Renaming topology doxygen group
authordeba
Fri, 20 Apr 2007 14:49:21 +0000
changeset 2429fd51b552bcf2
parent 2428 c06e86364234
child 2430 c14aaef85d50
Renaming topology doxygen group
doc/groups.dox
lemon/euler.h
lemon/topology.h
     1.1 --- a/doc/groups.dox	Fri Apr 20 14:47:19 2007 +0000
     1.2 +++ b/doc/groups.dox	Fri Apr 20 14:49:21 2007 +0000
     1.3 @@ -197,13 +197,13 @@
     1.4  */
     1.5  
     1.6  /**
     1.7 -@defgroup topology Topology related algorithms
     1.8 +@defgroup graph_prop Connectivity and other graph properties
     1.9  @ingroup algs
    1.10  \brief This group describes the algorithms
    1.11 -for discover the topology of the graphs.
    1.12 +for discover the graph properties
    1.13  
    1.14 -This group describes the algorithms
    1.15 -for discover the topology of the graphs.
    1.16 +This group describes the algorithms for discover the graph properties
    1.17 +like connectivity, bipartiteness, euler property, simplicity, etc...
    1.18  
    1.19  \image html edge_biconnected_components.png
    1.20  \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
     2.1 --- a/lemon/euler.h	Fri Apr 20 14:47:19 2007 +0000
     2.2 +++ b/lemon/euler.h	Fri Apr 20 14:49:21 2007 +0000
     2.3 @@ -20,7 +20,7 @@
     2.4  #include<lemon/topology.h>
     2.5  #include <list>
     2.6  
     2.7 -/// \ingroup topology
     2.8 +/// \ingroup graph_prop
     2.9  /// \file
    2.10  /// \brief Euler tour
    2.11  ///
    2.12 @@ -32,7 +32,7 @@
    2.13  
    2.14    ///Euler iterator for directed graphs.
    2.15  
    2.16 -  /// \ingroup topology
    2.17 +  /// \ingroup graph_prop
    2.18    ///This iterator converts to the \c Edge type of the graph and using
    2.19    ///operator ++ it provides an Euler tour of a \e directed
    2.20    ///graph (if there exists).
    2.21 @@ -120,7 +120,7 @@
    2.22  
    2.23    ///Euler iterator for undirected graphs.
    2.24  
    2.25 -  /// \ingroup topology
    2.26 +  /// \ingroup graph_prop
    2.27    ///This iterator converts to the \c Edge (or \c UEdge)
    2.28    ///type of the graph and using
    2.29    ///operator ++ it provides an Euler tour of an undirected
    2.30 @@ -218,7 +218,7 @@
    2.31  
    2.32    ///Checks if the graph is Euler
    2.33  
    2.34 -  /// \ingroup topology
    2.35 +  /// \ingroup graph_prop
    2.36    ///Checks if the graph is Euler. It works for both directed and
    2.37    ///undirected graphs.
    2.38    ///\note By definition, a directed graph is called \e Euler if
     3.1 --- a/lemon/topology.h	Fri Apr 20 14:47:19 2007 +0000
     3.2 +++ b/lemon/topology.h	Fri Apr 20 14:49:21 2007 +0000
     3.3 @@ -35,7 +35,7 @@
     3.4  #include <stack>
     3.5  #include <functional>
     3.6  
     3.7 -/// \ingroup topology
     3.8 +/// \ingroup graph_prop
     3.9  /// \file
    3.10  /// \brief Topology related algorithms
    3.11  ///
    3.12 @@ -43,7 +43,7 @@
    3.13  
    3.14  namespace lemon {
    3.15  
    3.16 -  /// \ingroup topology
    3.17 +  /// \ingroup graph_prop
    3.18    ///
    3.19    /// \brief Check that the given undirected graph is connected.
    3.20    ///
    3.21 @@ -66,7 +66,7 @@
    3.22      return true;
    3.23    }
    3.24  
    3.25 -  /// \ingroup topology
    3.26 +  /// \ingroup graph_prop
    3.27    ///
    3.28    /// \brief Count the number of connected components of an undirected graph
    3.29    ///
    3.30 @@ -108,7 +108,7 @@
    3.31      return compNum;
    3.32    }
    3.33  
    3.34 -  /// \ingroup topology
    3.35 +  /// \ingroup graph_prop
    3.36    ///
    3.37    /// \brief Find the connected components of an undirected graph
    3.38    ///
    3.39 @@ -231,7 +231,7 @@
    3.40    }
    3.41  
    3.42  
    3.43 -  /// \ingroup topology
    3.44 +  /// \ingroup graph_prop
    3.45    ///
    3.46    /// \brief Check that the given directed graph is strongly connected.
    3.47    ///
    3.48 @@ -287,7 +287,7 @@
    3.49      return true;
    3.50    }
    3.51  
    3.52 -  /// \ingroup topology
    3.53 +  /// \ingroup graph_prop
    3.54    ///
    3.55    /// \brief Count the strongly connected components of a directed graph
    3.56    ///
    3.57 @@ -351,7 +351,7 @@
    3.58      return compNum;
    3.59    }
    3.60  
    3.61 -  /// \ingroup topology
    3.62 +  /// \ingroup graph_prop
    3.63    ///
    3.64    /// \brief Find the strongly connected components of a directed graph
    3.65    ///
    3.66 @@ -421,7 +421,7 @@
    3.67      return compNum;
    3.68    }
    3.69  
    3.70 -  /// \ingroup topology
    3.71 +  /// \ingroup graph_prop
    3.72    ///
    3.73    /// \brief Find the cut edges of the strongly connected components.
    3.74    ///
    3.75 @@ -705,7 +705,7 @@
    3.76    template <typename UGraph>
    3.77    int countBiNodeConnectedComponents(const UGraph& graph);
    3.78  
    3.79 -  /// \ingroup topology
    3.80 +  /// \ingroup graph_prop
    3.81    ///
    3.82    /// \brief Checks the graph is bi-node-connected.
    3.83    ///
    3.84 @@ -721,7 +721,7 @@
    3.85      return countBiNodeConnectedComponents(graph) == 1;
    3.86    }
    3.87  
    3.88 -  /// \ingroup topology
    3.89 +  /// \ingroup graph_prop
    3.90    ///
    3.91    /// \brief Count the biconnected components.
    3.92    ///
    3.93 @@ -756,7 +756,7 @@
    3.94      return compNum;
    3.95    }
    3.96  
    3.97 -  /// \ingroup topology
    3.98 +  /// \ingroup graph_prop
    3.99    ///
   3.100    /// \brief Find the bi-node-connected components.
   3.101    ///
   3.102 @@ -802,7 +802,7 @@
   3.103      return compNum;
   3.104    }
   3.105  
   3.106 -  /// \ingroup topology
   3.107 +  /// \ingroup graph_prop
   3.108    ///
   3.109    /// \brief Find the bi-node-connected cut nodes.
   3.110    ///
   3.111 @@ -1032,7 +1032,7 @@
   3.112    template <typename UGraph>
   3.113    int countBiEdgeConnectedComponents(const UGraph& graph);
   3.114  
   3.115 -  /// \ingroup topology
   3.116 +  /// \ingroup graph_prop
   3.117    ///
   3.118    /// \brief Checks that the graph is bi-edge-connected.
   3.119    ///
   3.120 @@ -1048,7 +1048,7 @@
   3.121      return countBiEdgeConnectedComponents(graph) == 1;
   3.122    }
   3.123  
   3.124 -  /// \ingroup topology
   3.125 +  /// \ingroup graph_prop
   3.126    ///
   3.127    /// \brief Count the bi-edge-connected components.
   3.128    ///
   3.129 @@ -1083,7 +1083,7 @@
   3.130      return compNum;
   3.131    }
   3.132  
   3.133 -  /// \ingroup topology
   3.134 +  /// \ingroup graph_prop
   3.135    ///
   3.136    /// \brief Find the bi-edge-connected components.
   3.137    ///
   3.138 @@ -1128,7 +1128,7 @@
   3.139      return compNum;
   3.140    }
   3.141  
   3.142 -  /// \ingroup topology
   3.143 +  /// \ingroup graph_prop
   3.144    ///
   3.145    /// \brief Find the bi-edge-connected cut edges.
   3.146    ///
   3.147 @@ -1192,7 +1192,7 @@
   3.148      
   3.149    }
   3.150  
   3.151 -  /// \ingroup topology
   3.152 +  /// \ingroup graph_prop
   3.153    ///
   3.154    /// \brief Sort the nodes of a DAG into topolgical order.
   3.155    ///
   3.156 @@ -1231,7 +1231,7 @@
   3.157      }    
   3.158    }
   3.159  
   3.160 -  /// \ingroup topology
   3.161 +  /// \ingroup graph_prop
   3.162    ///
   3.163    /// \brief Sort the nodes of a DAG into topolgical order.
   3.164    ///
   3.165 @@ -1283,7 +1283,7 @@
   3.166      return true;
   3.167    }
   3.168  
   3.169 -  /// \ingroup topology
   3.170 +  /// \ingroup graph_prop
   3.171    ///
   3.172    /// \brief Check that the given directed graph is a DAG.
   3.173    ///
   3.174 @@ -1325,7 +1325,7 @@
   3.175      return true;
   3.176    }
   3.177  
   3.178 -  /// \ingroup topology
   3.179 +  /// \ingroup graph_prop
   3.180    ///
   3.181    /// \brief Check that the given undirected graph is acyclic.
   3.182    ///
   3.183 @@ -1359,7 +1359,7 @@
   3.184      return true;
   3.185    }
   3.186  
   3.187 -  /// \ingroup topology
   3.188 +  /// \ingroup graph_prop
   3.189    ///
   3.190    /// \brief Check that the given undirected graph is tree.
   3.191    ///
   3.192 @@ -1451,7 +1451,7 @@
   3.193      };
   3.194    }
   3.195  
   3.196 -  /// \ingroup topology
   3.197 +  /// \ingroup graph_prop
   3.198    ///
   3.199    /// \brief Check if the given undirected graph is bipartite or not
   3.200    ///
   3.201 @@ -1490,7 +1490,7 @@
   3.202      return true;
   3.203    }
   3.204    
   3.205 -  /// \ingroup topology
   3.206 +  /// \ingroup graph_prop
   3.207    ///
   3.208    /// \brief Check if the given undirected graph is bipartite or not
   3.209    ///