Traits + Named Parameters version
authoralpar
Mon, 01 Nov 2004 07:04:52 +0000
changeset 952fa65d57f1930
parent 951 0f1fe84ff36c
child 953 d9c115e2eeaf
Traits + Named Parameters version
src/work/alpar/dijkstra.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/work/alpar/dijkstra.h	Mon Nov 01 07:04:52 2004 +0000
     1.3 @@ -0,0 +1,344 @@
     1.4 +/* -*- C++ -*-
     1.5 + * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Combinatorial Optimization Research Group, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_DIJKSTRA_H
    1.21 +#define LEMON_DIJKSTRA_H
    1.22 +
    1.23 +///\ingroup flowalgs
    1.24 +///\file
    1.25 +///\brief Dijkstra algorithm.
    1.26 +
    1.27 +#include <lemon/bin_heap.h>
    1.28 +#include <lemon/invalid.h>
    1.29 +
    1.30 +namespace lemon {
    1.31 +
    1.32 +/// \addtogroup flowalgs
    1.33 +/// @{
    1.34 +
    1.35 +  ///%Dijkstra algorithm class.
    1.36 +
    1.37 +  ///This class provides an efficient implementation of %Dijkstra algorithm.
    1.38 +  ///The edge lengths are passed to the algorithm using a
    1.39 +  ///\ref skeleton::ReadMap "ReadMap",
    1.40 +  ///so it is easy to change it to any kind of length.
    1.41 +  ///
    1.42 +  ///The type of the length is determined by the
    1.43 +  ///\ref skeleton::ReadMap::ValueType "ValueType" of the length map.
    1.44 +  ///
    1.45 +  ///It is also possible to change the underlying priority heap.
    1.46 +  ///
    1.47 +  ///\param GR The graph type the algorithm runs on.
    1.48 +  ///\param LM This read-only
    1.49 +  ///EdgeMap
    1.50 +  ///determines the
    1.51 +  ///lengths of the edges. It is read once for each edge, so the map
    1.52 +  ///may involve in relatively time consuming process to compute the edge
    1.53 +  ///length if it is necessary. The default map type is
    1.54 +  ///\ref skeleton::StaticGraph::EdgeMap "Graph::EdgeMap<int>"
    1.55 +  ///\param Heap The heap type used by the %Dijkstra
    1.56 +  ///algorithm. The default
    1.57 +  ///is using \ref BinHeap "binary heap".
    1.58 +  ///
    1.59 +  ///\author Jacint Szabo and Alpar Juttner
    1.60 +  ///\todo We need a typedef-names should be standardized. (-:
    1.61 +  ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
    1.62 +  ///should not be fixed. (Problematic to solve).
    1.63 +
    1.64 +#ifdef DOXYGEN
    1.65 +  template <typename GR,
    1.66 +	    typename LM,
    1.67 +	    typename Heap>
    1.68 +#else
    1.69 +  template <typename GR,
    1.70 +	    typename LM=typename GR::template EdgeMap<int>,
    1.71 +	    template <class,class,class,class> class Heap = BinHeap >
    1.72 +#endif
    1.73 +  class Dijkstra{
    1.74 +  public:
    1.75 +    ///The type of the underlying graph.
    1.76 +    typedef GR Graph;
    1.77 +    ///\e
    1.78 +    typedef typename Graph::Node Node;
    1.79 +    ///\e
    1.80 +    typedef typename Graph::NodeIt NodeIt;
    1.81 +    ///\e
    1.82 +    typedef typename Graph::Edge Edge;
    1.83 +    ///\e
    1.84 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.85 +    
    1.86 +    ///The type of the length of the edges.
    1.87 +    typedef typename LM::ValueType ValueType;
    1.88 +    ///The type of the map that stores the edge lengths.
    1.89 +    typedef LM LengthMap;
    1.90 +    ///\brief The type of the map that stores the last
    1.91 +    ///edges of the shortest paths.
    1.92 +    typedef typename Graph::template NodeMap<Edge> PredMap;
    1.93 +    ///\brief The type of the map that stores the last but one
    1.94 +    ///nodes of the shortest paths.
    1.95 +    typedef typename Graph::template NodeMap<Node> PredNodeMap;
    1.96 +    ///The type of the map that stores the dists of the nodes.
    1.97 +    typedef typename Graph::template NodeMap<ValueType> DistMap;
    1.98 +
    1.99 +  private:
   1.100 +    /// Pointer to the underlying graph.
   1.101 +    const Graph *G;
   1.102 +    /// Pointer to the length map
   1.103 +    const LM *length;
   1.104 +    ///Pointer to the map of predecessors edges.
   1.105 +    PredMap *predecessor;
   1.106 +    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
   1.107 +    bool local_predecessor;
   1.108 +    ///Pointer to the map of predecessors nodes.
   1.109 +    PredNodeMap *pred_node;
   1.110 +    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
   1.111 +    bool local_pred_node;
   1.112 +    ///Pointer to the map of distances.
   1.113 +    DistMap *distance;
   1.114 +    ///Indicates if \ref distance is locally allocated (\c true) or not.
   1.115 +    bool local_distance;
   1.116 +
   1.117 +    ///The source node of the last execution.
   1.118 +    Node source;
   1.119 +
   1.120 +    ///Initializes the maps.
   1.121 +    
   1.122 +    ///\todo Error if \c G or are \c NULL. What about \c length?
   1.123 +    ///\todo Better memory allocation (instead of new).
   1.124 +    void init_maps() 
   1.125 +    {
   1.126 +      if(!predecessor) {
   1.127 +	local_predecessor = true;
   1.128 +	predecessor = new PredMap(*G);
   1.129 +      }
   1.130 +      if(!pred_node) {
   1.131 +	local_pred_node = true;
   1.132 +	pred_node = new PredNodeMap(*G);
   1.133 +      }
   1.134 +      if(!distance) {
   1.135 +	local_distance = true;
   1.136 +	distance = new DistMap(*G);
   1.137 +      }
   1.138 +    }
   1.139 +    
   1.140 +  public :
   1.141 +    ///Constructor.
   1.142 +    
   1.143 +    ///\param _G the graph the algorithm will run on.
   1.144 +    ///\param _length the length map used by the algorithm.
   1.145 +    Dijkstra(const Graph& _G, const LM& _length) :
   1.146 +      G(&_G), length(&_length),
   1.147 +      predecessor(NULL), local_predecessor(false),
   1.148 +      pred_node(NULL), local_pred_node(false),
   1.149 +      distance(NULL), local_distance(false)
   1.150 +    { }
   1.151 +    
   1.152 +    ///Destructor.
   1.153 +    ~Dijkstra() 
   1.154 +    {
   1.155 +      if(local_predecessor) delete predecessor;
   1.156 +      if(local_pred_node) delete pred_node;
   1.157 +      if(local_distance) delete distance;
   1.158 +    }
   1.159 +
   1.160 +    ///Sets the length map.
   1.161 +
   1.162 +    ///Sets the length map.
   1.163 +    ///\return <tt> (*this) </tt>
   1.164 +    Dijkstra &setLengthMap(const LM &m) 
   1.165 +    {
   1.166 +      length = &m;
   1.167 +      return *this;
   1.168 +    }
   1.169 +
   1.170 +    ///Sets the map storing the predecessor edges.
   1.171 +
   1.172 +    ///Sets the map storing the predecessor edges.
   1.173 +    ///If you don't use this function before calling \ref run(),
   1.174 +    ///it will allocate one. The destuctor deallocates this
   1.175 +    ///automatically allocated map, of course.
   1.176 +    ///\return <tt> (*this) </tt>
   1.177 +    Dijkstra &setPredMap(PredMap &m) 
   1.178 +    {
   1.179 +      if(local_predecessor) {
   1.180 +	delete predecessor;
   1.181 +	local_predecessor=false;
   1.182 +      }
   1.183 +      predecessor = &m;
   1.184 +      return *this;
   1.185 +    }
   1.186 +
   1.187 +    ///Sets the map storing the predecessor nodes.
   1.188 +
   1.189 +    ///Sets the map storing the predecessor nodes.
   1.190 +    ///If you don't use this function before calling \ref run(),
   1.191 +    ///it will allocate one. The destuctor deallocates this
   1.192 +    ///automatically allocated map, of course.
   1.193 +    ///\return <tt> (*this) </tt>
   1.194 +    Dijkstra &setPredNodeMap(PredNodeMap &m) 
   1.195 +    {
   1.196 +      if(local_pred_node) {
   1.197 +	delete pred_node;
   1.198 +	local_pred_node=false;
   1.199 +      }
   1.200 +      pred_node = &m;
   1.201 +      return *this;
   1.202 +    }
   1.203 +
   1.204 +    ///Sets the map storing the distances calculated by the algorithm.
   1.205 +
   1.206 +    ///Sets the map storing the distances calculated by the algorithm.
   1.207 +    ///If you don't use this function before calling \ref run(),
   1.208 +    ///it will allocate one. The destuctor deallocates this
   1.209 +    ///automatically allocated map, of course.
   1.210 +    ///\return <tt> (*this) </tt>
   1.211 +    Dijkstra &setDistMap(DistMap &m) 
   1.212 +    {
   1.213 +      if(local_distance) {
   1.214 +	delete distance;
   1.215 +	local_distance=false;
   1.216 +      }
   1.217 +      distance = &m;
   1.218 +      return *this;
   1.219 +    }
   1.220 +    
   1.221 +  ///Runs %Dijkstra algorithm from node \c s.
   1.222 +
   1.223 +  ///This method runs the %Dijkstra algorithm from a root node \c s
   1.224 +  ///in order to
   1.225 +  ///compute the
   1.226 +  ///shortest path to each node. The algorithm computes
   1.227 +  ///- The shortest path tree.
   1.228 +  ///- The distance of each node from the root.
   1.229 +    
   1.230 +    void run(Node s) {
   1.231 +      
   1.232 +      init_maps();
   1.233 +      
   1.234 +      source = s;
   1.235 +      
   1.236 +      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   1.237 +	predecessor->set(u,INVALID);
   1.238 +	pred_node->set(u,INVALID);
   1.239 +      }
   1.240 +      
   1.241 +      typename GR::template NodeMap<int> heap_map(*G,-1);
   1.242 +      
   1.243 +      typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
   1.244 +      std::less<ValueType> > 
   1.245 +      HeapType;
   1.246 +      
   1.247 +      HeapType heap(heap_map);
   1.248 +      
   1.249 +      heap.push(s,0); 
   1.250 +      
   1.251 +      while ( !heap.empty() ) {
   1.252 +	
   1.253 +	Node v=heap.top(); 
   1.254 +	ValueType oldvalue=heap[v];
   1.255 +	heap.pop();
   1.256 +	distance->set(v, oldvalue);
   1.257 +	
   1.258 +	
   1.259 +	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   1.260 +	  Node w=G->head(e); 
   1.261 +	  switch(heap.state(w)) {
   1.262 +	  case HeapType::PRE_HEAP:
   1.263 +	    heap.push(w,oldvalue+(*length)[e]); 
   1.264 +	    predecessor->set(w,e);
   1.265 +	    pred_node->set(w,v);
   1.266 +	    break;
   1.267 +	  case HeapType::IN_HEAP:
   1.268 +	    if ( oldvalue+(*length)[e] < heap[w] ) {
   1.269 +	      heap.decrease(w, oldvalue+(*length)[e]); 
   1.270 +	      predecessor->set(w,e);
   1.271 +	      pred_node->set(w,v);
   1.272 +	    }
   1.273 +	    break;
   1.274 +	  case HeapType::POST_HEAP:
   1.275 +	    break;
   1.276 +	  }
   1.277 +	}
   1.278 +      }
   1.279 +    }
   1.280 +    
   1.281 +    ///The distance of a node from the root.
   1.282 +
   1.283 +    ///Returns the distance of a node from the root.
   1.284 +    ///\pre \ref run() must be called before using this function.
   1.285 +    ///\warning If node \c v in unreachable from the root the return value
   1.286 +    ///of this funcion is undefined.
   1.287 +    ValueType dist(Node v) const { return (*distance)[v]; }
   1.288 +
   1.289 +    ///Returns the 'previous edge' of the shortest path tree.
   1.290 +
   1.291 +    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   1.292 +    ///i.e. it returns the last edge of a shortest path from the root to \c
   1.293 +    ///v. It is \ref INVALID
   1.294 +    ///if \c v is unreachable from the root or if \c v=s. The
   1.295 +    ///shortest path tree used here is equal to the shortest path tree used in
   1.296 +    ///\ref predNode(Node v).  \pre \ref run() must be called before using
   1.297 +    ///this function.
   1.298 +    ///\todo predEdge could be a better name.
   1.299 +    Edge pred(Node v) const { return (*predecessor)[v]; }
   1.300 +
   1.301 +    ///Returns the 'previous node' of the shortest path tree.
   1.302 +
   1.303 +    ///For a node \c v it returns the 'previous node' of the shortest path tree,
   1.304 +    ///i.e. it returns the last but one node from a shortest path from the
   1.305 +    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   1.306 +    ///\c v=s. The shortest path tree used here is equal to the shortest path
   1.307 +    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   1.308 +    ///using this function.
   1.309 +    Node predNode(Node v) const { return (*pred_node)[v]; }
   1.310 +    
   1.311 +    ///Returns a reference to the NodeMap of distances.
   1.312 +
   1.313 +    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   1.314 +    ///be called before using this function.
   1.315 +    const DistMap &distMap() const { return *distance;}
   1.316 + 
   1.317 +    ///Returns a reference to the shortest path tree map.
   1.318 +
   1.319 +    ///Returns a reference to the NodeMap of the edges of the
   1.320 +    ///shortest path tree.
   1.321 +    ///\pre \ref run() must be called before using this function.
   1.322 +    const PredMap &predMap() const { return *predecessor;}
   1.323 + 
   1.324 +    ///Returns a reference to the map of nodes of shortest paths.
   1.325 +
   1.326 +    ///Returns a reference to the NodeMap of the last but one nodes of the
   1.327 +    ///shortest path tree.
   1.328 +    ///\pre \ref run() must be called before using this function.
   1.329 +    const PredNodeMap &predNodeMap() const { return *pred_node;}
   1.330 +
   1.331 +    ///Checks if a node is reachable from the root.
   1.332 +
   1.333 +    ///Returns \c true if \c v is reachable from the root.
   1.334 +    ///\note The root node is reported to be reached!
   1.335 +    ///\pre \ref run() must be called before using this function.
   1.336 +    ///
   1.337 +    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   1.338 +    
   1.339 +  };
   1.340 +  
   1.341 +/// @}
   1.342 +  
   1.343 +} //END OF NAMESPACE LEMON
   1.344 +
   1.345 +#endif
   1.346 +
   1.347 +