alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@119
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@119
|
4 |
*
|
alpar@119
|
5 |
* Copyright (C) 2003-2008
|
alpar@119
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@119
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@119
|
8 |
*
|
alpar@119
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@119
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@119
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@119
|
12 |
*
|
alpar@119
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@119
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@119
|
15 |
* purpose.
|
alpar@119
|
16 |
*
|
alpar@119
|
17 |
*/
|
alpar@119
|
18 |
|
alpar@119
|
19 |
#ifndef LEMON_TIME_MEASURE_H
|
alpar@119
|
20 |
#define LEMON_TIME_MEASURE_H
|
alpar@119
|
21 |
|
alpar@119
|
22 |
///\ingroup timecount
|
alpar@119
|
23 |
///\file
|
alpar@119
|
24 |
///\brief Tools for measuring cpu usage
|
alpar@119
|
25 |
|
deba@126
|
26 |
#ifdef WIN32
|
alpar@143
|
27 |
#define WIN32_LEAN_AND_MEAN
|
alpar@143
|
28 |
#define NOMINMAX
|
deba@126
|
29 |
#include <windows.h>
|
deba@126
|
30 |
#include <cmath>
|
deba@126
|
31 |
#else
|
alpar@364
|
32 |
#include <unistd.h>
|
alpar@119
|
33 |
#include <sys/times.h>
|
deba@126
|
34 |
#include <sys/time.h>
|
deba@126
|
35 |
#endif
|
alpar@119
|
36 |
|
alpar@143
|
37 |
#include <string>
|
alpar@119
|
38 |
#include <fstream>
|
alpar@119
|
39 |
#include <iostream>
|
alpar@119
|
40 |
|
alpar@119
|
41 |
namespace lemon {
|
alpar@119
|
42 |
|
alpar@119
|
43 |
/// \addtogroup timecount
|
alpar@119
|
44 |
/// @{
|
alpar@119
|
45 |
|
alpar@119
|
46 |
/// A class to store (cpu)time instances.
|
alpar@119
|
47 |
|
alpar@119
|
48 |
/// This class stores five time values.
|
alpar@119
|
49 |
/// - a real time
|
alpar@119
|
50 |
/// - a user cpu time
|
alpar@119
|
51 |
/// - a system cpu time
|
alpar@119
|
52 |
/// - a user cpu time of children
|
alpar@119
|
53 |
/// - a system cpu time of children
|
alpar@119
|
54 |
///
|
alpar@119
|
55 |
/// TimeStamp's can be added to or substracted from each other and
|
alpar@119
|
56 |
/// they can be pushed to a stream.
|
alpar@119
|
57 |
///
|
alpar@119
|
58 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport
|
alpar@119
|
59 |
/// class is what you want to use instead.
|
alpar@119
|
60 |
|
alpar@119
|
61 |
class TimeStamp
|
alpar@119
|
62 |
{
|
deba@126
|
63 |
double utime;
|
deba@126
|
64 |
double stime;
|
deba@126
|
65 |
double cutime;
|
deba@126
|
66 |
double cstime;
|
deba@126
|
67 |
double rtime;
|
alpar@209
|
68 |
|
alpar@209
|
69 |
void _reset() {
|
deba@126
|
70 |
utime = stime = cutime = cstime = rtime = 0;
|
alpar@119
|
71 |
}
|
alpar@119
|
72 |
|
alpar@119
|
73 |
public:
|
alpar@119
|
74 |
|
alpar@119
|
75 |
///Read the current time values of the process
|
alpar@119
|
76 |
void stamp()
|
alpar@119
|
77 |
{
|
deba@126
|
78 |
#ifndef WIN32
|
alpar@119
|
79 |
timeval tv;
|
deba@126
|
80 |
gettimeofday(&tv, 0);
|
deba@126
|
81 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
|
deba@126
|
82 |
|
deba@126
|
83 |
tms ts;
|
deba@126
|
84 |
double tck=sysconf(_SC_CLK_TCK);
|
deba@126
|
85 |
times(&ts);
|
deba@126
|
86 |
utime=ts.tms_utime/tck;
|
deba@126
|
87 |
stime=ts.tms_stime/tck;
|
deba@126
|
88 |
cutime=ts.tms_cutime/tck;
|
deba@126
|
89 |
cstime=ts.tms_cstime/tck;
|
deba@126
|
90 |
#else
|
deba@126
|
91 |
static const double ch = 4294967296.0e-7;
|
deba@126
|
92 |
static const double cl = 1.0e-7;
|
deba@126
|
93 |
|
deba@126
|
94 |
FILETIME system;
|
deba@126
|
95 |
GetSystemTimeAsFileTime(&system);
|
deba@126
|
96 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
|
deba@126
|
97 |
|
deba@126
|
98 |
FILETIME create, exit, kernel, user;
|
deba@126
|
99 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
|
alpar@209
|
100 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
|
alpar@209
|
101 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
|
alpar@209
|
102 |
cutime = 0;
|
alpar@209
|
103 |
cstime = 0;
|
deba@126
|
104 |
} else {
|
alpar@209
|
105 |
rtime = 0;
|
alpar@209
|
106 |
utime = 0;
|
alpar@209
|
107 |
stime = 0;
|
alpar@209
|
108 |
cutime = 0;
|
alpar@209
|
109 |
cstime = 0;
|
deba@126
|
110 |
}
|
alpar@209
|
111 |
#endif
|
alpar@119
|
112 |
}
|
alpar@209
|
113 |
|
alpar@119
|
114 |
/// Constructor initializing with zero
|
alpar@119
|
115 |
TimeStamp()
|
alpar@119
|
116 |
{ _reset(); }
|
alpar@119
|
117 |
///Constructor initializing with the current time values of the process
|
alpar@119
|
118 |
TimeStamp(void *) { stamp();}
|
alpar@209
|
119 |
|
alpar@119
|
120 |
///Set every time value to zero
|
alpar@119
|
121 |
TimeStamp &reset() {_reset();return *this;}
|
alpar@119
|
122 |
|
alpar@119
|
123 |
///\e
|
alpar@119
|
124 |
TimeStamp &operator+=(const TimeStamp &b)
|
alpar@119
|
125 |
{
|
deba@126
|
126 |
utime+=b.utime;
|
deba@126
|
127 |
stime+=b.stime;
|
deba@126
|
128 |
cutime+=b.cutime;
|
deba@126
|
129 |
cstime+=b.cstime;
|
deba@126
|
130 |
rtime+=b.rtime;
|
alpar@119
|
131 |
return *this;
|
alpar@119
|
132 |
}
|
alpar@119
|
133 |
///\e
|
alpar@119
|
134 |
TimeStamp operator+(const TimeStamp &b) const
|
alpar@119
|
135 |
{
|
alpar@119
|
136 |
TimeStamp t(*this);
|
alpar@119
|
137 |
return t+=b;
|
alpar@119
|
138 |
}
|
alpar@119
|
139 |
///\e
|
alpar@119
|
140 |
TimeStamp &operator-=(const TimeStamp &b)
|
alpar@119
|
141 |
{
|
deba@126
|
142 |
utime-=b.utime;
|
deba@126
|
143 |
stime-=b.stime;
|
deba@126
|
144 |
cutime-=b.cutime;
|
deba@126
|
145 |
cstime-=b.cstime;
|
deba@126
|
146 |
rtime-=b.rtime;
|
alpar@119
|
147 |
return *this;
|
alpar@119
|
148 |
}
|
alpar@119
|
149 |
///\e
|
alpar@119
|
150 |
TimeStamp operator-(const TimeStamp &b) const
|
alpar@119
|
151 |
{
|
alpar@119
|
152 |
TimeStamp t(*this);
|
alpar@119
|
153 |
return t-=b;
|
alpar@119
|
154 |
}
|
alpar@119
|
155 |
///\e
|
alpar@119
|
156 |
TimeStamp &operator*=(double b)
|
alpar@119
|
157 |
{
|
deba@126
|
158 |
utime*=b;
|
deba@126
|
159 |
stime*=b;
|
deba@126
|
160 |
cutime*=b;
|
deba@126
|
161 |
cstime*=b;
|
deba@126
|
162 |
rtime*=b;
|
alpar@119
|
163 |
return *this;
|
alpar@119
|
164 |
}
|
alpar@119
|
165 |
///\e
|
alpar@119
|
166 |
TimeStamp operator*(double b) const
|
alpar@119
|
167 |
{
|
alpar@119
|
168 |
TimeStamp t(*this);
|
alpar@119
|
169 |
return t*=b;
|
alpar@119
|
170 |
}
|
alpar@119
|
171 |
friend TimeStamp operator*(double b,const TimeStamp &t);
|
alpar@119
|
172 |
///\e
|
alpar@119
|
173 |
TimeStamp &operator/=(double b)
|
alpar@119
|
174 |
{
|
deba@126
|
175 |
utime/=b;
|
deba@126
|
176 |
stime/=b;
|
deba@126
|
177 |
cutime/=b;
|
deba@126
|
178 |
cstime/=b;
|
deba@126
|
179 |
rtime/=b;
|
alpar@119
|
180 |
return *this;
|
alpar@119
|
181 |
}
|
alpar@119
|
182 |
///\e
|
alpar@119
|
183 |
TimeStamp operator/(double b) const
|
alpar@119
|
184 |
{
|
alpar@119
|
185 |
TimeStamp t(*this);
|
alpar@119
|
186 |
return t/=b;
|
alpar@119
|
187 |
}
|
alpar@119
|
188 |
///The time ellapsed since the last call of stamp()
|
alpar@119
|
189 |
TimeStamp ellapsed() const
|
alpar@119
|
190 |
{
|
alpar@119
|
191 |
TimeStamp t(NULL);
|
alpar@119
|
192 |
return t-*this;
|
alpar@119
|
193 |
}
|
alpar@209
|
194 |
|
alpar@119
|
195 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
|
alpar@209
|
196 |
|
alpar@119
|
197 |
///Gives back the user time of the process
|
alpar@119
|
198 |
double userTime() const
|
alpar@119
|
199 |
{
|
deba@126
|
200 |
return utime;
|
alpar@119
|
201 |
}
|
alpar@119
|
202 |
///Gives back the system time of the process
|
alpar@119
|
203 |
double systemTime() const
|
alpar@119
|
204 |
{
|
deba@126
|
205 |
return stime;
|
alpar@119
|
206 |
}
|
alpar@119
|
207 |
///Gives back the user time of the process' children
|
deba@126
|
208 |
|
alpar@209
|
209 |
///\note On <tt>WIN32</tt> platform this value is not calculated.
|
deba@126
|
210 |
///
|
alpar@119
|
211 |
double cUserTime() const
|
alpar@119
|
212 |
{
|
deba@126
|
213 |
return cutime;
|
alpar@119
|
214 |
}
|
alpar@119
|
215 |
///Gives back the user time of the process' children
|
deba@126
|
216 |
|
alpar@209
|
217 |
///\note On <tt>WIN32</tt> platform this value is not calculated.
|
deba@126
|
218 |
///
|
alpar@119
|
219 |
double cSystemTime() const
|
alpar@119
|
220 |
{
|
deba@126
|
221 |
return cstime;
|
alpar@119
|
222 |
}
|
alpar@119
|
223 |
///Gives back the real time
|
deba@126
|
224 |
double realTime() const {return rtime;}
|
alpar@119
|
225 |
};
|
alpar@119
|
226 |
|
alpar@209
|
227 |
TimeStamp operator*(double b,const TimeStamp &t)
|
alpar@119
|
228 |
{
|
alpar@119
|
229 |
return t*b;
|
alpar@119
|
230 |
}
|
alpar@209
|
231 |
|
alpar@119
|
232 |
///Prints the time counters
|
alpar@119
|
233 |
|
alpar@119
|
234 |
///Prints the time counters in the following form:
|
alpar@119
|
235 |
///
|
alpar@119
|
236 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
|
alpar@119
|
237 |
///
|
alpar@119
|
238 |
/// where the values are the
|
alpar@119
|
239 |
/// \li \c u: user cpu time,
|
alpar@119
|
240 |
/// \li \c s: system cpu time,
|
alpar@119
|
241 |
/// \li \c cu: user cpu time of children,
|
alpar@119
|
242 |
/// \li \c cs: system cpu time of children,
|
alpar@119
|
243 |
/// \li \c real: real time.
|
alpar@119
|
244 |
/// \relates TimeStamp
|
deba@126
|
245 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not
|
deba@126
|
246 |
/// calculated.
|
alpar@119
|
247 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
|
alpar@119
|
248 |
{
|
deba@126
|
249 |
os << "u: " << t.userTime() <<
|
deba@126
|
250 |
"s, s: " << t.systemTime() <<
|
deba@126
|
251 |
"s, cu: " << t.cUserTime() <<
|
deba@126
|
252 |
"s, cs: " << t.cSystemTime() <<
|
alpar@119
|
253 |
"s, real: " << t.realTime() << "s";
|
alpar@119
|
254 |
return os;
|
alpar@119
|
255 |
}
|
alpar@119
|
256 |
|
alpar@119
|
257 |
///Class for measuring the cpu time and real time usage of the process
|
alpar@119
|
258 |
|
alpar@119
|
259 |
///Class for measuring the cpu time and real time usage of the process.
|
alpar@119
|
260 |
///It is quite easy-to-use, here is a short example.
|
alpar@119
|
261 |
///\code
|
alpar@119
|
262 |
/// #include<lemon/time_measure.h>
|
alpar@119
|
263 |
/// #include<iostream>
|
alpar@119
|
264 |
///
|
alpar@119
|
265 |
/// int main()
|
alpar@119
|
266 |
/// {
|
alpar@119
|
267 |
///
|
alpar@119
|
268 |
/// ...
|
alpar@119
|
269 |
///
|
alpar@119
|
270 |
/// Timer t;
|
alpar@119
|
271 |
/// doSomething();
|
alpar@119
|
272 |
/// std::cout << t << '\n';
|
alpar@119
|
273 |
/// t.restart();
|
alpar@119
|
274 |
/// doSomethingElse();
|
alpar@119
|
275 |
/// std::cout << t << '\n';
|
alpar@119
|
276 |
///
|
alpar@119
|
277 |
/// ...
|
alpar@119
|
278 |
///
|
alpar@119
|
279 |
/// }
|
alpar@119
|
280 |
///\endcode
|
alpar@119
|
281 |
///
|
alpar@119
|
282 |
///The \ref Timer can also be \ref stop() "stopped" and
|
alpar@119
|
283 |
///\ref start() "started" again, so it is possible to compute collected
|
alpar@119
|
284 |
///running times.
|
alpar@119
|
285 |
///
|
alpar@119
|
286 |
///\warning Depending on the operation system and its actual configuration
|
alpar@119
|
287 |
///the time counters have a certain (10ms on a typical Linux system)
|
alpar@119
|
288 |
///granularity.
|
alpar@119
|
289 |
///Therefore this tool is not appropriate to measure very short times.
|
alpar@119
|
290 |
///Also, if you start and stop the timer very frequently, it could lead to
|
alpar@119
|
291 |
///distorted results.
|
alpar@119
|
292 |
///
|
alpar@119
|
293 |
///\note If you want to measure the running time of the execution of a certain
|
alpar@119
|
294 |
///function, consider the usage of \ref TimeReport instead.
|
alpar@119
|
295 |
///
|
alpar@119
|
296 |
///\sa TimeReport
|
alpar@119
|
297 |
class Timer
|
alpar@119
|
298 |
{
|
alpar@119
|
299 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds)
|
alpar@119
|
300 |
TimeStamp start_time; //This is the relativ start-time if the timer
|
alpar@119
|
301 |
//is _running, the collected _running time otherwise.
|
alpar@209
|
302 |
|
alpar@119
|
303 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
|
alpar@209
|
304 |
|
alpar@209
|
305 |
public:
|
alpar@119
|
306 |
///Constructor.
|
alpar@119
|
307 |
|
alpar@119
|
308 |
///\param run indicates whether or not the timer starts immediately.
|
alpar@119
|
309 |
///
|
alpar@119
|
310 |
Timer(bool run=true) :_running(run) {_reset();}
|
alpar@119
|
311 |
|
alpar@119
|
312 |
///\name Control the state of the timer
|
alpar@119
|
313 |
///Basically a Timer can be either running or stopped,
|
alpar@119
|
314 |
///but it provides a bit finer control on the execution.
|
kpeter@318
|
315 |
///The \ref lemon::Timer "Timer" also counts the number of
|
kpeter@318
|
316 |
///\ref lemon::Timer::start() "start()" executions, and it stops
|
kpeter@317
|
317 |
///only after the same amount (or more) \ref lemon::Timer::stop()
|
kpeter@317
|
318 |
///"stop()"s. This can be useful e.g. to compute the running time
|
alpar@119
|
319 |
///of recursive functions.
|
alpar@119
|
320 |
|
alpar@119
|
321 |
///@{
|
alpar@119
|
322 |
|
alpar@119
|
323 |
///Reset and stop the time counters
|
alpar@119
|
324 |
|
alpar@119
|
325 |
///This function resets and stops the time counters
|
alpar@119
|
326 |
///\sa restart()
|
alpar@119
|
327 |
void reset()
|
alpar@119
|
328 |
{
|
alpar@119
|
329 |
_running=0;
|
alpar@119
|
330 |
_reset();
|
alpar@119
|
331 |
}
|
alpar@119
|
332 |
|
alpar@119
|
333 |
///Start the time counters
|
alpar@209
|
334 |
|
alpar@119
|
335 |
///This function starts the time counters.
|
alpar@119
|
336 |
///
|
alpar@119
|
337 |
///If the timer is started more than ones, it will remain running
|
alpar@119
|
338 |
///until the same amount of \ref stop() is called.
|
alpar@119
|
339 |
///\sa stop()
|
alpar@209
|
340 |
void start()
|
alpar@119
|
341 |
{
|
alpar@119
|
342 |
if(_running) _running++;
|
alpar@119
|
343 |
else {
|
alpar@209
|
344 |
_running=1;
|
alpar@209
|
345 |
TimeStamp t;
|
alpar@209
|
346 |
t.stamp();
|
alpar@209
|
347 |
start_time=t-start_time;
|
alpar@119
|
348 |
}
|
alpar@119
|
349 |
}
|
alpar@119
|
350 |
|
alpar@209
|
351 |
|
alpar@119
|
352 |
///Stop the time counters
|
alpar@119
|
353 |
|
alpar@119
|
354 |
///This function stops the time counters. If start() was executed more than
|
alpar@119
|
355 |
///once, then the same number of stop() execution is necessary the really
|
alpar@119
|
356 |
///stop the timer.
|
alpar@209
|
357 |
///
|
alpar@119
|
358 |
///\sa halt()
|
alpar@119
|
359 |
///\sa start()
|
alpar@119
|
360 |
///\sa restart()
|
alpar@119
|
361 |
///\sa reset()
|
alpar@119
|
362 |
|
alpar@209
|
363 |
void stop()
|
alpar@119
|
364 |
{
|
alpar@119
|
365 |
if(_running && !--_running) {
|
alpar@209
|
366 |
TimeStamp t;
|
alpar@209
|
367 |
t.stamp();
|
alpar@209
|
368 |
start_time=t-start_time;
|
alpar@119
|
369 |
}
|
alpar@119
|
370 |
}
|
alpar@119
|
371 |
|
alpar@119
|
372 |
///Halt (i.e stop immediately) the time counters
|
alpar@119
|
373 |
|
alpar@120
|
374 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
|
alpar@119
|
375 |
///is a faster
|
alpar@119
|
376 |
///equivalent of the following.
|
alpar@119
|
377 |
///\code
|
alpar@119
|
378 |
/// while(t.running()) t.stop()
|
alpar@119
|
379 |
///\endcode
|
alpar@119
|
380 |
///
|
alpar@119
|
381 |
///
|
alpar@119
|
382 |
///\sa stop()
|
alpar@119
|
383 |
///\sa restart()
|
alpar@119
|
384 |
///\sa reset()
|
alpar@119
|
385 |
|
alpar@209
|
386 |
void halt()
|
alpar@119
|
387 |
{
|
alpar@119
|
388 |
if(_running) {
|
alpar@209
|
389 |
_running=0;
|
alpar@209
|
390 |
TimeStamp t;
|
alpar@209
|
391 |
t.stamp();
|
alpar@209
|
392 |
start_time=t-start_time;
|
alpar@119
|
393 |
}
|
alpar@119
|
394 |
}
|
alpar@119
|
395 |
|
alpar@119
|
396 |
///Returns the running state of the timer
|
alpar@119
|
397 |
|
alpar@119
|
398 |
///This function returns the number of stop() exections that is
|
alpar@119
|
399 |
///necessary to really stop the timer.
|
alpar@119
|
400 |
///For example the timer
|
alpar@119
|
401 |
///is running if and only if the return value is \c true
|
alpar@119
|
402 |
///(i.e. greater than
|
alpar@119
|
403 |
///zero).
|
alpar@119
|
404 |
int running() { return _running; }
|
alpar@209
|
405 |
|
alpar@209
|
406 |
|
alpar@119
|
407 |
///Restart the time counters
|
alpar@119
|
408 |
|
alpar@119
|
409 |
///This function is a shorthand for
|
alpar@119
|
410 |
///a reset() and a start() calls.
|
alpar@119
|
411 |
///
|
alpar@209
|
412 |
void restart()
|
alpar@119
|
413 |
{
|
alpar@119
|
414 |
reset();
|
alpar@119
|
415 |
start();
|
alpar@119
|
416 |
}
|
alpar@209
|
417 |
|
alpar@119
|
418 |
///@}
|
alpar@119
|
419 |
|
alpar@119
|
420 |
///\name Query Functions for the ellapsed time
|
alpar@119
|
421 |
|
alpar@119
|
422 |
///@{
|
alpar@119
|
423 |
|
alpar@119
|
424 |
///Gives back the ellapsed user time of the process
|
alpar@119
|
425 |
double userTime() const
|
alpar@119
|
426 |
{
|
alpar@119
|
427 |
return operator TimeStamp().userTime();
|
alpar@119
|
428 |
}
|
alpar@119
|
429 |
///Gives back the ellapsed system time of the process
|
alpar@119
|
430 |
double systemTime() const
|
alpar@119
|
431 |
{
|
alpar@119
|
432 |
return operator TimeStamp().systemTime();
|
alpar@119
|
433 |
}
|
alpar@119
|
434 |
///Gives back the ellapsed user time of the process' children
|
deba@126
|
435 |
|
alpar@209
|
436 |
///\note On <tt>WIN32</tt> platform this value is not calculated.
|
deba@126
|
437 |
///
|
alpar@119
|
438 |
double cUserTime() const
|
alpar@119
|
439 |
{
|
alpar@119
|
440 |
return operator TimeStamp().cUserTime();
|
alpar@119
|
441 |
}
|
alpar@119
|
442 |
///Gives back the ellapsed user time of the process' children
|
deba@126
|
443 |
|
alpar@209
|
444 |
///\note On <tt>WIN32</tt> platform this value is not calculated.
|
deba@126
|
445 |
///
|
alpar@119
|
446 |
double cSystemTime() const
|
alpar@119
|
447 |
{
|
alpar@119
|
448 |
return operator TimeStamp().cSystemTime();
|
alpar@119
|
449 |
}
|
alpar@119
|
450 |
///Gives back the ellapsed real time
|
alpar@119
|
451 |
double realTime() const
|
alpar@119
|
452 |
{
|
alpar@119
|
453 |
return operator TimeStamp().realTime();
|
alpar@119
|
454 |
}
|
alpar@119
|
455 |
///Computes the ellapsed time
|
alpar@119
|
456 |
|
alpar@119
|
457 |
///This conversion computes the ellapsed time, therefore you can print
|
alpar@119
|
458 |
///the ellapsed time like this.
|
alpar@119
|
459 |
///\code
|
alpar@119
|
460 |
/// Timer t;
|
alpar@119
|
461 |
/// doSomething();
|
alpar@119
|
462 |
/// std::cout << t << '\n';
|
alpar@119
|
463 |
///\endcode
|
alpar@119
|
464 |
operator TimeStamp () const
|
alpar@119
|
465 |
{
|
alpar@119
|
466 |
TimeStamp t;
|
alpar@119
|
467 |
t.stamp();
|
alpar@119
|
468 |
return _running?t-start_time:start_time;
|
alpar@119
|
469 |
}
|
alpar@119
|
470 |
|
alpar@119
|
471 |
|
alpar@119
|
472 |
///@}
|
alpar@119
|
473 |
};
|
alpar@119
|
474 |
|
kpeter@317
|
475 |
///Same as Timer but prints a report on destruction.
|
alpar@119
|
476 |
|
alpar@119
|
477 |
///Same as \ref Timer but prints a report on destruction.
|
alpar@119
|
478 |
///This example shows its usage.
|
alpar@119
|
479 |
///\code
|
alpar@119
|
480 |
/// void myAlg(ListGraph &g,int n)
|
alpar@119
|
481 |
/// {
|
alpar@119
|
482 |
/// TimeReport tr("Running time of myAlg: ");
|
alpar@119
|
483 |
/// ... //Here comes the algorithm
|
alpar@119
|
484 |
/// }
|
alpar@119
|
485 |
///\endcode
|
alpar@119
|
486 |
///
|
alpar@119
|
487 |
///\sa Timer
|
alpar@119
|
488 |
///\sa NoTimeReport
|
alpar@209
|
489 |
class TimeReport : public Timer
|
alpar@119
|
490 |
{
|
alpar@119
|
491 |
std::string _title;
|
alpar@119
|
492 |
std::ostream &_os;
|
alpar@119
|
493 |
public:
|
kpeter@317
|
494 |
///Constructor
|
alpar@119
|
495 |
|
kpeter@317
|
496 |
///Constructor.
|
alpar@119
|
497 |
///\param title This text will be printed before the ellapsed time.
|
alpar@119
|
498 |
///\param os The stream to print the report to.
|
alpar@119
|
499 |
///\param run Sets whether the timer should start immediately.
|
alpar@209
|
500 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
|
alpar@119
|
501 |
: Timer(run), _title(title), _os(os){}
|
kpeter@317
|
502 |
///Destructor that prints the ellapsed time
|
alpar@209
|
503 |
~TimeReport()
|
alpar@119
|
504 |
{
|
alpar@119
|
505 |
_os << _title << *this << std::endl;
|
alpar@119
|
506 |
}
|
alpar@119
|
507 |
};
|
alpar@209
|
508 |
|
kpeter@317
|
509 |
///'Do nothing' version of TimeReport
|
alpar@119
|
510 |
|
alpar@119
|
511 |
///\sa TimeReport
|
alpar@119
|
512 |
///
|
alpar@119
|
513 |
class NoTimeReport
|
alpar@119
|
514 |
{
|
alpar@119
|
515 |
public:
|
alpar@119
|
516 |
///\e
|
alpar@119
|
517 |
NoTimeReport(std::string,std::ostream &,bool) {}
|
alpar@119
|
518 |
///\e
|
alpar@119
|
519 |
NoTimeReport(std::string,std::ostream &) {}
|
alpar@119
|
520 |
///\e
|
alpar@119
|
521 |
NoTimeReport(std::string) {}
|
alpar@119
|
522 |
///\e Do nothing.
|
alpar@119
|
523 |
~NoTimeReport() {}
|
alpar@119
|
524 |
|
alpar@119
|
525 |
operator TimeStamp () const { return TimeStamp(); }
|
alpar@119
|
526 |
void reset() {}
|
alpar@119
|
527 |
void start() {}
|
alpar@119
|
528 |
void stop() {}
|
alpar@209
|
529 |
void halt() {}
|
alpar@119
|
530 |
int running() { return 0; }
|
alpar@119
|
531 |
void restart() {}
|
alpar@119
|
532 |
double userTime() const { return 0; }
|
alpar@119
|
533 |
double systemTime() const { return 0; }
|
alpar@119
|
534 |
double cUserTime() const { return 0; }
|
alpar@119
|
535 |
double cSystemTime() const { return 0; }
|
alpar@119
|
536 |
double realTime() const { return 0; }
|
alpar@119
|
537 |
};
|
alpar@209
|
538 |
|
alpar@119
|
539 |
///Tool to measure the running time more exactly.
|
alpar@209
|
540 |
|
alpar@119
|
541 |
///This function calls \c f several times and returns the average
|
alpar@119
|
542 |
///running time. The number of the executions will be choosen in such a way
|
alpar@119
|
543 |
///that the full real running time will be roughly between \c min_time
|
alpar@119
|
544 |
///and <tt>2*min_time</tt>.
|
alpar@119
|
545 |
///\param f the function object to be measured.
|
alpar@119
|
546 |
///\param min_time the minimum total running time.
|
alpar@119
|
547 |
///\retval num if it is not \c NULL, then the actual
|
alpar@119
|
548 |
/// number of execution of \c f will be written into <tt>*num</tt>.
|
alpar@119
|
549 |
///\retval full_time if it is not \c NULL, then the actual
|
alpar@119
|
550 |
/// total running time will be written into <tt>*full_time</tt>.
|
alpar@119
|
551 |
///\return The average running time of \c f.
|
alpar@209
|
552 |
|
alpar@119
|
553 |
template<class F>
|
alpar@119
|
554 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
|
alpar@119
|
555 |
TimeStamp *full_time=NULL)
|
alpar@119
|
556 |
{
|
alpar@119
|
557 |
TimeStamp full;
|
alpar@119
|
558 |
unsigned int total=0;
|
alpar@119
|
559 |
Timer t;
|
alpar@119
|
560 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
|
alpar@119
|
561 |
for(;total<tn;total++) f();
|
alpar@119
|
562 |
full=t;
|
alpar@119
|
563 |
}
|
alpar@119
|
564 |
if(num) *num=total;
|
alpar@119
|
565 |
if(full_time) *full_time=full;
|
alpar@119
|
566 |
return full/total;
|
alpar@119
|
567 |
}
|
alpar@209
|
568 |
|
alpar@209
|
569 |
/// @}
|
alpar@119
|
570 |
|
alpar@119
|
571 |
|
alpar@119
|
572 |
} //namespace lemon
|
alpar@119
|
573 |
|
alpar@119
|
574 |
#endif //LEMON_TIME_MEASURE_H
|