight().y==4,
4.71 + "added points to box");
4.72 +
4.73 + seged.x=2;seged.y=3;
4.74 + check(doboz1.inside(seged),"It should be inside.");
4.75 +
4.76 + seged.x=1;seged.y=3;
4.77 + check(doboz1.inside(seged),"It should be inside.");
4.78 +
4.79 + seged.x=0;seged.y=3;
4.80 + check(!doboz1.inside(seged),"It should not be inside.");
4.81 +
4.82 + BB doboz2(seged);
4.83 + check(!doboz2.empty(),
4.84 + "It should not be empty. Constructed from 1 point.");
4.85 +
4.86 + doboz2.add(doboz1);
4.87 + check(doboz2.inside(seged),
4.88 + "It should be inside. Incremented a box with another one.");
4.89 +}