alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
deba@57
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
deba@57
|
4 |
*
|
alpar@107
|
5 |
* Copyright (C) 2003-2008
|
deba@57
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@57
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@57
|
8 |
*
|
deba@57
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@57
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@57
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@57
|
12 |
*
|
deba@57
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@57
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@57
|
15 |
* purpose.
|
deba@57
|
16 |
*
|
deba@57
|
17 |
*/
|
deba@57
|
18 |
|
deba@57
|
19 |
#ifndef LEMON_CONCEPT_DIGRAPH_H
|
deba@57
|
20 |
#define LEMON_CONCEPT_DIGRAPH_H
|
deba@57
|
21 |
|
deba@57
|
22 |
///\ingroup graph_concepts
|
deba@57
|
23 |
///\file
|
deba@57
|
24 |
///\brief The concept of directed graphs.
|
deba@57
|
25 |
|
deba@220
|
26 |
#include <lemon/core.h>
|
deba@57
|
27 |
#include <lemon/concepts/maps.h>
|
deba@57
|
28 |
#include <lemon/concept_check.h>
|
deba@57
|
29 |
#include <lemon/concepts/graph_components.h>
|
deba@57
|
30 |
|
deba@57
|
31 |
namespace lemon {
|
deba@57
|
32 |
namespace concepts {
|
deba@57
|
33 |
|
deba@57
|
34 |
/// \ingroup graph_concepts
|
deba@57
|
35 |
///
|
deba@57
|
36 |
/// \brief Class describing the concept of directed graphs.
|
deba@57
|
37 |
///
|
deba@57
|
38 |
/// This class describes the \ref concept "concept" of the
|
deba@57
|
39 |
/// immutable directed digraphs.
|
deba@57
|
40 |
///
|
deba@57
|
41 |
/// Note that actual digraph implementation like @ref ListDigraph or
|
deba@57
|
42 |
/// @ref SmartDigraph may have several additional functionality.
|
deba@57
|
43 |
///
|
deba@57
|
44 |
/// \sa concept
|
deba@57
|
45 |
class Digraph {
|
deba@57
|
46 |
private:
|
deba@57
|
47 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
|
alpar@209
|
48 |
|
deba@57
|
49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
|
deba@57
|
50 |
///
|
deba@57
|
51 |
Digraph(const Digraph &) {};
|
deba@57
|
52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are
|
deba@57
|
53 |
///\e not allowed. Use DigraphCopy() instead.
|
alpar@209
|
54 |
|
deba@57
|
55 |
///Assignment of \ref Digraph "Digraph"s to another ones are
|
deba@57
|
56 |
///\e not allowed. Use DigraphCopy() instead.
|
deba@57
|
57 |
|
deba@57
|
58 |
void operator=(const Digraph &) {}
|
deba@57
|
59 |
public:
|
deba@57
|
60 |
///\e
|
deba@57
|
61 |
|
deba@57
|
62 |
/// Defalult constructor.
|
deba@57
|
63 |
|
deba@57
|
64 |
/// Defalult constructor.
|
deba@57
|
65 |
///
|
deba@57
|
66 |
Digraph() { }
|
deba@57
|
67 |
/// Class for identifying a node of the digraph
|
deba@57
|
68 |
|
deba@57
|
69 |
/// This class identifies a node of the digraph. It also serves
|
deba@57
|
70 |
/// as a base class of the node iterators,
|
deba@57
|
71 |
/// thus they will convert to this type.
|
deba@57
|
72 |
class Node {
|
deba@57
|
73 |
public:
|
deba@57
|
74 |
/// Default constructor
|
deba@57
|
75 |
|
deba@57
|
76 |
/// @warning The default constructor sets the iterator
|
deba@57
|
77 |
/// to an undefined value.
|
deba@57
|
78 |
Node() { }
|
deba@57
|
79 |
/// Copy constructor.
|
deba@57
|
80 |
|
deba@57
|
81 |
/// Copy constructor.
|
deba@57
|
82 |
///
|
deba@57
|
83 |
Node(const Node&) { }
|
deba@57
|
84 |
|
deba@57
|
85 |
/// Invalid constructor \& conversion.
|
deba@57
|
86 |
|
deba@57
|
87 |
/// This constructor initializes the iterator to be invalid.
|
deba@57
|
88 |
/// \sa Invalid for more details.
|
deba@57
|
89 |
Node(Invalid) { }
|
deba@57
|
90 |
/// Equality operator
|
deba@57
|
91 |
|
deba@57
|
92 |
/// Two iterators are equal if and only if they point to the
|
deba@57
|
93 |
/// same object or both are invalid.
|
deba@57
|
94 |
bool operator==(Node) const { return true; }
|
deba@57
|
95 |
|
deba@57
|
96 |
/// Inequality operator
|
alpar@209
|
97 |
|
deba@57
|
98 |
/// \sa operator==(Node n)
|
deba@57
|
99 |
///
|
deba@57
|
100 |
bool operator!=(Node) const { return true; }
|
deba@57
|
101 |
|
alpar@209
|
102 |
/// Artificial ordering operator.
|
alpar@209
|
103 |
|
alpar@209
|
104 |
/// To allow the use of digraph descriptors as key type in std::map or
|
alpar@209
|
105 |
/// similar associative container we require this.
|
alpar@209
|
106 |
///
|
alpar@209
|
107 |
/// \note This operator only have to define some strict ordering of
|
alpar@209
|
108 |
/// the items; this order has nothing to do with the iteration
|
alpar@209
|
109 |
/// ordering of the items.
|
alpar@209
|
110 |
bool operator<(Node) const { return false; }
|
deba@57
|
111 |
|
deba@57
|
112 |
};
|
alpar@209
|
113 |
|
deba@57
|
114 |
/// This iterator goes through each node.
|
deba@57
|
115 |
|
deba@57
|
116 |
/// This iterator goes through each node.
|
deba@57
|
117 |
/// Its usage is quite simple, for example you can count the number
|
deba@57
|
118 |
/// of nodes in digraph \c g of type \c Digraph like this:
|
deba@57
|
119 |
///\code
|
deba@57
|
120 |
/// int count=0;
|
deba@57
|
121 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
|
deba@57
|
122 |
///\endcode
|
deba@57
|
123 |
class NodeIt : public Node {
|
deba@57
|
124 |
public:
|
deba@57
|
125 |
/// Default constructor
|
deba@57
|
126 |
|
deba@57
|
127 |
/// @warning The default constructor sets the iterator
|
deba@57
|
128 |
/// to an undefined value.
|
deba@57
|
129 |
NodeIt() { }
|
deba@57
|
130 |
/// Copy constructor.
|
alpar@209
|
131 |
|
deba@57
|
132 |
/// Copy constructor.
|
deba@57
|
133 |
///
|
deba@57
|
134 |
NodeIt(const NodeIt& n) : Node(n) { }
|
deba@57
|
135 |
/// Invalid constructor \& conversion.
|
deba@57
|
136 |
|
deba@57
|
137 |
/// Initialize the iterator to be invalid.
|
deba@57
|
138 |
/// \sa Invalid for more details.
|
deba@57
|
139 |
NodeIt(Invalid) { }
|
deba@57
|
140 |
/// Sets the iterator to the first node.
|
deba@57
|
141 |
|
deba@57
|
142 |
/// Sets the iterator to the first node of \c g.
|
deba@57
|
143 |
///
|
deba@57
|
144 |
NodeIt(const Digraph&) { }
|
deba@57
|
145 |
/// Node -> NodeIt conversion.
|
deba@57
|
146 |
|
alpar@209
|
147 |
/// Sets the iterator to the node of \c the digraph pointed by
|
alpar@209
|
148 |
/// the trivial iterator.
|
alpar@209
|
149 |
/// This feature necessitates that each time we
|
deba@57
|
150 |
/// iterate the arc-set, the iteration order is the same.
|
deba@57
|
151 |
NodeIt(const Digraph&, const Node&) { }
|
deba@57
|
152 |
/// Next node.
|
deba@57
|
153 |
|
deba@57
|
154 |
/// Assign the iterator to the next node.
|
deba@57
|
155 |
///
|
deba@57
|
156 |
NodeIt& operator++() { return *this; }
|
deba@57
|
157 |
};
|
alpar@209
|
158 |
|
alpar@209
|
159 |
|
deba@57
|
160 |
/// Class for identifying an arc of the digraph
|
deba@57
|
161 |
|
deba@57
|
162 |
/// This class identifies an arc of the digraph. It also serves
|
deba@57
|
163 |
/// as a base class of the arc iterators,
|
deba@57
|
164 |
/// thus they will convert to this type.
|
deba@57
|
165 |
class Arc {
|
deba@57
|
166 |
public:
|
deba@57
|
167 |
/// Default constructor
|
deba@57
|
168 |
|
deba@57
|
169 |
/// @warning The default constructor sets the iterator
|
deba@57
|
170 |
/// to an undefined value.
|
deba@57
|
171 |
Arc() { }
|
deba@57
|
172 |
/// Copy constructor.
|
deba@57
|
173 |
|
deba@57
|
174 |
/// Copy constructor.
|
deba@57
|
175 |
///
|
deba@57
|
176 |
Arc(const Arc&) { }
|
deba@57
|
177 |
/// Initialize the iterator to be invalid.
|
deba@57
|
178 |
|
deba@57
|
179 |
/// Initialize the iterator to be invalid.
|
deba@57
|
180 |
///
|
deba@57
|
181 |
Arc(Invalid) { }
|
deba@57
|
182 |
/// Equality operator
|
deba@57
|
183 |
|
deba@57
|
184 |
/// Two iterators are equal if and only if they point to the
|
deba@57
|
185 |
/// same object or both are invalid.
|
deba@57
|
186 |
bool operator==(Arc) const { return true; }
|
deba@57
|
187 |
/// Inequality operator
|
deba@57
|
188 |
|
deba@57
|
189 |
/// \sa operator==(Arc n)
|
deba@57
|
190 |
///
|
deba@57
|
191 |
bool operator!=(Arc) const { return true; }
|
deba@57
|
192 |
|
alpar@209
|
193 |
/// Artificial ordering operator.
|
alpar@209
|
194 |
|
alpar@209
|
195 |
/// To allow the use of digraph descriptors as key type in std::map or
|
alpar@209
|
196 |
/// similar associative container we require this.
|
alpar@209
|
197 |
///
|
alpar@209
|
198 |
/// \note This operator only have to define some strict ordering of
|
alpar@209
|
199 |
/// the items; this order has nothing to do with the iteration
|
alpar@209
|
200 |
/// ordering of the items.
|
alpar@209
|
201 |
bool operator<(Arc) const { return false; }
|
deba@57
|
202 |
};
|
alpar@209
|
203 |
|
deba@57
|
204 |
/// This iterator goes trough the outgoing arcs of a node.
|
deba@57
|
205 |
|
deba@57
|
206 |
/// This iterator goes trough the \e outgoing arcs of a certain node
|
deba@57
|
207 |
/// of a digraph.
|
deba@57
|
208 |
/// Its usage is quite simple, for example you can count the number
|
deba@57
|
209 |
/// of outgoing arcs of a node \c n
|
deba@57
|
210 |
/// in digraph \c g of type \c Digraph as follows.
|
deba@57
|
211 |
///\code
|
deba@57
|
212 |
/// int count=0;
|
deba@57
|
213 |
/// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
|
deba@57
|
214 |
///\endcode
|
alpar@209
|
215 |
|
deba@57
|
216 |
class OutArcIt : public Arc {
|
deba@57
|
217 |
public:
|
deba@57
|
218 |
/// Default constructor
|
deba@57
|
219 |
|
deba@57
|
220 |
/// @warning The default constructor sets the iterator
|
deba@57
|
221 |
/// to an undefined value.
|
deba@57
|
222 |
OutArcIt() { }
|
deba@57
|
223 |
/// Copy constructor.
|
deba@57
|
224 |
|
deba@57
|
225 |
/// Copy constructor.
|
deba@57
|
226 |
///
|
deba@57
|
227 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
deba@57
|
228 |
/// Initialize the iterator to be invalid.
|
deba@57
|
229 |
|
deba@57
|
230 |
/// Initialize the iterator to be invalid.
|
deba@57
|
231 |
///
|
deba@57
|
232 |
OutArcIt(Invalid) { }
|
deba@57
|
233 |
/// This constructor sets the iterator to the first outgoing arc.
|
alpar@209
|
234 |
|
deba@57
|
235 |
/// This constructor sets the iterator to the first outgoing arc of
|
deba@57
|
236 |
/// the node.
|
deba@57
|
237 |
OutArcIt(const Digraph&, const Node&) { }
|
deba@57
|
238 |
/// Arc -> OutArcIt conversion
|
deba@57
|
239 |
|
deba@57
|
240 |
/// Sets the iterator to the value of the trivial iterator.
|
alpar@209
|
241 |
/// This feature necessitates that each time we
|
deba@57
|
242 |
/// iterate the arc-set, the iteration order is the same.
|
deba@57
|
243 |
OutArcIt(const Digraph&, const Arc&) { }
|
deba@57
|
244 |
///Next outgoing arc
|
alpar@209
|
245 |
|
alpar@209
|
246 |
/// Assign the iterator to the next
|
deba@57
|
247 |
/// outgoing arc of the corresponding node.
|
deba@57
|
248 |
OutArcIt& operator++() { return *this; }
|
deba@57
|
249 |
};
|
deba@57
|
250 |
|
deba@57
|
251 |
/// This iterator goes trough the incoming arcs of a node.
|
deba@57
|
252 |
|
deba@57
|
253 |
/// This iterator goes trough the \e incoming arcs of a certain node
|
deba@57
|
254 |
/// of a digraph.
|
deba@57
|
255 |
/// Its usage is quite simple, for example you can count the number
|
deba@57
|
256 |
/// of outgoing arcs of a node \c n
|
deba@57
|
257 |
/// in digraph \c g of type \c Digraph as follows.
|
deba@57
|
258 |
///\code
|
deba@57
|
259 |
/// int count=0;
|
deba@57
|
260 |
/// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
|
deba@57
|
261 |
///\endcode
|
deba@57
|
262 |
|
deba@57
|
263 |
class InArcIt : public Arc {
|
deba@57
|
264 |
public:
|
deba@57
|
265 |
/// Default constructor
|
deba@57
|
266 |
|
deba@57
|
267 |
/// @warning The default constructor sets the iterator
|
deba@57
|
268 |
/// to an undefined value.
|
deba@57
|
269 |
InArcIt() { }
|
deba@57
|
270 |
/// Copy constructor.
|
deba@57
|
271 |
|
deba@57
|
272 |
/// Copy constructor.
|
deba@57
|
273 |
///
|
deba@57
|
274 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
deba@57
|
275 |
/// Initialize the iterator to be invalid.
|
deba@57
|
276 |
|
deba@57
|
277 |
/// Initialize the iterator to be invalid.
|
deba@57
|
278 |
///
|
deba@57
|
279 |
InArcIt(Invalid) { }
|
deba@57
|
280 |
/// This constructor sets the iterator to first incoming arc.
|
alpar@209
|
281 |
|
deba@57
|
282 |
/// This constructor set the iterator to the first incoming arc of
|
deba@57
|
283 |
/// the node.
|
deba@57
|
284 |
InArcIt(const Digraph&, const Node&) { }
|
deba@57
|
285 |
/// Arc -> InArcIt conversion
|
deba@57
|
286 |
|
deba@57
|
287 |
/// Sets the iterator to the value of the trivial iterator \c e.
|
alpar@209
|
288 |
/// This feature necessitates that each time we
|
deba@57
|
289 |
/// iterate the arc-set, the iteration order is the same.
|
deba@57
|
290 |
InArcIt(const Digraph&, const Arc&) { }
|
deba@57
|
291 |
/// Next incoming arc
|
deba@57
|
292 |
|
deba@57
|
293 |
/// Assign the iterator to the next inarc of the corresponding node.
|
deba@57
|
294 |
///
|
deba@57
|
295 |
InArcIt& operator++() { return *this; }
|
deba@57
|
296 |
};
|
deba@57
|
297 |
/// This iterator goes through each arc.
|
deba@57
|
298 |
|
deba@57
|
299 |
/// This iterator goes through each arc of a digraph.
|
deba@57
|
300 |
/// Its usage is quite simple, for example you can count the number
|
deba@57
|
301 |
/// of arcs in a digraph \c g of type \c Digraph as follows:
|
deba@57
|
302 |
///\code
|
deba@57
|
303 |
/// int count=0;
|
deba@57
|
304 |
/// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count;
|
deba@57
|
305 |
///\endcode
|
deba@57
|
306 |
class ArcIt : public Arc {
|
deba@57
|
307 |
public:
|
deba@57
|
308 |
/// Default constructor
|
deba@57
|
309 |
|
deba@57
|
310 |
/// @warning The default constructor sets the iterator
|
deba@57
|
311 |
/// to an undefined value.
|
deba@57
|
312 |
ArcIt() { }
|
deba@57
|
313 |
/// Copy constructor.
|
deba@57
|
314 |
|
deba@57
|
315 |
/// Copy constructor.
|
deba@57
|
316 |
///
|
deba@57
|
317 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
deba@57
|
318 |
/// Initialize the iterator to be invalid.
|
deba@57
|
319 |
|
deba@57
|
320 |
/// Initialize the iterator to be invalid.
|
deba@57
|
321 |
///
|
deba@57
|
322 |
ArcIt(Invalid) { }
|
deba@57
|
323 |
/// This constructor sets the iterator to the first arc.
|
alpar@209
|
324 |
|
deba@57
|
325 |
/// This constructor sets the iterator to the first arc of \c g.
|
deba@57
|
326 |
///@param g the digraph
|
deba@57
|
327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
deba@57
|
328 |
/// Arc -> ArcIt conversion
|
deba@57
|
329 |
|
deba@57
|
330 |
/// Sets the iterator to the value of the trivial iterator \c e.
|
alpar@209
|
331 |
/// This feature necessitates that each time we
|
deba@57
|
332 |
/// iterate the arc-set, the iteration order is the same.
|
alpar@209
|
333 |
ArcIt(const Digraph&, const Arc&) { }
|
deba@57
|
334 |
///Next arc
|
alpar@209
|
335 |
|
deba@57
|
336 |
/// Assign the iterator to the next arc.
|
deba@57
|
337 |
ArcIt& operator++() { return *this; }
|
deba@57
|
338 |
};
|
deba@57
|
339 |
///Gives back the target node of an arc.
|
deba@57
|
340 |
|
deba@57
|
341 |
///Gives back the target node of an arc.
|
deba@57
|
342 |
///
|
deba@57
|
343 |
Node target(Arc) const { return INVALID; }
|
deba@57
|
344 |
///Gives back the source node of an arc.
|
deba@57
|
345 |
|
deba@57
|
346 |
///Gives back the source node of an arc.
|
deba@57
|
347 |
///
|
deba@57
|
348 |
Node source(Arc) const { return INVALID; }
|
deba@57
|
349 |
|
deba@61
|
350 |
/// \brief Returns the ID of the node.
|
alpar@209
|
351 |
int id(Node) const { return -1; }
|
deba@61
|
352 |
|
deba@61
|
353 |
/// \brief Returns the ID of the arc.
|
alpar@209
|
354 |
int id(Arc) const { return -1; }
|
deba@61
|
355 |
|
deba@61
|
356 |
/// \brief Returns the node with the given ID.
|
deba@61
|
357 |
///
|
deba@61
|
358 |
/// \pre The argument should be a valid node ID in the graph.
|
alpar@209
|
359 |
Node nodeFromId(int) const { return INVALID; }
|
deba@61
|
360 |
|
deba@61
|
361 |
/// \brief Returns the arc with the given ID.
|
deba@61
|
362 |
///
|
deba@61
|
363 |
/// \pre The argument should be a valid arc ID in the graph.
|
alpar@209
|
364 |
Arc arcFromId(int) const { return INVALID; }
|
deba@61
|
365 |
|
deba@61
|
366 |
/// \brief Returns an upper bound on the node IDs.
|
alpar@209
|
367 |
int maxNodeId() const { return -1; }
|
deba@61
|
368 |
|
deba@61
|
369 |
/// \brief Returns an upper bound on the arc IDs.
|
alpar@209
|
370 |
int maxArcId() const { return -1; }
|
deba@61
|
371 |
|
deba@57
|
372 |
void first(Node&) const {}
|
deba@57
|
373 |
void next(Node&) const {}
|
deba@57
|
374 |
|
deba@57
|
375 |
void first(Arc&) const {}
|
deba@57
|
376 |
void next(Arc&) const {}
|
deba@57
|
377 |
|
deba@57
|
378 |
|
deba@57
|
379 |
void firstIn(Arc&, const Node&) const {}
|
deba@57
|
380 |
void nextIn(Arc&) const {}
|
deba@57
|
381 |
|
deba@57
|
382 |
void firstOut(Arc&, const Node&) const {}
|
deba@57
|
383 |
void nextOut(Arc&) const {}
|
deba@57
|
384 |
|
deba@61
|
385 |
// The second parameter is dummy.
|
deba@61
|
386 |
Node fromId(int, Node) const { return INVALID; }
|
deba@61
|
387 |
// The second parameter is dummy.
|
deba@61
|
388 |
Arc fromId(int, Arc) const { return INVALID; }
|
deba@61
|
389 |
|
deba@61
|
390 |
// Dummy parameter.
|
alpar@209
|
391 |
int maxId(Node) const { return -1; }
|
deba@61
|
392 |
// Dummy parameter.
|
alpar@209
|
393 |
int maxId(Arc) const { return -1; }
|
deba@61
|
394 |
|
deba@57
|
395 |
/// \brief The base node of the iterator.
|
deba@57
|
396 |
///
|
deba@57
|
397 |
/// Gives back the base node of the iterator.
|
deba@57
|
398 |
/// It is always the target of the pointed arc.
|
deba@57
|
399 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
deba@57
|
400 |
|
deba@57
|
401 |
/// \brief The running node of the iterator.
|
deba@57
|
402 |
///
|
deba@57
|
403 |
/// Gives back the running node of the iterator.
|
deba@57
|
404 |
/// It is always the source of the pointed arc.
|
deba@57
|
405 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
deba@57
|
406 |
|
deba@57
|
407 |
/// \brief The base node of the iterator.
|
deba@57
|
408 |
///
|
deba@57
|
409 |
/// Gives back the base node of the iterator.
|
deba@57
|
410 |
/// It is always the source of the pointed arc.
|
deba@57
|
411 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
deba@57
|
412 |
|
deba@57
|
413 |
/// \brief The running node of the iterator.
|
deba@57
|
414 |
///
|
deba@57
|
415 |
/// Gives back the running node of the iterator.
|
deba@57
|
416 |
/// It is always the target of the pointed arc.
|
deba@57
|
417 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
deba@57
|
418 |
|
deba@57
|
419 |
/// \brief The opposite node on the given arc.
|
deba@57
|
420 |
///
|
deba@57
|
421 |
/// Gives back the opposite node on the given arc.
|
deba@57
|
422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
deba@57
|
423 |
|
deba@57
|
424 |
/// \brief Read write map of the nodes to type \c T.
|
alpar@209
|
425 |
///
|
deba@57
|
426 |
/// ReadWrite map of the nodes to type \c T.
|
deba@57
|
427 |
/// \sa Reference
|
alpar@209
|
428 |
template<class T>
|
deba@57
|
429 |
class NodeMap : public ReadWriteMap< Node, T > {
|
deba@57
|
430 |
public:
|
deba@57
|
431 |
|
deba@57
|
432 |
///\e
|
deba@57
|
433 |
NodeMap(const Digraph&) { }
|
deba@57
|
434 |
///\e
|
deba@57
|
435 |
NodeMap(const Digraph&, T) { }
|
deba@57
|
436 |
|
kpeter@263
|
437 |
private:
|
deba@57
|
438 |
///Copy constructor
|
deba@57
|
439 |
NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
|
deba@57
|
440 |
///Assignment operator
|
deba@57
|
441 |
template <typename CMap>
|
alpar@209
|
442 |
NodeMap& operator=(const CMap&) {
|
deba@57
|
443 |
checkConcept<ReadMap<Node, T>, CMap>();
|
alpar@209
|
444 |
return *this;
|
deba@57
|
445 |
}
|
deba@57
|
446 |
};
|
deba@57
|
447 |
|
deba@57
|
448 |
/// \brief Read write map of the arcs to type \c T.
|
deba@57
|
449 |
///
|
deba@57
|
450 |
/// Reference map of the arcs to type \c T.
|
deba@57
|
451 |
/// \sa Reference
|
alpar@209
|
452 |
template<class T>
|
deba@57
|
453 |
class ArcMap : public ReadWriteMap<Arc,T> {
|
deba@57
|
454 |
public:
|
deba@57
|
455 |
|
deba@57
|
456 |
///\e
|
deba@57
|
457 |
ArcMap(const Digraph&) { }
|
deba@57
|
458 |
///\e
|
deba@57
|
459 |
ArcMap(const Digraph&, T) { }
|
kpeter@263
|
460 |
private:
|
deba@57
|
461 |
///Copy constructor
|
deba@57
|
462 |
ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
|
deba@57
|
463 |
///Assignment operator
|
deba@57
|
464 |
template <typename CMap>
|
alpar@209
|
465 |
ArcMap& operator=(const CMap&) {
|
deba@57
|
466 |
checkConcept<ReadMap<Arc, T>, CMap>();
|
alpar@209
|
467 |
return *this;
|
deba@57
|
468 |
}
|
deba@57
|
469 |
};
|
deba@57
|
470 |
|
deba@125
|
471 |
template <typename _Digraph>
|
deba@57
|
472 |
struct Constraints {
|
deba@57
|
473 |
void constraints() {
|
deba@125
|
474 |
checkConcept<IterableDigraphComponent<>, _Digraph>();
|
alpar@209
|
475 |
checkConcept<IDableDigraphComponent<>, _Digraph>();
|
deba@125
|
476 |
checkConcept<MappableDigraphComponent<>, _Digraph>();
|
deba@57
|
477 |
}
|
deba@57
|
478 |
};
|
deba@57
|
479 |
|
deba@57
|
480 |
};
|
alpar@209
|
481 |
|
alpar@209
|
482 |
} //namespace concepts
|
deba@57
|
483 |
} //namespace lemon
|
deba@57
|
484 |
|
deba@57
|
485 |
|
deba@57
|
486 |
|
deba@57
|
487 |
#endif // LEMON_CONCEPT_DIGRAPH_H
|