alpar@209
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@25
|
2 |
*
|
alpar@209
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@25
|
4 |
*
|
alpar@39
|
5 |
* Copyright (C) 2003-2008
|
alpar@25
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@25
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@25
|
8 |
*
|
alpar@25
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@25
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@25
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@25
|
12 |
*
|
alpar@25
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@25
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@25
|
15 |
* purpose.
|
alpar@25
|
16 |
*
|
alpar@25
|
17 |
*/
|
alpar@25
|
18 |
|
alpar@25
|
19 |
#ifndef LEMON_MAPS_H
|
alpar@25
|
20 |
#define LEMON_MAPS_H
|
alpar@25
|
21 |
|
alpar@25
|
22 |
#include <iterator>
|
alpar@25
|
23 |
#include <functional>
|
alpar@25
|
24 |
#include <vector>
|
alpar@25
|
25 |
|
deba@220
|
26 |
#include <lemon/core.h>
|
alpar@25
|
27 |
|
alpar@25
|
28 |
///\file
|
alpar@25
|
29 |
///\ingroup maps
|
alpar@25
|
30 |
///\brief Miscellaneous property maps
|
kpeter@80
|
31 |
|
alpar@25
|
32 |
#include <map>
|
alpar@25
|
33 |
|
alpar@25
|
34 |
namespace lemon {
|
alpar@25
|
35 |
|
alpar@25
|
36 |
/// \addtogroup maps
|
alpar@25
|
37 |
/// @{
|
alpar@25
|
38 |
|
alpar@25
|
39 |
/// Base class of maps.
|
alpar@25
|
40 |
|
kpeter@80
|
41 |
/// Base class of maps. It provides the necessary type definitions
|
kpeter@80
|
42 |
/// required by the map %concepts.
|
kpeter@80
|
43 |
template<typename K, typename V>
|
alpar@25
|
44 |
class MapBase {
|
alpar@25
|
45 |
public:
|
kpeter@317
|
46 |
/// \brief The key type of the map.
|
alpar@25
|
47 |
typedef K Key;
|
kpeter@80
|
48 |
/// \brief The value type of the map.
|
kpeter@80
|
49 |
/// (The type of objects associated with the keys).
|
kpeter@80
|
50 |
typedef V Value;
|
alpar@25
|
51 |
};
|
alpar@25
|
52 |
|
kpeter@80
|
53 |
|
alpar@25
|
54 |
/// Null map. (a.k.a. DoNothingMap)
|
alpar@25
|
55 |
|
kpeter@29
|
56 |
/// This map can be used if you have to provide a map only for
|
kpeter@80
|
57 |
/// its type definitions, or if you have to provide a writable map,
|
kpeter@80
|
58 |
/// but data written to it is not required (i.e. it will be sent to
|
kpeter@29
|
59 |
/// <tt>/dev/null</tt>).
|
kpeter@80
|
60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
kpeter@80
|
61 |
///
|
kpeter@80
|
62 |
/// \sa ConstMap
|
kpeter@80
|
63 |
template<typename K, typename V>
|
kpeter@80
|
64 |
class NullMap : public MapBase<K, V> {
|
alpar@25
|
65 |
public:
|
kpeter@80
|
66 |
typedef MapBase<K, V> Parent;
|
alpar@25
|
67 |
typedef typename Parent::Key Key;
|
alpar@25
|
68 |
typedef typename Parent::Value Value;
|
kpeter@80
|
69 |
|
alpar@25
|
70 |
/// Gives back a default constructed element.
|
kpeter@80
|
71 |
Value operator[](const Key&) const { return Value(); }
|
alpar@25
|
72 |
/// Absorbs the value.
|
kpeter@80
|
73 |
void set(const Key&, const Value&) {}
|
alpar@25
|
74 |
};
|
alpar@25
|
75 |
|
kpeter@305
|
76 |
/// Returns a \c NullMap class
|
kpeter@305
|
77 |
|
kpeter@305
|
78 |
/// This function just returns a \c NullMap class.
|
kpeter@80
|
79 |
/// \relates NullMap
|
kpeter@80
|
80 |
template <typename K, typename V>
|
alpar@25
|
81 |
NullMap<K, V> nullMap() {
|
alpar@25
|
82 |
return NullMap<K, V>();
|
alpar@25
|
83 |
}
|
alpar@25
|
84 |
|
alpar@25
|
85 |
|
alpar@25
|
86 |
/// Constant map.
|
alpar@25
|
87 |
|
kpeter@82
|
88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
kpeter@82
|
89 |
/// value to each key.
|
kpeter@80
|
90 |
///
|
kpeter@305
|
91 |
/// In other aspects it is equivalent to \c NullMap.
|
kpeter@80
|
92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
kpeter@80
|
93 |
/// concept, but it absorbs the data written to it.
|
kpeter@80
|
94 |
///
|
kpeter@80
|
95 |
/// The simplest way of using this map is through the constMap()
|
kpeter@80
|
96 |
/// function.
|
kpeter@80
|
97 |
///
|
kpeter@80
|
98 |
/// \sa NullMap
|
kpeter@80
|
99 |
/// \sa IdentityMap
|
kpeter@80
|
100 |
template<typename K, typename V>
|
kpeter@80
|
101 |
class ConstMap : public MapBase<K, V> {
|
alpar@25
|
102 |
private:
|
kpeter@80
|
103 |
V _value;
|
alpar@25
|
104 |
public:
|
kpeter@80
|
105 |
typedef MapBase<K, V> Parent;
|
alpar@25
|
106 |
typedef typename Parent::Key Key;
|
alpar@25
|
107 |
typedef typename Parent::Value Value;
|
alpar@25
|
108 |
|
alpar@25
|
109 |
/// Default constructor
|
alpar@25
|
110 |
|
kpeter@29
|
111 |
/// Default constructor.
|
kpeter@80
|
112 |
/// The value of the map will be default constructed.
|
alpar@25
|
113 |
ConstMap() {}
|
kpeter@80
|
114 |
|
kpeter@29
|
115 |
/// Constructor with specified initial value
|
alpar@25
|
116 |
|
kpeter@29
|
117 |
/// Constructor with specified initial value.
|
kpeter@123
|
118 |
/// \param v The initial value of the map.
|
kpeter@80
|
119 |
ConstMap(const Value &v) : _value(v) {}
|
alpar@25
|
120 |
|
kpeter@80
|
121 |
/// Gives back the specified value.
|
kpeter@80
|
122 |
Value operator[](const Key&) const { return _value; }
|
alpar@25
|
123 |
|
kpeter@80
|
124 |
/// Absorbs the value.
|
kpeter@80
|
125 |
void set(const Key&, const Value&) {}
|
kpeter@80
|
126 |
|
kpeter@80
|
127 |
/// Sets the value that is assigned to each key.
|
kpeter@80
|
128 |
void setAll(const Value &v) {
|
kpeter@80
|
129 |
_value = v;
|
kpeter@80
|
130 |
}
|
kpeter@80
|
131 |
|
kpeter@80
|
132 |
template<typename V1>
|
kpeter@80
|
133 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
alpar@25
|
134 |
};
|
alpar@25
|
135 |
|
kpeter@305
|
136 |
/// Returns a \c ConstMap class
|
kpeter@305
|
137 |
|
kpeter@305
|
138 |
/// This function just returns a \c ConstMap class.
|
kpeter@80
|
139 |
/// \relates ConstMap
|
kpeter@80
|
140 |
template<typename K, typename V>
|
alpar@25
|
141 |
inline ConstMap<K, V> constMap(const V &v) {
|
alpar@25
|
142 |
return ConstMap<K, V>(v);
|
alpar@25
|
143 |
}
|
alpar@25
|
144 |
|
kpeter@123
|
145 |
template<typename K, typename V>
|
kpeter@123
|
146 |
inline ConstMap<K, V> constMap() {
|
kpeter@123
|
147 |
return ConstMap<K, V>();
|
kpeter@123
|
148 |
}
|
kpeter@123
|
149 |
|
alpar@25
|
150 |
|
alpar@25
|
151 |
template<typename T, T v>
|
kpeter@80
|
152 |
struct Const {};
|
alpar@25
|
153 |
|
alpar@25
|
154 |
/// Constant map with inlined constant value.
|
alpar@25
|
155 |
|
kpeter@82
|
156 |
/// This \ref concepts::ReadMap "readable map" assigns a specified
|
kpeter@82
|
157 |
/// value to each key.
|
kpeter@80
|
158 |
///
|
kpeter@305
|
159 |
/// In other aspects it is equivalent to \c NullMap.
|
kpeter@80
|
160 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
|
kpeter@80
|
161 |
/// concept, but it absorbs the data written to it.
|
kpeter@80
|
162 |
///
|
kpeter@80
|
163 |
/// The simplest way of using this map is through the constMap()
|
kpeter@80
|
164 |
/// function.
|
kpeter@80
|
165 |
///
|
kpeter@80
|
166 |
/// \sa NullMap
|
kpeter@80
|
167 |
/// \sa IdentityMap
|
alpar@25
|
168 |
template<typename K, typename V, V v>
|
alpar@25
|
169 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
alpar@25
|
170 |
public:
|
alpar@25
|
171 |
typedef MapBase<K, V> Parent;
|
alpar@25
|
172 |
typedef typename Parent::Key Key;
|
alpar@25
|
173 |
typedef typename Parent::Value Value;
|
alpar@25
|
174 |
|
kpeter@80
|
175 |
/// Constructor.
|
kpeter@80
|
176 |
ConstMap() {}
|
kpeter@80
|
177 |
|
kpeter@80
|
178 |
/// Gives back the specified value.
|
kpeter@80
|
179 |
Value operator[](const Key&) const { return v; }
|
kpeter@80
|
180 |
|
kpeter@80
|
181 |
/// Absorbs the value.
|
kpeter@80
|
182 |
void set(const Key&, const Value&) {}
|
alpar@25
|
183 |
};
|
alpar@25
|
184 |
|
kpeter@305
|
185 |
/// Returns a \c ConstMap class with inlined constant value
|
kpeter@305
|
186 |
|
kpeter@305
|
187 |
/// This function just returns a \c ConstMap class with inlined
|
kpeter@80
|
188 |
/// constant value.
|
kpeter@80
|
189 |
/// \relates ConstMap
|
kpeter@80
|
190 |
template<typename K, typename V, V v>
|
alpar@25
|
191 |
inline ConstMap<K, Const<V, v> > constMap() {
|
alpar@25
|
192 |
return ConstMap<K, Const<V, v> >();
|
alpar@25
|
193 |
}
|
alpar@25
|
194 |
|
alpar@25
|
195 |
|
kpeter@82
|
196 |
/// Identity map.
|
kpeter@82
|
197 |
|
kpeter@82
|
198 |
/// This \ref concepts::ReadMap "read-only map" gives back the given
|
kpeter@82
|
199 |
/// key as value without any modification.
|
kpeter@80
|
200 |
///
|
kpeter@80
|
201 |
/// \sa ConstMap
|
kpeter@80
|
202 |
template <typename T>
|
kpeter@80
|
203 |
class IdentityMap : public MapBase<T, T> {
|
kpeter@80
|
204 |
public:
|
kpeter@80
|
205 |
typedef MapBase<T, T> Parent;
|
kpeter@80
|
206 |
typedef typename Parent::Key Key;
|
kpeter@80
|
207 |
typedef typename Parent::Value Value;
|
kpeter@80
|
208 |
|
kpeter@80
|
209 |
/// Gives back the given value without any modification.
|
kpeter@82
|
210 |
Value operator[](const Key &k) const {
|
kpeter@82
|
211 |
return k;
|
kpeter@80
|
212 |
}
|
kpeter@80
|
213 |
};
|
kpeter@80
|
214 |
|
kpeter@305
|
215 |
/// Returns an \c IdentityMap class
|
kpeter@305
|
216 |
|
kpeter@305
|
217 |
/// This function just returns an \c IdentityMap class.
|
kpeter@80
|
218 |
/// \relates IdentityMap
|
kpeter@80
|
219 |
template<typename T>
|
kpeter@80
|
220 |
inline IdentityMap<T> identityMap() {
|
kpeter@80
|
221 |
return IdentityMap<T>();
|
kpeter@80
|
222 |
}
|
kpeter@80
|
223 |
|
kpeter@80
|
224 |
|
kpeter@80
|
225 |
/// \brief Map for storing values for integer keys from the range
|
kpeter@80
|
226 |
/// <tt>[0..size-1]</tt>.
|
kpeter@80
|
227 |
///
|
kpeter@80
|
228 |
/// This map is essentially a wrapper for \c std::vector. It assigns
|
kpeter@80
|
229 |
/// values to integer keys from the range <tt>[0..size-1]</tt>.
|
kpeter@80
|
230 |
/// It can be used with some data structures, for example
|
kpeter@305
|
231 |
/// \c UnionFind, \c BinHeap, when the used items are small
|
kpeter@80
|
232 |
/// integers. This map conforms the \ref concepts::ReferenceMap
|
kpeter@80
|
233 |
/// "ReferenceMap" concept.
|
kpeter@80
|
234 |
///
|
kpeter@80
|
235 |
/// The simplest way of using this map is through the rangeMap()
|
kpeter@80
|
236 |
/// function.
|
kpeter@80
|
237 |
template <typename V>
|
kpeter@80
|
238 |
class RangeMap : public MapBase<int, V> {
|
kpeter@80
|
239 |
template <typename V1>
|
kpeter@80
|
240 |
friend class RangeMap;
|
kpeter@80
|
241 |
private:
|
kpeter@80
|
242 |
|
kpeter@80
|
243 |
typedef std::vector<V> Vector;
|
kpeter@80
|
244 |
Vector _vector;
|
kpeter@80
|
245 |
|
alpar@25
|
246 |
public:
|
alpar@25
|
247 |
|
kpeter@80
|
248 |
typedef MapBase<int, V> Parent;
|
kpeter@80
|
249 |
/// Key type
|
kpeter@45
|
250 |
typedef typename Parent::Key Key;
|
kpeter@80
|
251 |
/// Value type
|
kpeter@45
|
252 |
typedef typename Parent::Value Value;
|
kpeter@80
|
253 |
/// Reference type
|
kpeter@80
|
254 |
typedef typename Vector::reference Reference;
|
kpeter@80
|
255 |
/// Const reference type
|
kpeter@80
|
256 |
typedef typename Vector::const_reference ConstReference;
|
kpeter@80
|
257 |
|
kpeter@80
|
258 |
typedef True ReferenceMapTag;
|
kpeter@80
|
259 |
|
kpeter@80
|
260 |
public:
|
kpeter@80
|
261 |
|
kpeter@80
|
262 |
/// Constructor with specified default value.
|
kpeter@80
|
263 |
RangeMap(int size = 0, const Value &value = Value())
|
kpeter@80
|
264 |
: _vector(size, value) {}
|
kpeter@80
|
265 |
|
kpeter@80
|
266 |
/// Constructs the map from an appropriate \c std::vector.
|
kpeter@80
|
267 |
template <typename V1>
|
kpeter@80
|
268 |
RangeMap(const std::vector<V1>& vector)
|
kpeter@80
|
269 |
: _vector(vector.begin(), vector.end()) {}
|
kpeter@80
|
270 |
|
kpeter@305
|
271 |
/// Constructs the map from another \c RangeMap.
|
kpeter@80
|
272 |
template <typename V1>
|
kpeter@80
|
273 |
RangeMap(const RangeMap<V1> &c)
|
kpeter@80
|
274 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
kpeter@80
|
275 |
|
kpeter@80
|
276 |
/// Returns the size of the map.
|
kpeter@80
|
277 |
int size() {
|
kpeter@80
|
278 |
return _vector.size();
|
kpeter@80
|
279 |
}
|
kpeter@80
|
280 |
|
kpeter@80
|
281 |
/// Resizes the map.
|
kpeter@80
|
282 |
|
kpeter@80
|
283 |
/// Resizes the underlying \c std::vector container, so changes the
|
kpeter@80
|
284 |
/// keyset of the map.
|
kpeter@80
|
285 |
/// \param size The new size of the map. The new keyset will be the
|
kpeter@80
|
286 |
/// range <tt>[0..size-1]</tt>.
|
kpeter@80
|
287 |
/// \param value The default value to assign to the new keys.
|
kpeter@80
|
288 |
void resize(int size, const Value &value = Value()) {
|
kpeter@80
|
289 |
_vector.resize(size, value);
|
kpeter@80
|
290 |
}
|
kpeter@80
|
291 |
|
kpeter@80
|
292 |
private:
|
kpeter@80
|
293 |
|
kpeter@80
|
294 |
RangeMap& operator=(const RangeMap&);
|
kpeter@80
|
295 |
|
kpeter@80
|
296 |
public:
|
kpeter@80
|
297 |
|
kpeter@80
|
298 |
///\e
|
kpeter@80
|
299 |
Reference operator[](const Key &k) {
|
kpeter@80
|
300 |
return _vector[k];
|
kpeter@80
|
301 |
}
|
kpeter@80
|
302 |
|
kpeter@80
|
303 |
///\e
|
kpeter@80
|
304 |
ConstReference operator[](const Key &k) const {
|
kpeter@80
|
305 |
return _vector[k];
|
kpeter@80
|
306 |
}
|
kpeter@80
|
307 |
|
kpeter@80
|
308 |
///\e
|
kpeter@80
|
309 |
void set(const Key &k, const Value &v) {
|
kpeter@80
|
310 |
_vector[k] = v;
|
kpeter@80
|
311 |
}
|
kpeter@80
|
312 |
};
|
kpeter@80
|
313 |
|
kpeter@305
|
314 |
/// Returns a \c RangeMap class
|
kpeter@305
|
315 |
|
kpeter@305
|
316 |
/// This function just returns a \c RangeMap class.
|
kpeter@80
|
317 |
/// \relates RangeMap
|
kpeter@80
|
318 |
template<typename V>
|
kpeter@80
|
319 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
kpeter@80
|
320 |
return RangeMap<V>(size, value);
|
kpeter@80
|
321 |
}
|
kpeter@80
|
322 |
|
kpeter@305
|
323 |
/// \brief Returns a \c RangeMap class created from an appropriate
|
kpeter@80
|
324 |
/// \c std::vector
|
kpeter@80
|
325 |
|
kpeter@305
|
326 |
/// This function just returns a \c RangeMap class created from an
|
kpeter@80
|
327 |
/// appropriate \c std::vector.
|
kpeter@80
|
328 |
/// \relates RangeMap
|
kpeter@80
|
329 |
template<typename V>
|
kpeter@80
|
330 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
kpeter@80
|
331 |
return RangeMap<V>(vector);
|
kpeter@80
|
332 |
}
|
kpeter@80
|
333 |
|
kpeter@80
|
334 |
|
kpeter@80
|
335 |
/// Map type based on \c std::map
|
kpeter@80
|
336 |
|
kpeter@80
|
337 |
/// This map is essentially a wrapper for \c std::map with addition
|
kpeter@80
|
338 |
/// that you can specify a default value for the keys that are not
|
kpeter@80
|
339 |
/// stored actually. This value can be different from the default
|
kpeter@80
|
340 |
/// contructed value (i.e. \c %Value()).
|
kpeter@80
|
341 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
|
kpeter@80
|
342 |
/// concept.
|
kpeter@80
|
343 |
///
|
kpeter@80
|
344 |
/// This map is useful if a default value should be assigned to most of
|
kpeter@80
|
345 |
/// the keys and different values should be assigned only to a few
|
kpeter@80
|
346 |
/// keys (i.e. the map is "sparse").
|
kpeter@80
|
347 |
/// The name of this type also refers to this important usage.
|
kpeter@80
|
348 |
///
|
kpeter@80
|
349 |
/// Apart form that this map can be used in many other cases since it
|
kpeter@80
|
350 |
/// is based on \c std::map, which is a general associative container.
|
kpeter@80
|
351 |
/// However keep in mind that it is usually not as efficient as other
|
kpeter@80
|
352 |
/// maps.
|
kpeter@80
|
353 |
///
|
kpeter@80
|
354 |
/// The simplest way of using this map is through the sparseMap()
|
kpeter@80
|
355 |
/// function.
|
kpeter@80
|
356 |
template <typename K, typename V, typename Compare = std::less<K> >
|
kpeter@80
|
357 |
class SparseMap : public MapBase<K, V> {
|
kpeter@80
|
358 |
template <typename K1, typename V1, typename C1>
|
kpeter@80
|
359 |
friend class SparseMap;
|
kpeter@80
|
360 |
public:
|
kpeter@80
|
361 |
|
kpeter@80
|
362 |
typedef MapBase<K, V> Parent;
|
kpeter@80
|
363 |
/// Key type
|
kpeter@80
|
364 |
typedef typename Parent::Key Key;
|
kpeter@80
|
365 |
/// Value type
|
kpeter@80
|
366 |
typedef typename Parent::Value Value;
|
kpeter@80
|
367 |
/// Reference type
|
kpeter@80
|
368 |
typedef Value& Reference;
|
kpeter@80
|
369 |
/// Const reference type
|
kpeter@80
|
370 |
typedef const Value& ConstReference;
|
alpar@25
|
371 |
|
kpeter@45
|
372 |
typedef True ReferenceMapTag;
|
kpeter@45
|
373 |
|
alpar@25
|
374 |
private:
|
kpeter@80
|
375 |
|
kpeter@80
|
376 |
typedef std::map<K, V, Compare> Map;
|
kpeter@80
|
377 |
Map _map;
|
alpar@25
|
378 |
Value _value;
|
alpar@25
|
379 |
|
alpar@25
|
380 |
public:
|
alpar@25
|
381 |
|
kpeter@80
|
382 |
/// \brief Constructor with specified default value.
|
kpeter@80
|
383 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
kpeter@80
|
384 |
/// \brief Constructs the map from an appropriate \c std::map, and
|
kpeter@47
|
385 |
/// explicitly specifies a default value.
|
kpeter@80
|
386 |
template <typename V1, typename Comp1>
|
kpeter@80
|
387 |
SparseMap(const std::map<Key, V1, Comp1> &map,
|
kpeter@80
|
388 |
const Value &value = Value())
|
alpar@25
|
389 |
: _map(map.begin(), map.end()), _value(value) {}
|
kpeter@80
|
390 |
|
kpeter@305
|
391 |
/// \brief Constructs the map from another \c SparseMap.
|
kpeter@80
|
392 |
template<typename V1, typename Comp1>
|
kpeter@80
|
393 |
SparseMap(const SparseMap<Key, V1, Comp1> &c)
|
alpar@25
|
394 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
alpar@25
|
395 |
|
alpar@25
|
396 |
private:
|
alpar@25
|
397 |
|
kpeter@80
|
398 |
SparseMap& operator=(const SparseMap&);
|
alpar@25
|
399 |
|
alpar@25
|
400 |
public:
|
alpar@25
|
401 |
|
alpar@25
|
402 |
///\e
|
alpar@25
|
403 |
Reference operator[](const Key &k) {
|
alpar@25
|
404 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
405 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@209
|
406 |
return it->second;
|
alpar@25
|
407 |
else
|
alpar@209
|
408 |
return _map.insert(it, std::make_pair(k, _value))->second;
|
alpar@25
|
409 |
}
|
alpar@25
|
410 |
|
kpeter@80
|
411 |
///\e
|
alpar@25
|
412 |
ConstReference operator[](const Key &k) const {
|
alpar@25
|
413 |
typename Map::const_iterator it = _map.find(k);
|
alpar@25
|
414 |
if (it != _map.end())
|
alpar@209
|
415 |
return it->second;
|
alpar@25
|
416 |
else
|
alpar@209
|
417 |
return _value;
|
alpar@25
|
418 |
}
|
alpar@25
|
419 |
|
kpeter@80
|
420 |
///\e
|
kpeter@80
|
421 |
void set(const Key &k, const Value &v) {
|
alpar@25
|
422 |
typename Map::iterator it = _map.lower_bound(k);
|
alpar@25
|
423 |
if (it != _map.end() && !_map.key_comp()(k, it->first))
|
alpar@209
|
424 |
it->second = v;
|
alpar@25
|
425 |
else
|
alpar@209
|
426 |
_map.insert(it, std::make_pair(k, v));
|
alpar@25
|
427 |
}
|
alpar@25
|
428 |
|
kpeter@80
|
429 |
///\e
|
kpeter@80
|
430 |
void setAll(const Value &v) {
|
kpeter@80
|
431 |
_value = v;
|
alpar@25
|
432 |
_map.clear();
|
kpeter@80
|
433 |
}
|
kpeter@80
|
434 |
};
|
alpar@25
|
435 |
|
kpeter@305
|
436 |
/// Returns a \c SparseMap class
|
kpeter@305
|
437 |
|
kpeter@305
|
438 |
/// This function just returns a \c SparseMap class with specified
|
kpeter@80
|
439 |
/// default value.
|
kpeter@80
|
440 |
/// \relates SparseMap
|
kpeter@80
|
441 |
template<typename K, typename V, typename Compare>
|
kpeter@80
|
442 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
kpeter@80
|
443 |
return SparseMap<K, V, Compare>(value);
|
kpeter@54
|
444 |
}
|
kpeter@45
|
445 |
|
kpeter@80
|
446 |
template<typename K, typename V>
|
kpeter@80
|
447 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
kpeter@80
|
448 |
return SparseMap<K, V, std::less<K> >(value);
|
kpeter@45
|
449 |
}
|
alpar@25
|
450 |
|
kpeter@305
|
451 |
/// \brief Returns a \c SparseMap class created from an appropriate
|
kpeter@80
|
452 |
/// \c std::map
|
alpar@25
|
453 |
|
kpeter@305
|
454 |
/// This function just returns a \c SparseMap class created from an
|
kpeter@80
|
455 |
/// appropriate \c std::map.
|
kpeter@80
|
456 |
/// \relates SparseMap
|
kpeter@80
|
457 |
template<typename K, typename V, typename Compare>
|
kpeter@80
|
458 |
inline SparseMap<K, V, Compare>
|
kpeter@80
|
459 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
|
kpeter@80
|
460 |
{
|
kpeter@80
|
461 |
return SparseMap<K, V, Compare>(map, value);
|
kpeter@45
|
462 |
}
|
alpar@25
|
463 |
|
alpar@25
|
464 |
/// @}
|
alpar@25
|
465 |
|
alpar@25
|
466 |
/// \addtogroup map_adaptors
|
alpar@25
|
467 |
/// @{
|
alpar@25
|
468 |
|
kpeter@80
|
469 |
/// Composition of two maps
|
kpeter@80
|
470 |
|
kpeter@82
|
471 |
/// This \ref concepts::ReadMap "read-only map" returns the
|
kpeter@80
|
472 |
/// composition of two given maps. That is to say, if \c m1 is of
|
kpeter@80
|
473 |
/// type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
474 |
/// \code
|
kpeter@80
|
475 |
/// ComposeMap<M1, M2> cm(m1,m2);
|
kpeter@80
|
476 |
/// \endcode
|
kpeter@80
|
477 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
|
alpar@25
|
478 |
///
|
kpeter@80
|
479 |
/// The \c Key type of the map is inherited from \c M2 and the
|
kpeter@80
|
480 |
/// \c Value type is from \c M1.
|
kpeter@80
|
481 |
/// \c M2::Value must be convertible to \c M1::Key.
|
kpeter@80
|
482 |
///
|
kpeter@80
|
483 |
/// The simplest way of using this map is through the composeMap()
|
kpeter@80
|
484 |
/// function.
|
kpeter@80
|
485 |
///
|
kpeter@80
|
486 |
/// \sa CombineMap
|
kpeter@80
|
487 |
template <typename M1, typename M2>
|
kpeter@80
|
488 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
kpeter@80
|
489 |
const M1 &_m1;
|
kpeter@80
|
490 |
const M2 &_m2;
|
alpar@25
|
491 |
public:
|
kpeter@80
|
492 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent;
|
alpar@25
|
493 |
typedef typename Parent::Key Key;
|
alpar@25
|
494 |
typedef typename Parent::Value Value;
|
alpar@25
|
495 |
|
kpeter@80
|
496 |
/// Constructor
|
kpeter@80
|
497 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
498 |
|
alpar@25
|
499 |
/// \e
|
kpeter@80
|
500 |
typename MapTraits<M1>::ConstReturnValue
|
kpeter@80
|
501 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
alpar@25
|
502 |
};
|
alpar@25
|
503 |
|
kpeter@305
|
504 |
/// Returns a \c ComposeMap class
|
kpeter@305
|
505 |
|
kpeter@305
|
506 |
/// This function just returns a \c ComposeMap class.
|
kpeter@80
|
507 |
///
|
kpeter@80
|
508 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
|
kpeter@80
|
509 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
|
kpeter@80
|
510 |
/// will be equal to <tt>m1[m2[x]]</tt>.
|
kpeter@80
|
511 |
///
|
kpeter@80
|
512 |
/// \relates ComposeMap
|
kpeter@80
|
513 |
template <typename M1, typename M2>
|
kpeter@80
|
514 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
kpeter@80
|
515 |
return ComposeMap<M1, M2>(m1, m2);
|
alpar@25
|
516 |
}
|
alpar@25
|
517 |
|
kpeter@80
|
518 |
|
kpeter@80
|
519 |
/// Combination of two maps using an STL (binary) functor.
|
kpeter@80
|
520 |
|
kpeter@82
|
521 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
|
kpeter@80
|
522 |
/// binary functor and returns the combination of the two given maps
|
kpeter@80
|
523 |
/// using the functor.
|
kpeter@80
|
524 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
|
kpeter@80
|
525 |
/// and \c f is of \c F, then for
|
kpeter@80
|
526 |
/// \code
|
kpeter@80
|
527 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
|
kpeter@80
|
528 |
/// \endcode
|
kpeter@80
|
529 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
|
alpar@26
|
530 |
///
|
kpeter@80
|
531 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
|
kpeter@80
|
532 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
|
kpeter@80
|
533 |
/// \c M2::Value and \c M1::Value must be convertible to the
|
kpeter@80
|
534 |
/// corresponding input parameter of \c F and the return type of \c F
|
kpeter@80
|
535 |
/// must be convertible to \c V.
|
kpeter@80
|
536 |
///
|
kpeter@80
|
537 |
/// The simplest way of using this map is through the combineMap()
|
kpeter@80
|
538 |
/// function.
|
kpeter@80
|
539 |
///
|
kpeter@80
|
540 |
/// \sa ComposeMap
|
kpeter@80
|
541 |
template<typename M1, typename M2, typename F,
|
alpar@209
|
542 |
typename V = typename F::result_type>
|
kpeter@80
|
543 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
kpeter@80
|
544 |
const M1 &_m1;
|
kpeter@80
|
545 |
const M2 &_m2;
|
kpeter@80
|
546 |
F _f;
|
alpar@25
|
547 |
public:
|
kpeter@80
|
548 |
typedef MapBase<typename M1::Key, V> Parent;
|
alpar@25
|
549 |
typedef typename Parent::Key Key;
|
alpar@25
|
550 |
typedef typename Parent::Value Value;
|
alpar@25
|
551 |
|
kpeter@80
|
552 |
/// Constructor
|
kpeter@80
|
553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
|
kpeter@80
|
554 |
: _m1(m1), _m2(m2), _f(f) {}
|
kpeter@80
|
555 |
/// \e
|
kpeter@80
|
556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
kpeter@80
|
557 |
};
|
alpar@25
|
558 |
|
kpeter@305
|
559 |
/// Returns a \c CombineMap class
|
kpeter@305
|
560 |
|
kpeter@305
|
561 |
/// This function just returns a \c CombineMap class.
|
kpeter@80
|
562 |
///
|
kpeter@80
|
563 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
564 |
/// values, then
|
kpeter@80
|
565 |
/// \code
|
kpeter@80
|
566 |
/// combineMap(m1,m2,std::plus<double>())
|
kpeter@80
|
567 |
/// \endcode
|
kpeter@80
|
568 |
/// is equivalent to
|
kpeter@80
|
569 |
/// \code
|
kpeter@80
|
570 |
/// addMap(m1,m2)
|
kpeter@80
|
571 |
/// \endcode
|
kpeter@80
|
572 |
///
|
kpeter@80
|
573 |
/// This function is specialized for adaptable binary function
|
kpeter@80
|
574 |
/// classes and C++ functions.
|
kpeter@80
|
575 |
///
|
kpeter@80
|
576 |
/// \relates CombineMap
|
kpeter@80
|
577 |
template<typename M1, typename M2, typename F, typename V>
|
kpeter@80
|
578 |
inline CombineMap<M1, M2, F, V>
|
kpeter@80
|
579 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
kpeter@80
|
580 |
return CombineMap<M1, M2, F, V>(m1,m2,f);
|
alpar@25
|
581 |
}
|
alpar@25
|
582 |
|
kpeter@80
|
583 |
template<typename M1, typename M2, typename F>
|
kpeter@80
|
584 |
inline CombineMap<M1, M2, F, typename F::result_type>
|
kpeter@80
|
585 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
kpeter@80
|
586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
|
kpeter@80
|
587 |
}
|
alpar@25
|
588 |
|
kpeter@80
|
589 |
template<typename M1, typename M2, typename K1, typename K2, typename V>
|
kpeter@80
|
590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V>
|
kpeter@80
|
591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
kpeter@80
|
592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
|
kpeter@80
|
593 |
}
|
kpeter@80
|
594 |
|
kpeter@80
|
595 |
|
kpeter@80
|
596 |
/// Converts an STL style (unary) functor to a map
|
kpeter@80
|
597 |
|
kpeter@82
|
598 |
/// This \ref concepts::ReadMap "read-only map" returns the value
|
kpeter@80
|
599 |
/// of a given functor. Actually, it just wraps the functor and
|
kpeter@80
|
600 |
/// provides the \c Key and \c Value typedefs.
|
alpar@26
|
601 |
///
|
kpeter@80
|
602 |
/// Template parameters \c K and \c V will become its \c Key and
|
kpeter@80
|
603 |
/// \c Value. In most cases they have to be given explicitly because
|
kpeter@80
|
604 |
/// a functor typically does not provide \c argument_type and
|
kpeter@80
|
605 |
/// \c result_type typedefs.
|
kpeter@80
|
606 |
/// Parameter \c F is the type of the used functor.
|
kpeter@29
|
607 |
///
|
kpeter@80
|
608 |
/// The simplest way of using this map is through the functorToMap()
|
kpeter@80
|
609 |
/// function.
|
kpeter@80
|
610 |
///
|
kpeter@80
|
611 |
/// \sa MapToFunctor
|
kpeter@80
|
612 |
template<typename F,
|
alpar@209
|
613 |
typename K = typename F::argument_type,
|
alpar@209
|
614 |
typename V = typename F::result_type>
|
kpeter@80
|
615 |
class FunctorToMap : public MapBase<K, V> {
|
kpeter@123
|
616 |
F _f;
|
kpeter@80
|
617 |
public:
|
kpeter@80
|
618 |
typedef MapBase<K, V> Parent;
|
kpeter@80
|
619 |
typedef typename Parent::Key Key;
|
kpeter@80
|
620 |
typedef typename Parent::Value Value;
|
alpar@25
|
621 |
|
kpeter@80
|
622 |
/// Constructor
|
kpeter@80
|
623 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
kpeter@80
|
624 |
/// \e
|
kpeter@80
|
625 |
Value operator[](const Key &k) const { return _f(k); }
|
kpeter@80
|
626 |
};
|
kpeter@80
|
627 |
|
kpeter@305
|
628 |
/// Returns a \c FunctorToMap class
|
kpeter@305
|
629 |
|
kpeter@305
|
630 |
/// This function just returns a \c FunctorToMap class.
|
kpeter@80
|
631 |
///
|
kpeter@80
|
632 |
/// This function is specialized for adaptable binary function
|
kpeter@80
|
633 |
/// classes and C++ functions.
|
kpeter@80
|
634 |
///
|
kpeter@80
|
635 |
/// \relates FunctorToMap
|
kpeter@80
|
636 |
template<typename K, typename V, typename F>
|
kpeter@80
|
637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
kpeter@80
|
638 |
return FunctorToMap<F, K, V>(f);
|
kpeter@80
|
639 |
}
|
kpeter@80
|
640 |
|
kpeter@80
|
641 |
template <typename F>
|
kpeter@80
|
642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
|
kpeter@80
|
643 |
functorToMap(const F &f)
|
kpeter@80
|
644 |
{
|
kpeter@80
|
645 |
return FunctorToMap<F, typename F::argument_type,
|
kpeter@80
|
646 |
typename F::result_type>(f);
|
kpeter@80
|
647 |
}
|
kpeter@80
|
648 |
|
kpeter@80
|
649 |
template <typename K, typename V>
|
kpeter@80
|
650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
kpeter@80
|
651 |
return FunctorToMap<V (*)(K), K, V>(f);
|
kpeter@80
|
652 |
}
|
kpeter@80
|
653 |
|
kpeter@80
|
654 |
|
kpeter@80
|
655 |
/// Converts a map to an STL style (unary) functor
|
kpeter@80
|
656 |
|
kpeter@80
|
657 |
/// This class converts a map to an STL style (unary) functor.
|
kpeter@80
|
658 |
/// That is it provides an <tt>operator()</tt> to read its values.
|
kpeter@80
|
659 |
///
|
kpeter@80
|
660 |
/// For the sake of convenience it also works as a usual
|
kpeter@80
|
661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
|
kpeter@80
|
662 |
/// and the \c Key and \c Value typedefs also exist.
|
kpeter@80
|
663 |
///
|
kpeter@80
|
664 |
/// The simplest way of using this map is through the mapToFunctor()
|
kpeter@80
|
665 |
/// function.
|
kpeter@80
|
666 |
///
|
kpeter@80
|
667 |
///\sa FunctorToMap
|
kpeter@80
|
668 |
template <typename M>
|
kpeter@80
|
669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
670 |
const M &_m;
|
alpar@25
|
671 |
public:
|
alpar@25
|
672 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
673 |
typedef typename Parent::Key Key;
|
alpar@25
|
674 |
typedef typename Parent::Value Value;
|
alpar@25
|
675 |
|
kpeter@80
|
676 |
typedef typename Parent::Key argument_type;
|
kpeter@80
|
677 |
typedef typename Parent::Value result_type;
|
kpeter@80
|
678 |
|
kpeter@80
|
679 |
/// Constructor
|
kpeter@80
|
680 |
MapToFunctor(const M &m) : _m(m) {}
|
kpeter@80
|
681 |
/// \e
|
kpeter@80
|
682 |
Value operator()(const Key &k) const { return _m[k]; }
|
kpeter@80
|
683 |
/// \e
|
kpeter@80
|
684 |
Value operator[](const Key &k) const { return _m[k]; }
|
alpar@25
|
685 |
};
|
kpeter@45
|
686 |
|
kpeter@305
|
687 |
/// Returns a \c MapToFunctor class
|
kpeter@305
|
688 |
|
kpeter@305
|
689 |
/// This function just returns a \c MapToFunctor class.
|
kpeter@80
|
690 |
/// \relates MapToFunctor
|
kpeter@45
|
691 |
template<typename M>
|
kpeter@80
|
692 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
kpeter@80
|
693 |
return MapToFunctor<M>(m);
|
kpeter@45
|
694 |
}
|
alpar@25
|
695 |
|
alpar@25
|
696 |
|
kpeter@80
|
697 |
/// \brief Map adaptor to convert the \c Value type of a map to
|
kpeter@80
|
698 |
/// another type using the default conversion.
|
kpeter@80
|
699 |
|
kpeter@80
|
700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
|
kpeter@80
|
701 |
/// "readable map" to another type using the default conversion.
|
kpeter@80
|
702 |
/// The \c Key type of it is inherited from \c M and the \c Value
|
kpeter@80
|
703 |
/// type is \c V.
|
kpeter@80
|
704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
|
alpar@26
|
705 |
///
|
kpeter@80
|
706 |
/// The simplest way of using this map is through the convertMap()
|
kpeter@80
|
707 |
/// function.
|
kpeter@80
|
708 |
template <typename M, typename V>
|
kpeter@80
|
709 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
kpeter@80
|
710 |
const M &_m;
|
kpeter@80
|
711 |
public:
|
kpeter@80
|
712 |
typedef MapBase<typename M::Key, V> Parent;
|
kpeter@80
|
713 |
typedef typename Parent::Key Key;
|
kpeter@80
|
714 |
typedef typename Parent::Value Value;
|
kpeter@80
|
715 |
|
kpeter@80
|
716 |
/// Constructor
|
kpeter@80
|
717 |
|
kpeter@80
|
718 |
/// Constructor.
|
kpeter@80
|
719 |
/// \param m The underlying map.
|
kpeter@80
|
720 |
ConvertMap(const M &m) : _m(m) {}
|
kpeter@80
|
721 |
|
kpeter@80
|
722 |
/// \e
|
kpeter@80
|
723 |
Value operator[](const Key &k) const { return _m[k]; }
|
kpeter@80
|
724 |
};
|
kpeter@80
|
725 |
|
kpeter@305
|
726 |
/// Returns a \c ConvertMap class
|
kpeter@305
|
727 |
|
kpeter@305
|
728 |
/// This function just returns a \c ConvertMap class.
|
kpeter@80
|
729 |
/// \relates ConvertMap
|
kpeter@80
|
730 |
template<typename V, typename M>
|
kpeter@80
|
731 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
kpeter@80
|
732 |
return ConvertMap<M, V>(map);
|
kpeter@80
|
733 |
}
|
kpeter@80
|
734 |
|
kpeter@80
|
735 |
|
kpeter@80
|
736 |
/// Applies all map setting operations to two maps
|
kpeter@80
|
737 |
|
kpeter@80
|
738 |
/// This map has two \ref concepts::WriteMap "writable map" parameters
|
kpeter@80
|
739 |
/// and each write request will be passed to both of them.
|
kpeter@80
|
740 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
|
kpeter@80
|
741 |
/// operations will return the corresponding values of \c M1.
|
kpeter@29
|
742 |
///
|
kpeter@80
|
743 |
/// The \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
744 |
/// The \c Key and \c Value of \c M2 must be convertible from those
|
kpeter@80
|
745 |
/// of \c M1.
|
kpeter@80
|
746 |
///
|
kpeter@80
|
747 |
/// The simplest way of using this map is through the forkMap()
|
kpeter@80
|
748 |
/// function.
|
kpeter@80
|
749 |
template<typename M1, typename M2>
|
kpeter@80
|
750 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
751 |
M1 &_m1;
|
kpeter@80
|
752 |
M2 &_m2;
|
kpeter@80
|
753 |
public:
|
kpeter@80
|
754 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
kpeter@80
|
755 |
typedef typename Parent::Key Key;
|
kpeter@80
|
756 |
typedef typename Parent::Value Value;
|
alpar@25
|
757 |
|
kpeter@80
|
758 |
/// Constructor
|
kpeter@80
|
759 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
760 |
/// Returns the value associated with the given key in the first map.
|
kpeter@80
|
761 |
Value operator[](const Key &k) const { return _m1[k]; }
|
kpeter@80
|
762 |
/// Sets the value associated with the given key in both maps.
|
kpeter@80
|
763 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
kpeter@80
|
764 |
};
|
kpeter@80
|
765 |
|
kpeter@305
|
766 |
/// Returns a \c ForkMap class
|
kpeter@305
|
767 |
|
kpeter@305
|
768 |
/// This function just returns a \c ForkMap class.
|
kpeter@80
|
769 |
/// \relates ForkMap
|
kpeter@80
|
770 |
template <typename M1, typename M2>
|
kpeter@80
|
771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
kpeter@80
|
772 |
return ForkMap<M1,M2>(m1,m2);
|
kpeter@80
|
773 |
}
|
kpeter@80
|
774 |
|
kpeter@80
|
775 |
|
kpeter@80
|
776 |
/// Sum of two maps
|
kpeter@80
|
777 |
|
kpeter@82
|
778 |
/// This \ref concepts::ReadMap "read-only map" returns the sum
|
kpeter@80
|
779 |
/// of the values of the two given maps.
|
kpeter@80
|
780 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
781 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
782 |
/// \c M1.
|
kpeter@80
|
783 |
///
|
kpeter@80
|
784 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
785 |
/// \code
|
kpeter@80
|
786 |
/// AddMap<M1,M2> am(m1,m2);
|
kpeter@80
|
787 |
/// \endcode
|
kpeter@80
|
788 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
|
kpeter@80
|
789 |
///
|
kpeter@80
|
790 |
/// The simplest way of using this map is through the addMap()
|
kpeter@80
|
791 |
/// function.
|
kpeter@80
|
792 |
///
|
kpeter@80
|
793 |
/// \sa SubMap, MulMap, DivMap
|
kpeter@80
|
794 |
/// \sa ShiftMap, ShiftWriteMap
|
kpeter@80
|
795 |
template<typename M1, typename M2>
|
alpar@25
|
796 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
797 |
const M1 &_m1;
|
kpeter@80
|
798 |
const M2 &_m2;
|
alpar@25
|
799 |
public:
|
alpar@25
|
800 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
alpar@25
|
801 |
typedef typename Parent::Key Key;
|
alpar@25
|
802 |
typedef typename Parent::Value Value;
|
alpar@25
|
803 |
|
kpeter@80
|
804 |
/// Constructor
|
kpeter@80
|
805 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
806 |
/// \e
|
kpeter@80
|
807 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
alpar@25
|
808 |
};
|
alpar@25
|
809 |
|
kpeter@305
|
810 |
/// Returns an \c AddMap class
|
kpeter@305
|
811 |
|
kpeter@305
|
812 |
/// This function just returns an \c AddMap class.
|
alpar@25
|
813 |
///
|
kpeter@80
|
814 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
815 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
816 |
/// <tt>m1[x]+m2[x]</tt>.
|
kpeter@80
|
817 |
///
|
kpeter@80
|
818 |
/// \relates AddMap
|
kpeter@80
|
819 |
template<typename M1, typename M2>
|
kpeter@80
|
820 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
alpar@25
|
821 |
return AddMap<M1, M2>(m1,m2);
|
alpar@25
|
822 |
}
|
alpar@25
|
823 |
|
alpar@25
|
824 |
|
kpeter@80
|
825 |
/// Difference of two maps
|
kpeter@80
|
826 |
|
kpeter@82
|
827 |
/// This \ref concepts::ReadMap "read-only map" returns the difference
|
kpeter@80
|
828 |
/// of the values of the two given maps.
|
kpeter@80
|
829 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
830 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
831 |
/// \c M1.
|
alpar@25
|
832 |
///
|
kpeter@80
|
833 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
834 |
/// \code
|
kpeter@80
|
835 |
/// SubMap<M1,M2> sm(m1,m2);
|
kpeter@80
|
836 |
/// \endcode
|
kpeter@80
|
837 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
|
kpeter@29
|
838 |
///
|
kpeter@80
|
839 |
/// The simplest way of using this map is through the subMap()
|
kpeter@80
|
840 |
/// function.
|
kpeter@80
|
841 |
///
|
kpeter@80
|
842 |
/// \sa AddMap, MulMap, DivMap
|
kpeter@80
|
843 |
template<typename M1, typename M2>
|
kpeter@80
|
844 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
845 |
const M1 &_m1;
|
kpeter@80
|
846 |
const M2 &_m2;
|
kpeter@80
|
847 |
public:
|
kpeter@80
|
848 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
kpeter@80
|
849 |
typedef typename Parent::Key Key;
|
kpeter@80
|
850 |
typedef typename Parent::Value Value;
|
kpeter@80
|
851 |
|
kpeter@80
|
852 |
/// Constructor
|
kpeter@80
|
853 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
854 |
/// \e
|
kpeter@80
|
855 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
kpeter@80
|
856 |
};
|
kpeter@80
|
857 |
|
kpeter@305
|
858 |
/// Returns a \c SubMap class
|
kpeter@305
|
859 |
|
kpeter@305
|
860 |
/// This function just returns a \c SubMap class.
|
kpeter@80
|
861 |
///
|
kpeter@80
|
862 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
863 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
864 |
/// <tt>m1[x]-m2[x]</tt>.
|
kpeter@80
|
865 |
///
|
kpeter@80
|
866 |
/// \relates SubMap
|
kpeter@80
|
867 |
template<typename M1, typename M2>
|
kpeter@80
|
868 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
kpeter@80
|
869 |
return SubMap<M1, M2>(m1,m2);
|
kpeter@80
|
870 |
}
|
kpeter@80
|
871 |
|
kpeter@80
|
872 |
|
kpeter@80
|
873 |
/// Product of two maps
|
kpeter@80
|
874 |
|
kpeter@82
|
875 |
/// This \ref concepts::ReadMap "read-only map" returns the product
|
kpeter@80
|
876 |
/// of the values of the two given maps.
|
kpeter@80
|
877 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
878 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
879 |
/// \c M1.
|
kpeter@80
|
880 |
///
|
kpeter@80
|
881 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
882 |
/// \code
|
kpeter@80
|
883 |
/// MulMap<M1,M2> mm(m1,m2);
|
kpeter@80
|
884 |
/// \endcode
|
kpeter@80
|
885 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
|
kpeter@80
|
886 |
///
|
kpeter@80
|
887 |
/// The simplest way of using this map is through the mulMap()
|
kpeter@80
|
888 |
/// function.
|
kpeter@80
|
889 |
///
|
kpeter@80
|
890 |
/// \sa AddMap, SubMap, DivMap
|
kpeter@80
|
891 |
/// \sa ScaleMap, ScaleWriteMap
|
kpeter@80
|
892 |
template<typename M1, typename M2>
|
kpeter@80
|
893 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
894 |
const M1 &_m1;
|
kpeter@80
|
895 |
const M2 &_m2;
|
kpeter@80
|
896 |
public:
|
kpeter@80
|
897 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
kpeter@80
|
898 |
typedef typename Parent::Key Key;
|
kpeter@80
|
899 |
typedef typename Parent::Value Value;
|
kpeter@80
|
900 |
|
kpeter@80
|
901 |
/// Constructor
|
kpeter@80
|
902 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
903 |
/// \e
|
kpeter@80
|
904 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
kpeter@80
|
905 |
};
|
kpeter@80
|
906 |
|
kpeter@305
|
907 |
/// Returns a \c MulMap class
|
kpeter@305
|
908 |
|
kpeter@305
|
909 |
/// This function just returns a \c MulMap class.
|
kpeter@80
|
910 |
///
|
kpeter@80
|
911 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
912 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
913 |
/// <tt>m1[x]*m2[x]</tt>.
|
kpeter@80
|
914 |
///
|
kpeter@80
|
915 |
/// \relates MulMap
|
kpeter@80
|
916 |
template<typename M1, typename M2>
|
kpeter@80
|
917 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
kpeter@80
|
918 |
return MulMap<M1, M2>(m1,m2);
|
kpeter@80
|
919 |
}
|
kpeter@80
|
920 |
|
kpeter@80
|
921 |
|
kpeter@80
|
922 |
/// Quotient of two maps
|
kpeter@80
|
923 |
|
kpeter@82
|
924 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient
|
kpeter@80
|
925 |
/// of the values of the two given maps.
|
kpeter@80
|
926 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
kpeter@80
|
927 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
kpeter@80
|
928 |
/// \c M1.
|
kpeter@80
|
929 |
///
|
kpeter@80
|
930 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@80
|
931 |
/// \code
|
kpeter@80
|
932 |
/// DivMap<M1,M2> dm(m1,m2);
|
kpeter@80
|
933 |
/// \endcode
|
kpeter@80
|
934 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
|
kpeter@80
|
935 |
///
|
kpeter@80
|
936 |
/// The simplest way of using this map is through the divMap()
|
kpeter@80
|
937 |
/// function.
|
kpeter@80
|
938 |
///
|
kpeter@80
|
939 |
/// \sa AddMap, SubMap, MulMap
|
kpeter@80
|
940 |
template<typename M1, typename M2>
|
kpeter@80
|
941 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
kpeter@80
|
942 |
const M1 &_m1;
|
kpeter@80
|
943 |
const M2 &_m2;
|
kpeter@80
|
944 |
public:
|
kpeter@80
|
945 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
kpeter@80
|
946 |
typedef typename Parent::Key Key;
|
kpeter@80
|
947 |
typedef typename Parent::Value Value;
|
kpeter@80
|
948 |
|
kpeter@80
|
949 |
/// Constructor
|
kpeter@80
|
950 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@80
|
951 |
/// \e
|
kpeter@80
|
952 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
kpeter@80
|
953 |
};
|
kpeter@80
|
954 |
|
kpeter@305
|
955 |
/// Returns a \c DivMap class
|
kpeter@305
|
956 |
|
kpeter@305
|
957 |
/// This function just returns a \c DivMap class.
|
kpeter@80
|
958 |
///
|
kpeter@80
|
959 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
kpeter@80
|
960 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
|
kpeter@80
|
961 |
/// <tt>m1[x]/m2[x]</tt>.
|
kpeter@80
|
962 |
///
|
kpeter@80
|
963 |
/// \relates DivMap
|
kpeter@80
|
964 |
template<typename M1, typename M2>
|
kpeter@80
|
965 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
kpeter@80
|
966 |
return DivMap<M1, M2>(m1,m2);
|
kpeter@80
|
967 |
}
|
kpeter@80
|
968 |
|
kpeter@80
|
969 |
|
kpeter@80
|
970 |
/// Shifts a map with a constant.
|
kpeter@80
|
971 |
|
kpeter@82
|
972 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of
|
kpeter@80
|
973 |
/// the given map and a constant value (i.e. it shifts the map with
|
kpeter@80
|
974 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
975 |
///
|
kpeter@80
|
976 |
/// Actually,
|
kpeter@80
|
977 |
/// \code
|
kpeter@80
|
978 |
/// ShiftMap<M> sh(m,v);
|
kpeter@80
|
979 |
/// \endcode
|
kpeter@80
|
980 |
/// is equivalent to
|
kpeter@80
|
981 |
/// \code
|
kpeter@80
|
982 |
/// ConstMap<M::Key, M::Value> cm(v);
|
kpeter@80
|
983 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
|
kpeter@80
|
984 |
/// \endcode
|
kpeter@80
|
985 |
///
|
kpeter@80
|
986 |
/// The simplest way of using this map is through the shiftMap()
|
kpeter@80
|
987 |
/// function.
|
kpeter@80
|
988 |
///
|
kpeter@80
|
989 |
/// \sa ShiftWriteMap
|
kpeter@80
|
990 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
991 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
992 |
const M &_m;
|
kpeter@80
|
993 |
C _v;
|
alpar@25
|
994 |
public:
|
alpar@25
|
995 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
996 |
typedef typename Parent::Key Key;
|
alpar@25
|
997 |
typedef typename Parent::Value Value;
|
alpar@25
|
998 |
|
kpeter@80
|
999 |
/// Constructor
|
alpar@25
|
1000 |
|
kpeter@80
|
1001 |
/// Constructor.
|
kpeter@80
|
1002 |
/// \param m The undelying map.
|
kpeter@80
|
1003 |
/// \param v The constant value.
|
kpeter@80
|
1004 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
kpeter@80
|
1005 |
/// \e
|
kpeter@80
|
1006 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
alpar@25
|
1007 |
};
|
alpar@25
|
1008 |
|
kpeter@80
|
1009 |
/// Shifts a map with a constant (read-write version).
|
alpar@25
|
1010 |
|
kpeter@80
|
1011 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
|
kpeter@80
|
1012 |
/// of the given map and a constant value (i.e. it shifts the map with
|
kpeter@80
|
1013 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1014 |
/// It makes also possible to write the map.
|
alpar@25
|
1015 |
///
|
kpeter@80
|
1016 |
/// The simplest way of using this map is through the shiftWriteMap()
|
kpeter@80
|
1017 |
/// function.
|
kpeter@80
|
1018 |
///
|
kpeter@80
|
1019 |
/// \sa ShiftMap
|
kpeter@80
|
1020 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1021 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1022 |
M &_m;
|
kpeter@80
|
1023 |
C _v;
|
alpar@25
|
1024 |
public:
|
alpar@25
|
1025 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1026 |
typedef typename Parent::Key Key;
|
alpar@25
|
1027 |
typedef typename Parent::Value Value;
|
alpar@25
|
1028 |
|
kpeter@80
|
1029 |
/// Constructor
|
alpar@25
|
1030 |
|
kpeter@80
|
1031 |
/// Constructor.
|
kpeter@80
|
1032 |
/// \param m The undelying map.
|
kpeter@80
|
1033 |
/// \param v The constant value.
|
kpeter@80
|
1034 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
alpar@25
|
1035 |
/// \e
|
kpeter@80
|
1036 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
alpar@25
|
1037 |
/// \e
|
kpeter@80
|
1038 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
alpar@25
|
1039 |
};
|
alpar@25
|
1040 |
|
kpeter@305
|
1041 |
/// Returns a \c ShiftMap class
|
kpeter@305
|
1042 |
|
kpeter@305
|
1043 |
/// This function just returns a \c ShiftMap class.
|
kpeter@80
|
1044 |
///
|
kpeter@80
|
1045 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1046 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1047 |
/// <tt>m[x]+v</tt>.
|
kpeter@80
|
1048 |
///
|
kpeter@80
|
1049 |
/// \relates ShiftMap
|
kpeter@80
|
1050 |
template<typename M, typename C>
|
kpeter@80
|
1051 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
alpar@25
|
1052 |
return ShiftMap<M, C>(m,v);
|
alpar@25
|
1053 |
}
|
alpar@25
|
1054 |
|
kpeter@305
|
1055 |
/// Returns a \c ShiftWriteMap class
|
kpeter@305
|
1056 |
|
kpeter@305
|
1057 |
/// This function just returns a \c ShiftWriteMap class.
|
kpeter@80
|
1058 |
///
|
kpeter@80
|
1059 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1060 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1061 |
/// <tt>m[x]+v</tt>.
|
kpeter@80
|
1062 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1063 |
///
|
kpeter@80
|
1064 |
/// \relates ShiftWriteMap
|
kpeter@80
|
1065 |
template<typename M, typename C>
|
kpeter@80
|
1066 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
alpar@25
|
1067 |
return ShiftWriteMap<M, C>(m,v);
|
alpar@25
|
1068 |
}
|
alpar@25
|
1069 |
|
alpar@25
|
1070 |
|
kpeter@80
|
1071 |
/// Scales a map with a constant.
|
kpeter@80
|
1072 |
|
kpeter@82
|
1073 |
/// This \ref concepts::ReadMap "read-only map" returns the value of
|
kpeter@80
|
1074 |
/// the given map multiplied from the left side with a constant value.
|
kpeter@80
|
1075 |
/// Its \c Key and \c Value are inherited from \c M.
|
alpar@26
|
1076 |
///
|
kpeter@80
|
1077 |
/// Actually,
|
kpeter@80
|
1078 |
/// \code
|
kpeter@80
|
1079 |
/// ScaleMap<M> sc(m,v);
|
kpeter@80
|
1080 |
/// \endcode
|
kpeter@80
|
1081 |
/// is equivalent to
|
kpeter@80
|
1082 |
/// \code
|
kpeter@80
|
1083 |
/// ConstMap<M::Key, M::Value> cm(v);
|
kpeter@80
|
1084 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
|
kpeter@80
|
1085 |
/// \endcode
|
alpar@25
|
1086 |
///
|
kpeter@80
|
1087 |
/// The simplest way of using this map is through the scaleMap()
|
kpeter@80
|
1088 |
/// function.
|
alpar@25
|
1089 |
///
|
kpeter@80
|
1090 |
/// \sa ScaleWriteMap
|
kpeter@80
|
1091 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1092 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1093 |
const M &_m;
|
kpeter@80
|
1094 |
C _v;
|
alpar@25
|
1095 |
public:
|
alpar@25
|
1096 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1097 |
typedef typename Parent::Key Key;
|
alpar@25
|
1098 |
typedef typename Parent::Value Value;
|
alpar@25
|
1099 |
|
kpeter@80
|
1100 |
/// Constructor
|
alpar@25
|
1101 |
|
kpeter@80
|
1102 |
/// Constructor.
|
kpeter@80
|
1103 |
/// \param m The undelying map.
|
kpeter@80
|
1104 |
/// \param v The constant value.
|
kpeter@80
|
1105 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
alpar@25
|
1106 |
/// \e
|
kpeter@80
|
1107 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
alpar@25
|
1108 |
};
|
alpar@25
|
1109 |
|
kpeter@80
|
1110 |
/// Scales a map with a constant (read-write version).
|
alpar@25
|
1111 |
|
kpeter@80
|
1112 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
|
kpeter@80
|
1113 |
/// the given map multiplied from the left side with a constant value.
|
kpeter@80
|
1114 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1115 |
/// It can also be used as write map if the \c / operator is defined
|
kpeter@80
|
1116 |
/// between \c Value and \c C and the given multiplier is not zero.
|
kpeter@29
|
1117 |
///
|
kpeter@80
|
1118 |
/// The simplest way of using this map is through the scaleWriteMap()
|
kpeter@80
|
1119 |
/// function.
|
kpeter@80
|
1120 |
///
|
kpeter@80
|
1121 |
/// \sa ScaleMap
|
kpeter@80
|
1122 |
template<typename M, typename C = typename M::Value>
|
alpar@25
|
1123 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1124 |
M &_m;
|
kpeter@80
|
1125 |
C _v;
|
alpar@25
|
1126 |
public:
|
alpar@25
|
1127 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1128 |
typedef typename Parent::Key Key;
|
alpar@25
|
1129 |
typedef typename Parent::Value Value;
|
alpar@25
|
1130 |
|
kpeter@80
|
1131 |
/// Constructor
|
alpar@25
|
1132 |
|
kpeter@80
|
1133 |
/// Constructor.
|
kpeter@80
|
1134 |
/// \param m The undelying map.
|
kpeter@80
|
1135 |
/// \param v The constant value.
|
kpeter@80
|
1136 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
alpar@25
|
1137 |
/// \e
|
kpeter@80
|
1138 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
alpar@25
|
1139 |
/// \e
|
kpeter@80
|
1140 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
alpar@25
|
1141 |
};
|
alpar@25
|
1142 |
|
kpeter@305
|
1143 |
/// Returns a \c ScaleMap class
|
kpeter@305
|
1144 |
|
kpeter@305
|
1145 |
/// This function just returns a \c ScaleMap class.
|
kpeter@80
|
1146 |
///
|
kpeter@80
|
1147 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1148 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1149 |
/// <tt>v*m[x]</tt>.
|
kpeter@80
|
1150 |
///
|
kpeter@80
|
1151 |
/// \relates ScaleMap
|
kpeter@80
|
1152 |
template<typename M, typename C>
|
kpeter@80
|
1153 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
alpar@25
|
1154 |
return ScaleMap<M, C>(m,v);
|
alpar@25
|
1155 |
}
|
alpar@25
|
1156 |
|
kpeter@305
|
1157 |
/// Returns a \c ScaleWriteMap class
|
kpeter@305
|
1158 |
|
kpeter@305
|
1159 |
/// This function just returns a \c ScaleWriteMap class.
|
kpeter@80
|
1160 |
///
|
kpeter@80
|
1161 |
/// For example, if \c m is a map with \c double values and \c v is
|
kpeter@80
|
1162 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
|
kpeter@80
|
1163 |
/// <tt>v*m[x]</tt>.
|
kpeter@80
|
1164 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1165 |
///
|
kpeter@80
|
1166 |
/// \relates ScaleWriteMap
|
kpeter@80
|
1167 |
template<typename M, typename C>
|
kpeter@80
|
1168 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
alpar@25
|
1169 |
return ScaleWriteMap<M, C>(m,v);
|
alpar@25
|
1170 |
}
|
alpar@25
|
1171 |
|
alpar@25
|
1172 |
|
kpeter@80
|
1173 |
/// Negative of a map
|
alpar@25
|
1174 |
|
kpeter@82
|
1175 |
/// This \ref concepts::ReadMap "read-only map" returns the negative
|
kpeter@80
|
1176 |
/// of the values of the given map (using the unary \c - operator).
|
kpeter@80
|
1177 |
/// Its \c Key and \c Value are inherited from \c M.
|
alpar@25
|
1178 |
///
|
kpeter@80
|
1179 |
/// If M::Value is \c int, \c double etc., then
|
kpeter@80
|
1180 |
/// \code
|
kpeter@80
|
1181 |
/// NegMap<M> neg(m);
|
kpeter@80
|
1182 |
/// \endcode
|
kpeter@80
|
1183 |
/// is equivalent to
|
kpeter@80
|
1184 |
/// \code
|
kpeter@80
|
1185 |
/// ScaleMap<M> neg(m,-1);
|
kpeter@80
|
1186 |
/// \endcode
|
kpeter@29
|
1187 |
///
|
kpeter@80
|
1188 |
/// The simplest way of using this map is through the negMap()
|
kpeter@80
|
1189 |
/// function.
|
kpeter@29
|
1190 |
///
|
kpeter@80
|
1191 |
/// \sa NegWriteMap
|
kpeter@80
|
1192 |
template<typename M>
|
alpar@25
|
1193 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1194 |
const M& _m;
|
alpar@25
|
1195 |
public:
|
alpar@25
|
1196 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1197 |
typedef typename Parent::Key Key;
|
alpar@25
|
1198 |
typedef typename Parent::Value Value;
|
alpar@25
|
1199 |
|
kpeter@80
|
1200 |
/// Constructor
|
kpeter@80
|
1201 |
NegMap(const M &m) : _m(m) {}
|
alpar@25
|
1202 |
/// \e
|
kpeter@80
|
1203 |
Value operator[](const Key &k) const { return -_m[k]; }
|
alpar@25
|
1204 |
};
|
alpar@25
|
1205 |
|
kpeter@80
|
1206 |
/// Negative of a map (read-write version)
|
kpeter@80
|
1207 |
|
kpeter@80
|
1208 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
kpeter@80
|
1209 |
/// negative of the values of the given map (using the unary \c -
|
kpeter@80
|
1210 |
/// operator).
|
kpeter@80
|
1211 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1212 |
/// It makes also possible to write the map.
|
kpeter@80
|
1213 |
///
|
kpeter@80
|
1214 |
/// If M::Value is \c int, \c double etc., then
|
kpeter@80
|
1215 |
/// \code
|
kpeter@80
|
1216 |
/// NegWriteMap<M> neg(m);
|
kpeter@80
|
1217 |
/// \endcode
|
kpeter@80
|
1218 |
/// is equivalent to
|
kpeter@80
|
1219 |
/// \code
|
kpeter@80
|
1220 |
/// ScaleWriteMap<M> neg(m,-1);
|
kpeter@80
|
1221 |
/// \endcode
|
kpeter@80
|
1222 |
///
|
kpeter@80
|
1223 |
/// The simplest way of using this map is through the negWriteMap()
|
kpeter@80
|
1224 |
/// function.
|
kpeter@29
|
1225 |
///
|
kpeter@29
|
1226 |
/// \sa NegMap
|
kpeter@80
|
1227 |
template<typename M>
|
alpar@25
|
1228 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1229 |
M &_m;
|
alpar@25
|
1230 |
public:
|
alpar@25
|
1231 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1232 |
typedef typename Parent::Key Key;
|
alpar@25
|
1233 |
typedef typename Parent::Value Value;
|
alpar@25
|
1234 |
|
kpeter@80
|
1235 |
/// Constructor
|
kpeter@80
|
1236 |
NegWriteMap(M &m) : _m(m) {}
|
alpar@25
|
1237 |
/// \e
|
kpeter@80
|
1238 |
Value operator[](const Key &k) const { return -_m[k]; }
|
alpar@25
|
1239 |
/// \e
|
kpeter@80
|
1240 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
alpar@25
|
1241 |
};
|
alpar@25
|
1242 |
|
kpeter@305
|
1243 |
/// Returns a \c NegMap class
|
kpeter@305
|
1244 |
|
kpeter@305
|
1245 |
/// This function just returns a \c NegMap class.
|
kpeter@80
|
1246 |
///
|
kpeter@80
|
1247 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1248 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
kpeter@80
|
1249 |
///
|
kpeter@80
|
1250 |
/// \relates NegMap
|
kpeter@80
|
1251 |
template <typename M>
|
alpar@25
|
1252 |
inline NegMap<M> negMap(const M &m) {
|
alpar@25
|
1253 |
return NegMap<M>(m);
|
alpar@25
|
1254 |
}
|
alpar@25
|
1255 |
|
kpeter@305
|
1256 |
/// Returns a \c NegWriteMap class
|
kpeter@305
|
1257 |
|
kpeter@305
|
1258 |
/// This function just returns a \c NegWriteMap class.
|
kpeter@80
|
1259 |
///
|
kpeter@80
|
1260 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1261 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
kpeter@80
|
1262 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1263 |
///
|
kpeter@80
|
1264 |
/// \relates NegWriteMap
|
kpeter@80
|
1265 |
template <typename M>
|
kpeter@80
|
1266 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
alpar@25
|
1267 |
return NegWriteMap<M>(m);
|
alpar@25
|
1268 |
}
|
alpar@25
|
1269 |
|
alpar@25
|
1270 |
|
kpeter@80
|
1271 |
/// Absolute value of a map
|
kpeter@80
|
1272 |
|
kpeter@82
|
1273 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute
|
kpeter@80
|
1274 |
/// value of the values of the given map.
|
kpeter@80
|
1275 |
/// Its \c Key and \c Value are inherited from \c M.
|
kpeter@80
|
1276 |
/// \c Value must be comparable to \c 0 and the unary \c -
|
kpeter@80
|
1277 |
/// operator must be defined for it, of course.
|
kpeter@80
|
1278 |
///
|
kpeter@80
|
1279 |
/// The simplest way of using this map is through the absMap()
|
kpeter@80
|
1280 |
/// function.
|
kpeter@80
|
1281 |
template<typename M>
|
alpar@25
|
1282 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
kpeter@80
|
1283 |
const M &_m;
|
alpar@25
|
1284 |
public:
|
alpar@25
|
1285 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
alpar@25
|
1286 |
typedef typename Parent::Key Key;
|
alpar@25
|
1287 |
typedef typename Parent::Value Value;
|
alpar@25
|
1288 |
|
kpeter@80
|
1289 |
/// Constructor
|
kpeter@80
|
1290 |
AbsMap(const M &m) : _m(m) {}
|
alpar@25
|
1291 |
/// \e
|
kpeter@80
|
1292 |
Value operator[](const Key &k) const {
|
kpeter@80
|
1293 |
Value tmp = _m[k];
|
alpar@25
|
1294 |
return tmp >= 0 ? tmp : -tmp;
|
alpar@25
|
1295 |
}
|
alpar@25
|
1296 |
|
alpar@25
|
1297 |
};
|
alpar@25
|
1298 |
|
kpeter@305
|
1299 |
/// Returns an \c AbsMap class
|
kpeter@305
|
1300 |
|
kpeter@305
|
1301 |
/// This function just returns an \c AbsMap class.
|
kpeter@80
|
1302 |
///
|
kpeter@80
|
1303 |
/// For example, if \c m is a map with \c double values, then
|
kpeter@80
|
1304 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
|
kpeter@80
|
1305 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
|
kpeter@80
|
1306 |
/// negative.
|
kpeter@80
|
1307 |
///
|
kpeter@80
|
1308 |
/// \relates AbsMap
|
kpeter@80
|
1309 |
template<typename M>
|
alpar@25
|
1310 |
inline AbsMap<M> absMap(const M &m) {
|
alpar@25
|
1311 |
return AbsMap<M>(m);
|
alpar@25
|
1312 |
}
|
alpar@25
|
1313 |
|
kpeter@82
|
1314 |
/// @}
|
alpar@209
|
1315 |
|
kpeter@82
|
1316 |
// Logical maps and map adaptors:
|
kpeter@82
|
1317 |
|
kpeter@82
|
1318 |
/// \addtogroup maps
|
kpeter@82
|
1319 |
/// @{
|
kpeter@82
|
1320 |
|
kpeter@82
|
1321 |
/// Constant \c true map.
|
kpeter@82
|
1322 |
|
kpeter@82
|
1323 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1324 |
/// each key.
|
kpeter@82
|
1325 |
///
|
kpeter@82
|
1326 |
/// Note that
|
kpeter@82
|
1327 |
/// \code
|
kpeter@82
|
1328 |
/// TrueMap<K> tm;
|
kpeter@82
|
1329 |
/// \endcode
|
kpeter@82
|
1330 |
/// is equivalent to
|
kpeter@82
|
1331 |
/// \code
|
kpeter@82
|
1332 |
/// ConstMap<K,bool> tm(true);
|
kpeter@82
|
1333 |
/// \endcode
|
kpeter@82
|
1334 |
///
|
kpeter@82
|
1335 |
/// \sa FalseMap
|
kpeter@82
|
1336 |
/// \sa ConstMap
|
kpeter@82
|
1337 |
template <typename K>
|
kpeter@82
|
1338 |
class TrueMap : public MapBase<K, bool> {
|
kpeter@82
|
1339 |
public:
|
kpeter@82
|
1340 |
typedef MapBase<K, bool> Parent;
|
kpeter@82
|
1341 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1342 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1343 |
|
kpeter@82
|
1344 |
/// Gives back \c true.
|
kpeter@82
|
1345 |
Value operator[](const Key&) const { return true; }
|
kpeter@82
|
1346 |
};
|
kpeter@82
|
1347 |
|
kpeter@305
|
1348 |
/// Returns a \c TrueMap class
|
kpeter@305
|
1349 |
|
kpeter@305
|
1350 |
/// This function just returns a \c TrueMap class.
|
kpeter@82
|
1351 |
/// \relates TrueMap
|
kpeter@82
|
1352 |
template<typename K>
|
kpeter@82
|
1353 |
inline TrueMap<K> trueMap() {
|
kpeter@82
|
1354 |
return TrueMap<K>();
|
kpeter@82
|
1355 |
}
|
kpeter@82
|
1356 |
|
kpeter@82
|
1357 |
|
kpeter@82
|
1358 |
/// Constant \c false map.
|
kpeter@82
|
1359 |
|
kpeter@82
|
1360 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
|
kpeter@82
|
1361 |
/// each key.
|
kpeter@82
|
1362 |
///
|
kpeter@82
|
1363 |
/// Note that
|
kpeter@82
|
1364 |
/// \code
|
kpeter@82
|
1365 |
/// FalseMap<K> fm;
|
kpeter@82
|
1366 |
/// \endcode
|
kpeter@82
|
1367 |
/// is equivalent to
|
kpeter@82
|
1368 |
/// \code
|
kpeter@82
|
1369 |
/// ConstMap<K,bool> fm(false);
|
kpeter@82
|
1370 |
/// \endcode
|
kpeter@82
|
1371 |
///
|
kpeter@82
|
1372 |
/// \sa TrueMap
|
kpeter@82
|
1373 |
/// \sa ConstMap
|
kpeter@82
|
1374 |
template <typename K>
|
kpeter@82
|
1375 |
class FalseMap : public MapBase<K, bool> {
|
kpeter@82
|
1376 |
public:
|
kpeter@82
|
1377 |
typedef MapBase<K, bool> Parent;
|
kpeter@82
|
1378 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1379 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1380 |
|
kpeter@82
|
1381 |
/// Gives back \c false.
|
kpeter@82
|
1382 |
Value operator[](const Key&) const { return false; }
|
kpeter@82
|
1383 |
};
|
kpeter@82
|
1384 |
|
kpeter@305
|
1385 |
/// Returns a \c FalseMap class
|
kpeter@305
|
1386 |
|
kpeter@305
|
1387 |
/// This function just returns a \c FalseMap class.
|
kpeter@82
|
1388 |
/// \relates FalseMap
|
kpeter@82
|
1389 |
template<typename K>
|
kpeter@82
|
1390 |
inline FalseMap<K> falseMap() {
|
kpeter@82
|
1391 |
return FalseMap<K>();
|
kpeter@82
|
1392 |
}
|
kpeter@82
|
1393 |
|
kpeter@82
|
1394 |
/// @}
|
kpeter@82
|
1395 |
|
kpeter@82
|
1396 |
/// \addtogroup map_adaptors
|
kpeter@82
|
1397 |
/// @{
|
kpeter@82
|
1398 |
|
kpeter@82
|
1399 |
/// Logical 'and' of two maps
|
kpeter@82
|
1400 |
|
kpeter@82
|
1401 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@82
|
1402 |
/// 'and' of the values of the two given maps.
|
kpeter@82
|
1403 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1404 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1405 |
///
|
kpeter@82
|
1406 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1407 |
/// \code
|
kpeter@82
|
1408 |
/// AndMap<M1,M2> am(m1,m2);
|
kpeter@82
|
1409 |
/// \endcode
|
kpeter@82
|
1410 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
|
kpeter@82
|
1411 |
///
|
kpeter@82
|
1412 |
/// The simplest way of using this map is through the andMap()
|
kpeter@82
|
1413 |
/// function.
|
kpeter@82
|
1414 |
///
|
kpeter@82
|
1415 |
/// \sa OrMap
|
kpeter@82
|
1416 |
/// \sa NotMap, NotWriteMap
|
kpeter@82
|
1417 |
template<typename M1, typename M2>
|
kpeter@82
|
1418 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1419 |
const M1 &_m1;
|
kpeter@82
|
1420 |
const M2 &_m2;
|
kpeter@82
|
1421 |
public:
|
kpeter@82
|
1422 |
typedef MapBase<typename M1::Key, bool> Parent;
|
kpeter@82
|
1423 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1424 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1425 |
|
kpeter@82
|
1426 |
/// Constructor
|
kpeter@82
|
1427 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@82
|
1428 |
/// \e
|
kpeter@82
|
1429 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
kpeter@82
|
1430 |
};
|
kpeter@82
|
1431 |
|
kpeter@305
|
1432 |
/// Returns an \c AndMap class
|
kpeter@305
|
1433 |
|
kpeter@305
|
1434 |
/// This function just returns an \c AndMap class.
|
kpeter@82
|
1435 |
///
|
kpeter@82
|
1436 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
kpeter@82
|
1437 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1438 |
/// <tt>m1[x]&&m2[x]</tt>.
|
kpeter@82
|
1439 |
///
|
kpeter@82
|
1440 |
/// \relates AndMap
|
kpeter@82
|
1441 |
template<typename M1, typename M2>
|
kpeter@82
|
1442 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1443 |
return AndMap<M1, M2>(m1,m2);
|
kpeter@82
|
1444 |
}
|
kpeter@82
|
1445 |
|
kpeter@82
|
1446 |
|
kpeter@82
|
1447 |
/// Logical 'or' of two maps
|
kpeter@82
|
1448 |
|
kpeter@82
|
1449 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@82
|
1450 |
/// 'or' of the values of the two given maps.
|
kpeter@82
|
1451 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1452 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1453 |
///
|
kpeter@82
|
1454 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1455 |
/// \code
|
kpeter@82
|
1456 |
/// OrMap<M1,M2> om(m1,m2);
|
kpeter@82
|
1457 |
/// \endcode
|
kpeter@82
|
1458 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
|
kpeter@82
|
1459 |
///
|
kpeter@82
|
1460 |
/// The simplest way of using this map is through the orMap()
|
kpeter@82
|
1461 |
/// function.
|
kpeter@82
|
1462 |
///
|
kpeter@82
|
1463 |
/// \sa AndMap
|
kpeter@82
|
1464 |
/// \sa NotMap, NotWriteMap
|
kpeter@82
|
1465 |
template<typename M1, typename M2>
|
kpeter@82
|
1466 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1467 |
const M1 &_m1;
|
kpeter@82
|
1468 |
const M2 &_m2;
|
kpeter@82
|
1469 |
public:
|
kpeter@82
|
1470 |
typedef MapBase<typename M1::Key, bool> Parent;
|
kpeter@82
|
1471 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1472 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1473 |
|
kpeter@82
|
1474 |
/// Constructor
|
kpeter@82
|
1475 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@82
|
1476 |
/// \e
|
kpeter@82
|
1477 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
kpeter@82
|
1478 |
};
|
kpeter@82
|
1479 |
|
kpeter@305
|
1480 |
/// Returns an \c OrMap class
|
kpeter@305
|
1481 |
|
kpeter@305
|
1482 |
/// This function just returns an \c OrMap class.
|
kpeter@82
|
1483 |
///
|
kpeter@82
|
1484 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
kpeter@82
|
1485 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1486 |
/// <tt>m1[x]||m2[x]</tt>.
|
kpeter@82
|
1487 |
///
|
kpeter@82
|
1488 |
/// \relates OrMap
|
kpeter@82
|
1489 |
template<typename M1, typename M2>
|
kpeter@82
|
1490 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1491 |
return OrMap<M1, M2>(m1,m2);
|
kpeter@82
|
1492 |
}
|
kpeter@82
|
1493 |
|
alpar@25
|
1494 |
|
kpeter@80
|
1495 |
/// Logical 'not' of a map
|
kpeter@80
|
1496 |
|
kpeter@82
|
1497 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
kpeter@80
|
1498 |
/// negation of the values of the given map.
|
kpeter@80
|
1499 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
alpar@25
|
1500 |
///
|
kpeter@80
|
1501 |
/// The simplest way of using this map is through the notMap()
|
kpeter@80
|
1502 |
/// function.
|
alpar@25
|
1503 |
///
|
kpeter@80
|
1504 |
/// \sa NotWriteMap
|
kpeter@80
|
1505 |
template <typename M>
|
alpar@25
|
1506 |
class NotMap : public MapBase<typename M::Key, bool> {
|
kpeter@80
|
1507 |
const M &_m;
|
alpar@25
|
1508 |
public:
|
alpar@25
|
1509 |
typedef MapBase<typename M::Key, bool> Parent;
|
alpar@25
|
1510 |
typedef typename Parent::Key Key;
|
alpar@25
|
1511 |
typedef typename Parent::Value Value;
|
alpar@25
|
1512 |
|
alpar@25
|
1513 |
/// Constructor
|
kpeter@80
|
1514 |
NotMap(const M &m) : _m(m) {}
|
kpeter@80
|
1515 |
/// \e
|
kpeter@80
|
1516 |
Value operator[](const Key &k) const { return !_m[k]; }
|
alpar@25
|
1517 |
};
|
alpar@25
|
1518 |
|
kpeter@80
|
1519 |
/// Logical 'not' of a map (read-write version)
|
kpeter@80
|
1520 |
|
kpeter@80
|
1521 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
kpeter@80
|
1522 |
/// logical negation of the values of the given map.
|
kpeter@80
|
1523 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
kpeter@80
|
1524 |
/// It makes also possible to write the map. When a value is set,
|
kpeter@80
|
1525 |
/// the opposite value is set to the original map.
|
kpeter@29
|
1526 |
///
|
kpeter@80
|
1527 |
/// The simplest way of using this map is through the notWriteMap()
|
kpeter@80
|
1528 |
/// function.
|
kpeter@80
|
1529 |
///
|
kpeter@80
|
1530 |
/// \sa NotMap
|
kpeter@80
|
1531 |
template <typename M>
|
alpar@25
|
1532 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
kpeter@80
|
1533 |
M &_m;
|
alpar@25
|
1534 |
public:
|
alpar@25
|
1535 |
typedef MapBase<typename M::Key, bool> Parent;
|
alpar@25
|
1536 |
typedef typename Parent::Key Key;
|
alpar@25
|
1537 |
typedef typename Parent::Value Value;
|
alpar@25
|
1538 |
|
alpar@25
|
1539 |
/// Constructor
|
kpeter@80
|
1540 |
NotWriteMap(M &m) : _m(m) {}
|
kpeter@80
|
1541 |
/// \e
|
kpeter@80
|
1542 |
Value operator[](const Key &k) const { return !_m[k]; }
|
kpeter@80
|
1543 |
/// \e
|
kpeter@80
|
1544 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
alpar@25
|
1545 |
};
|
kpeter@80
|
1546 |
|
kpeter@305
|
1547 |
/// Returns a \c NotMap class
|
kpeter@305
|
1548 |
|
kpeter@305
|
1549 |
/// This function just returns a \c NotMap class.
|
kpeter@80
|
1550 |
///
|
kpeter@80
|
1551 |
/// For example, if \c m is a map with \c bool values, then
|
kpeter@80
|
1552 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
kpeter@80
|
1553 |
///
|
kpeter@80
|
1554 |
/// \relates NotMap
|
kpeter@80
|
1555 |
template <typename M>
|
alpar@25
|
1556 |
inline NotMap<M> notMap(const M &m) {
|
alpar@25
|
1557 |
return NotMap<M>(m);
|
alpar@25
|
1558 |
}
|
kpeter@80
|
1559 |
|
kpeter@305
|
1560 |
/// Returns a \c NotWriteMap class
|
kpeter@305
|
1561 |
|
kpeter@305
|
1562 |
/// This function just returns a \c NotWriteMap class.
|
kpeter@80
|
1563 |
///
|
kpeter@80
|
1564 |
/// For example, if \c m is a map with \c bool values, then
|
kpeter@80
|
1565 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
kpeter@80
|
1566 |
/// Moreover it makes also possible to write the map.
|
kpeter@80
|
1567 |
///
|
kpeter@80
|
1568 |
/// \relates NotWriteMap
|
kpeter@80
|
1569 |
template <typename M>
|
kpeter@80
|
1570 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
alpar@25
|
1571 |
return NotWriteMap<M>(m);
|
alpar@25
|
1572 |
}
|
alpar@25
|
1573 |
|
kpeter@82
|
1574 |
|
kpeter@82
|
1575 |
/// Combination of two maps using the \c == operator
|
kpeter@82
|
1576 |
|
kpeter@82
|
1577 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1578 |
/// the keys for which the corresponding values of the two maps are
|
kpeter@82
|
1579 |
/// equal.
|
kpeter@82
|
1580 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1581 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1582 |
///
|
kpeter@82
|
1583 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1584 |
/// \code
|
kpeter@82
|
1585 |
/// EqualMap<M1,M2> em(m1,m2);
|
kpeter@82
|
1586 |
/// \endcode
|
kpeter@82
|
1587 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
|
kpeter@82
|
1588 |
///
|
kpeter@82
|
1589 |
/// The simplest way of using this map is through the equalMap()
|
kpeter@82
|
1590 |
/// function.
|
kpeter@82
|
1591 |
///
|
kpeter@82
|
1592 |
/// \sa LessMap
|
kpeter@82
|
1593 |
template<typename M1, typename M2>
|
kpeter@82
|
1594 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1595 |
const M1 &_m1;
|
kpeter@82
|
1596 |
const M2 &_m2;
|
kpeter@82
|
1597 |
public:
|
kpeter@82
|
1598 |
typedef MapBase<typename M1::Key, bool> Parent;
|
kpeter@82
|
1599 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1600 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1601 |
|
kpeter@82
|
1602 |
/// Constructor
|
kpeter@82
|
1603 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@82
|
1604 |
/// \e
|
kpeter@82
|
1605 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
kpeter@82
|
1606 |
};
|
kpeter@82
|
1607 |
|
kpeter@305
|
1608 |
/// Returns an \c EqualMap class
|
kpeter@305
|
1609 |
|
kpeter@305
|
1610 |
/// This function just returns an \c EqualMap class.
|
kpeter@82
|
1611 |
///
|
kpeter@82
|
1612 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
kpeter@82
|
1613 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1614 |
/// <tt>m1[x]==m2[x]</tt>.
|
kpeter@82
|
1615 |
///
|
kpeter@82
|
1616 |
/// \relates EqualMap
|
kpeter@82
|
1617 |
template<typename M1, typename M2>
|
kpeter@82
|
1618 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1619 |
return EqualMap<M1, M2>(m1,m2);
|
kpeter@82
|
1620 |
}
|
kpeter@82
|
1621 |
|
kpeter@82
|
1622 |
|
kpeter@82
|
1623 |
/// Combination of two maps using the \c < operator
|
kpeter@82
|
1624 |
|
kpeter@82
|
1625 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
kpeter@82
|
1626 |
/// the keys for which the corresponding value of the first map is
|
kpeter@82
|
1627 |
/// less then the value of the second map.
|
kpeter@82
|
1628 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
kpeter@82
|
1629 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
kpeter@82
|
1630 |
///
|
kpeter@82
|
1631 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
kpeter@82
|
1632 |
/// \code
|
kpeter@82
|
1633 |
/// LessMap<M1,M2> lm(m1,m2);
|
kpeter@82
|
1634 |
/// \endcode
|
kpeter@82
|
1635 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
|
kpeter@82
|
1636 |
///
|
kpeter@82
|
1637 |
/// The simplest way of using this map is through the lessMap()
|
kpeter@82
|
1638 |
/// function.
|
kpeter@82
|
1639 |
///
|
kpeter@82
|
1640 |
/// \sa EqualMap
|
kpeter@82
|
1641 |
template<typename M1, typename M2>
|
kpeter@82
|
1642 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
kpeter@82
|
1643 |
const M1 &_m1;
|
kpeter@82
|
1644 |
const M2 &_m2;
|
kpeter@82
|
1645 |
public:
|
kpeter@82
|
1646 |
typedef MapBase<typename M1::Key, bool> Parent;
|
kpeter@82
|
1647 |
typedef typename Parent::Key Key;
|
kpeter@82
|
1648 |
typedef typename Parent::Value Value;
|
kpeter@82
|
1649 |
|
kpeter@82
|
1650 |
/// Constructor
|
kpeter@82
|
1651 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
kpeter@82
|
1652 |
/// \e
|
kpeter@82
|
1653 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
kpeter@82
|
1654 |
};
|
kpeter@82
|
1655 |
|
kpeter@305
|
1656 |
/// Returns an \c LessMap class
|
kpeter@305
|
1657 |
|
kpeter@305
|
1658 |
/// This function just returns an \c LessMap class.
|
kpeter@82
|
1659 |
///
|
kpeter@82
|
1660 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
kpeter@82
|
1661 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
|
kpeter@82
|
1662 |
/// <tt>m1[x]<m2[x]</tt>.
|
kpeter@82
|
1663 |
///
|
kpeter@82
|
1664 |
/// \relates LessMap
|
kpeter@82
|
1665 |
template<typename M1, typename M2>
|
kpeter@82
|
1666 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
kpeter@82
|
1667 |
return LessMap<M1, M2>(m1,m2);
|
kpeter@82
|
1668 |
}
|
kpeter@82
|
1669 |
|
alpar@104
|
1670 |
namespace _maps_bits {
|
alpar@104
|
1671 |
|
alpar@104
|
1672 |
template <typename _Iterator, typename Enable = void>
|
alpar@104
|
1673 |
struct IteratorTraits {
|
alpar@104
|
1674 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
alpar@104
|
1675 |
};
|
alpar@104
|
1676 |
|
alpar@104
|
1677 |
template <typename _Iterator>
|
alpar@104
|
1678 |
struct IteratorTraits<_Iterator,
|
alpar@104
|
1679 |
typename exists<typename _Iterator::container_type>::type>
|
alpar@104
|
1680 |
{
|
alpar@104
|
1681 |
typedef typename _Iterator::container_type::value_type Value;
|
alpar@104
|
1682 |
};
|
alpar@104
|
1683 |
|
alpar@104
|
1684 |
}
|
alpar@104
|
1685 |
|
kpeter@318
|
1686 |
/// @}
|
kpeter@318
|
1687 |
|
kpeter@318
|
1688 |
/// \addtogroup maps
|
kpeter@318
|
1689 |
/// @{
|
kpeter@318
|
1690 |
|
alpar@104
|
1691 |
/// \brief Writable bool map for logging each \c true assigned element
|
alpar@104
|
1692 |
///
|
kpeter@159
|
1693 |
/// A \ref concepts::WriteMap "writable" bool map for logging
|
alpar@104
|
1694 |
/// each \c true assigned element, i.e it copies subsequently each
|
alpar@104
|
1695 |
/// keys set to \c true to the given iterator.
|
kpeter@159
|
1696 |
/// The most important usage of it is storing certain nodes or arcs
|
kpeter@159
|
1697 |
/// that were marked \c true by an algorithm.
|
alpar@104
|
1698 |
///
|
kpeter@159
|
1699 |
/// There are several algorithms that provide solutions through bool
|
kpeter@159
|
1700 |
/// maps and most of them assign \c true at most once for each key.
|
kpeter@159
|
1701 |
/// In these cases it is a natural request to store each \c true
|
kpeter@159
|
1702 |
/// assigned elements (in order of the assignment), which can be
|
kpeter@167
|
1703 |
/// easily done with LoggerBoolMap.
|
kpeter@159
|
1704 |
///
|
kpeter@167
|
1705 |
/// The simplest way of using this map is through the loggerBoolMap()
|
kpeter@159
|
1706 |
/// function.
|
kpeter@159
|
1707 |
///
|
kpeter@159
|
1708 |
/// \tparam It The type of the iterator.
|
kpeter@159
|
1709 |
/// \tparam Ke The key type of the map. The default value set
|
kpeter@159
|
1710 |
/// according to the iterator type should work in most cases.
|
alpar@104
|
1711 |
///
|
alpar@104
|
1712 |
/// \note The container of the iterator must contain enough space
|
kpeter@159
|
1713 |
/// for the elements or the iterator should be an inserter iterator.
|
kpeter@159
|
1714 |
#ifdef DOXYGEN
|
kpeter@159
|
1715 |
template <typename It, typename Ke>
|
kpeter@159
|
1716 |
#else
|
alpar@104
|
1717 |
template <typename It,
|
alpar@209
|
1718 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
|
kpeter@159
|
1719 |
#endif
|
kpeter@167
|
1720 |
class LoggerBoolMap {
|
alpar@104
|
1721 |
public:
|
alpar@104
|
1722 |
typedef It Iterator;
|
alpar@104
|
1723 |
|
alpar@104
|
1724 |
typedef Ke Key;
|
alpar@104
|
1725 |
typedef bool Value;
|
alpar@104
|
1726 |
|
alpar@104
|
1727 |
/// Constructor
|
kpeter@167
|
1728 |
LoggerBoolMap(Iterator it)
|
alpar@104
|
1729 |
: _begin(it), _end(it) {}
|
alpar@104
|
1730 |
|
alpar@104
|
1731 |
/// Gives back the given iterator set for the first key
|
alpar@104
|
1732 |
Iterator begin() const {
|
alpar@104
|
1733 |
return _begin;
|
alpar@104
|
1734 |
}
|
alpar@104
|
1735 |
|
alpar@104
|
1736 |
/// Gives back the the 'after the last' iterator
|
alpar@104
|
1737 |
Iterator end() const {
|
alpar@104
|
1738 |
return _end;
|
alpar@104
|
1739 |
}
|
alpar@104
|
1740 |
|
alpar@104
|
1741 |
/// The set function of the map
|
kpeter@159
|
1742 |
void set(const Key& key, Value value) {
|
alpar@104
|
1743 |
if (value) {
|
alpar@209
|
1744 |
*_end++ = key;
|
alpar@104
|
1745 |
}
|
alpar@104
|
1746 |
}
|
alpar@104
|
1747 |
|
alpar@104
|
1748 |
private:
|
alpar@104
|
1749 |
Iterator _begin;
|
kpeter@159
|
1750 |
Iterator _end;
|
alpar@104
|
1751 |
};
|
alpar@209
|
1752 |
|
kpeter@305
|
1753 |
/// Returns a \c LoggerBoolMap class
|
kpeter@305
|
1754 |
|
kpeter@305
|
1755 |
/// This function just returns a \c LoggerBoolMap class.
|
kpeter@159
|
1756 |
///
|
kpeter@159
|
1757 |
/// The most important usage of it is storing certain nodes or arcs
|
kpeter@159
|
1758 |
/// that were marked \c true by an algorithm.
|
kpeter@159
|
1759 |
/// For example it makes easier to store the nodes in the processing
|
kpeter@159
|
1760 |
/// order of Dfs algorithm, as the following examples show.
|
kpeter@159
|
1761 |
/// \code
|
kpeter@159
|
1762 |
/// std::vector<Node> v;
|
kpeter@167
|
1763 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
|
kpeter@159
|
1764 |
/// \endcode
|
kpeter@159
|
1765 |
/// \code
|
kpeter@159
|
1766 |
/// std::vector<Node> v(countNodes(g));
|
kpeter@167
|
1767 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
|
kpeter@159
|
1768 |
/// \endcode
|
kpeter@159
|
1769 |
///
|
kpeter@159
|
1770 |
/// \note The container of the iterator must contain enough space
|
kpeter@159
|
1771 |
/// for the elements or the iterator should be an inserter iterator.
|
kpeter@159
|
1772 |
///
|
kpeter@167
|
1773 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
|
kpeter@159
|
1774 |
/// it cannot be used when a readable map is needed, for example as
|
kpeter@305
|
1775 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
|
kpeter@159
|
1776 |
///
|
kpeter@167
|
1777 |
/// \relates LoggerBoolMap
|
kpeter@159
|
1778 |
template<typename Iterator>
|
kpeter@167
|
1779 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
kpeter@167
|
1780 |
return LoggerBoolMap<Iterator>(it);
|
kpeter@159
|
1781 |
}
|
alpar@104
|
1782 |
|
kpeter@318
|
1783 |
/// @}
|
kpeter@318
|
1784 |
|
kpeter@318
|
1785 |
/// \addtogroup graph_maps
|
kpeter@318
|
1786 |
/// @{
|
kpeter@318
|
1787 |
|
deba@220
|
1788 |
/// Provides an immutable and unique id for each item in the graph.
|
deba@220
|
1789 |
|
deba@220
|
1790 |
/// The IdMap class provides a unique and immutable id for each item of the
|
deba@220
|
1791 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
|
deba@220
|
1792 |
/// different items (nodes) get different ids <li>\b immutable: the id of an
|
deba@220
|
1793 |
/// item (node) does not change (even if you delete other nodes). </ul>
|
deba@220
|
1794 |
/// Through this map you get access (i.e. can read) the inner id values of
|
deba@220
|
1795 |
/// the items stored in the graph. This map can be inverted with its member
|
deba@220
|
1796 |
/// class \c InverseMap or with the \c operator() member.
|
deba@220
|
1797 |
///
|
deba@220
|
1798 |
template <typename _Graph, typename _Item>
|
deba@220
|
1799 |
class IdMap {
|
deba@220
|
1800 |
public:
|
deba@220
|
1801 |
typedef _Graph Graph;
|
deba@220
|
1802 |
typedef int Value;
|
deba@220
|
1803 |
typedef _Item Item;
|
deba@220
|
1804 |
typedef _Item Key;
|
deba@220
|
1805 |
|
deba@220
|
1806 |
/// \brief Constructor.
|
deba@220
|
1807 |
///
|
deba@220
|
1808 |
/// Constructor of the map.
|
deba@220
|
1809 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
deba@220
|
1810 |
|
deba@220
|
1811 |
/// \brief Gives back the \e id of the item.
|
deba@220
|
1812 |
///
|
deba@220
|
1813 |
/// Gives back the immutable and unique \e id of the item.
|
deba@220
|
1814 |
int operator[](const Item& item) const { return _graph->id(item);}
|
deba@220
|
1815 |
|
deba@220
|
1816 |
/// \brief Gives back the item by its id.
|
deba@220
|
1817 |
///
|
deba@220
|
1818 |
/// Gives back the item by its id.
|
deba@220
|
1819 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
deba@220
|
1820 |
|
deba@220
|
1821 |
private:
|
deba@220
|
1822 |
const Graph* _graph;
|
deba@220
|
1823 |
|
deba@220
|
1824 |
public:
|
deba@220
|
1825 |
|
deba@220
|
1826 |
/// \brief The class represents the inverse of its owner (IdMap).
|
deba@220
|
1827 |
///
|
deba@220
|
1828 |
/// The class represents the inverse of its owner (IdMap).
|
deba@220
|
1829 |
/// \see inverse()
|
deba@220
|
1830 |
class InverseMap {
|
deba@220
|
1831 |
public:
|
deba@220
|
1832 |
|
deba@220
|
1833 |
/// \brief Constructor.
|
deba@220
|
1834 |
///
|
deba@220
|
1835 |
/// Constructor for creating an id-to-item map.
|
deba@220
|
1836 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
deba@220
|
1837 |
|
deba@220
|
1838 |
/// \brief Constructor.
|
deba@220
|
1839 |
///
|
deba@220
|
1840 |
/// Constructor for creating an id-to-item map.
|
deba@220
|
1841 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
deba@220
|
1842 |
|
deba@220
|
1843 |
/// \brief Gives back the given item from its id.
|
deba@220
|
1844 |
///
|
deba@220
|
1845 |
/// Gives back the given item from its id.
|
deba@220
|
1846 |
///
|
deba@220
|
1847 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
deba@220
|
1848 |
|
deba@220
|
1849 |
private:
|
deba@220
|
1850 |
const Graph* _graph;
|
deba@220
|
1851 |
};
|
deba@220
|
1852 |
|
deba@220
|
1853 |
/// \brief Gives back the inverse of the map.
|
deba@220
|
1854 |
///
|
deba@220
|
1855 |
/// Gives back the inverse of the IdMap.
|
deba@220
|
1856 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
deba@220
|
1857 |
|
deba@220
|
1858 |
};
|
deba@220
|
1859 |
|
deba@220
|
1860 |
/// \brief Returns the source of the given arc.
|
deba@220
|
1861 |
///
|
deba@220
|
1862 |
/// The SourceMap gives back the source Node of the given arc.
|
deba@220
|
1863 |
/// \see TargetMap
|
deba@220
|
1864 |
template <typename Digraph>
|
deba@220
|
1865 |
class SourceMap {
|
deba@220
|
1866 |
public:
|
deba@220
|
1867 |
|
deba@220
|
1868 |
typedef typename Digraph::Node Value;
|
deba@220
|
1869 |
typedef typename Digraph::Arc Key;
|
deba@220
|
1870 |
|
deba@220
|
1871 |
/// \brief Constructor
|
deba@220
|
1872 |
///
|
deba@220
|
1873 |
/// Constructor
|
kpeter@317
|
1874 |
/// \param digraph The digraph that the map belongs to.
|
deba@220
|
1875 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
|
deba@220
|
1876 |
|
deba@220
|
1877 |
/// \brief The subscript operator.
|
deba@220
|
1878 |
///
|
deba@220
|
1879 |
/// The subscript operator.
|
deba@220
|
1880 |
/// \param arc The arc
|
deba@220
|
1881 |
/// \return The source of the arc
|
deba@220
|
1882 |
Value operator[](const Key& arc) const {
|
deba@220
|
1883 |
return _digraph.source(arc);
|
deba@220
|
1884 |
}
|
deba@220
|
1885 |
|
deba@220
|
1886 |
private:
|
deba@220
|
1887 |
const Digraph& _digraph;
|
deba@220
|
1888 |
};
|
deba@220
|
1889 |
|
kpeter@305
|
1890 |
/// \brief Returns a \c SourceMap class.
|
deba@220
|
1891 |
///
|
kpeter@305
|
1892 |
/// This function just returns an \c SourceMap class.
|
deba@220
|
1893 |
/// \relates SourceMap
|
deba@220
|
1894 |
template <typename Digraph>
|
deba@220
|
1895 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
|
deba@220
|
1896 |
return SourceMap<Digraph>(digraph);
|
deba@220
|
1897 |
}
|
deba@220
|
1898 |
|
deba@220
|
1899 |
/// \brief Returns the target of the given arc.
|
deba@220
|
1900 |
///
|
deba@220
|
1901 |
/// The TargetMap gives back the target Node of the given arc.
|
deba@220
|
1902 |
/// \see SourceMap
|
deba@220
|
1903 |
template <typename Digraph>
|
deba@220
|
1904 |
class TargetMap {
|
deba@220
|
1905 |
public:
|
deba@220
|
1906 |
|
deba@220
|
1907 |
typedef typename Digraph::Node Value;
|
deba@220
|
1908 |
typedef typename Digraph::Arc Key;
|
deba@220
|
1909 |
|
deba@220
|
1910 |
/// \brief Constructor
|
deba@220
|
1911 |
///
|
deba@220
|
1912 |
/// Constructor
|
kpeter@317
|
1913 |
/// \param digraph The digraph that the map belongs to.
|
deba@220
|
1914 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
|
deba@220
|
1915 |
|
deba@220
|
1916 |
/// \brief The subscript operator.
|
deba@220
|
1917 |
///
|
deba@220
|
1918 |
/// The subscript operator.
|
deba@220
|
1919 |
/// \param e The arc
|
deba@220
|
1920 |
/// \return The target of the arc
|
deba@220
|
1921 |
Value operator[](const Key& e) const {
|
deba@220
|
1922 |
return _digraph.target(e);
|
deba@220
|
1923 |
}
|
deba@220
|
1924 |
|
deba@220
|
1925 |
private:
|
deba@220
|
1926 |
const Digraph& _digraph;
|
deba@220
|
1927 |
};
|
deba@220
|
1928 |
|
kpeter@305
|
1929 |
/// \brief Returns a \c TargetMap class.
|
deba@220
|
1930 |
///
|
kpeter@305
|
1931 |
/// This function just returns a \c TargetMap class.
|
deba@220
|
1932 |
/// \relates TargetMap
|
deba@220
|
1933 |
template <typename Digraph>
|
deba@220
|
1934 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
|
deba@220
|
1935 |
return TargetMap<Digraph>(digraph);
|
deba@220
|
1936 |
}
|
deba@220
|
1937 |
|
deba@220
|
1938 |
/// \brief Returns the "forward" directed arc view of an edge.
|
deba@220
|
1939 |
///
|
deba@220
|
1940 |
/// Returns the "forward" directed arc view of an edge.
|
deba@220
|
1941 |
/// \see BackwardMap
|
deba@220
|
1942 |
template <typename Graph>
|
deba@220
|
1943 |
class ForwardMap {
|
deba@220
|
1944 |
public:
|
deba@220
|
1945 |
|
deba@220
|
1946 |
typedef typename Graph::Arc Value;
|
deba@220
|
1947 |
typedef typename Graph::Edge Key;
|
deba@220
|
1948 |
|
deba@220
|
1949 |
/// \brief Constructor
|
deba@220
|
1950 |
///
|
deba@220
|
1951 |
/// Constructor
|
kpeter@317
|
1952 |
/// \param graph The graph that the map belongs to.
|
deba@220
|
1953 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {}
|
deba@220
|
1954 |
|
deba@220
|
1955 |
/// \brief The subscript operator.
|
deba@220
|
1956 |
///
|
deba@220
|
1957 |
/// The subscript operator.
|
deba@220
|
1958 |
/// \param key An edge
|
deba@220
|
1959 |
/// \return The "forward" directed arc view of edge
|
deba@220
|
1960 |
Value operator[](const Key& key) const {
|
deba@220
|
1961 |
return _graph.direct(key, true);
|
deba@220
|
1962 |
}
|
deba@220
|
1963 |
|
deba@220
|
1964 |
private:
|
deba@220
|
1965 |
const Graph& _graph;
|
deba@220
|
1966 |
};
|
deba@220
|
1967 |
|
kpeter@305
|
1968 |
/// \brief Returns a \c ForwardMap class.
|
deba@220
|
1969 |
///
|
kpeter@305
|
1970 |
/// This function just returns an \c ForwardMap class.
|
deba@220
|
1971 |
/// \relates ForwardMap
|
deba@220
|
1972 |
template <typename Graph>
|
deba@220
|
1973 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) {
|
deba@220
|
1974 |
return ForwardMap<Graph>(graph);
|
deba@220
|
1975 |
}
|
deba@220
|
1976 |
|
deba@220
|
1977 |
/// \brief Returns the "backward" directed arc view of an edge.
|
deba@220
|
1978 |
///
|
deba@220
|
1979 |
/// Returns the "backward" directed arc view of an edge.
|
deba@220
|
1980 |
/// \see ForwardMap
|
deba@220
|
1981 |
template <typename Graph>
|
deba@220
|
1982 |
class BackwardMap {
|
deba@220
|
1983 |
public:
|
deba@220
|
1984 |
|
deba@220
|
1985 |
typedef typename Graph::Arc Value;
|
deba@220
|
1986 |
typedef typename Graph::Edge Key;
|
deba@220
|
1987 |
|
deba@220
|
1988 |
/// \brief Constructor
|
deba@220
|
1989 |
///
|
deba@220
|
1990 |
/// Constructor
|
kpeter@317
|
1991 |
/// \param graph The graph that the map belongs to.
|
deba@220
|
1992 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {}
|
deba@220
|
1993 |
|
deba@220
|
1994 |
/// \brief The subscript operator.
|
deba@220
|
1995 |
///
|
deba@220
|
1996 |
/// The subscript operator.
|
deba@220
|
1997 |
/// \param key An edge
|
deba@220
|
1998 |
/// \return The "backward" directed arc view of edge
|
deba@220
|
1999 |
Value operator[](const Key& key) const {
|
deba@220
|
2000 |
return _graph.direct(key, false);
|
deba@220
|
2001 |
}
|
deba@220
|
2002 |
|
deba@220
|
2003 |
private:
|
deba@220
|
2004 |
const Graph& _graph;
|
deba@220
|
2005 |
};
|
deba@220
|
2006 |
|
kpeter@305
|
2007 |
/// \brief Returns a \c BackwardMap class
|
kpeter@305
|
2008 |
|
kpeter@305
|
2009 |
/// This function just returns a \c BackwardMap class.
|
deba@220
|
2010 |
/// \relates BackwardMap
|
deba@220
|
2011 |
template <typename Graph>
|
deba@220
|
2012 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) {
|
deba@220
|
2013 |
return BackwardMap<Graph>(graph);
|
deba@220
|
2014 |
}
|
deba@220
|
2015 |
|
deba@220
|
2016 |
/// \brief Potential difference map
|
deba@220
|
2017 |
///
|
deba@220
|
2018 |
/// If there is an potential map on the nodes then we
|
deba@220
|
2019 |
/// can get an arc map as we get the substraction of the
|
deba@220
|
2020 |
/// values of the target and source.
|
deba@220
|
2021 |
template <typename Digraph, typename NodeMap>
|
deba@220
|
2022 |
class PotentialDifferenceMap {
|
deba@220
|
2023 |
public:
|
deba@220
|
2024 |
typedef typename Digraph::Arc Key;
|
deba@220
|
2025 |
typedef typename NodeMap::Value Value;
|
deba@220
|
2026 |
|
deba@220
|
2027 |
/// \brief Constructor
|
deba@220
|
2028 |
///
|
deba@220
|
2029 |
/// Contructor of the map
|
deba@220
|
2030 |
explicit PotentialDifferenceMap(const Digraph& digraph,
|
deba@220
|
2031 |
const NodeMap& potential)
|
deba@220
|
2032 |
: _digraph(digraph), _potential(potential) {}
|
deba@220
|
2033 |
|
deba@220
|
2034 |
/// \brief Const subscription operator
|
deba@220
|
2035 |
///
|
deba@220
|
2036 |
/// Const subscription operator
|
deba@220
|
2037 |
Value operator[](const Key& arc) const {
|
deba@220
|
2038 |
return _potential[_digraph.target(arc)] -
|
deba@220
|
2039 |
_potential[_digraph.source(arc)];
|
deba@220
|
2040 |
}
|
deba@220
|
2041 |
|
deba@220
|
2042 |
private:
|
deba@220
|
2043 |
const Digraph& _digraph;
|
deba@220
|
2044 |
const NodeMap& _potential;
|
deba@220
|
2045 |
};
|
deba@220
|
2046 |
|
deba@220
|
2047 |
/// \brief Returns a PotentialDifferenceMap.
|
deba@220
|
2048 |
///
|
deba@220
|
2049 |
/// This function just returns a PotentialDifferenceMap.
|
deba@220
|
2050 |
/// \relates PotentialDifferenceMap
|
deba@220
|
2051 |
template <typename Digraph, typename NodeMap>
|
deba@220
|
2052 |
PotentialDifferenceMap<Digraph, NodeMap>
|
deba@220
|
2053 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
|
deba@220
|
2054 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
|
deba@220
|
2055 |
}
|
deba@220
|
2056 |
|
deba@220
|
2057 |
/// \brief Map of the node in-degrees.
|
deba@220
|
2058 |
///
|
deba@220
|
2059 |
/// This map returns the in-degree of a node. Once it is constructed,
|
deba@220
|
2060 |
/// the degrees are stored in a standard NodeMap, so each query is done
|
deba@220
|
2061 |
/// in constant time. On the other hand, the values are updated automatically
|
deba@220
|
2062 |
/// whenever the digraph changes.
|
deba@220
|
2063 |
///
|
deba@220
|
2064 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide
|
deba@220
|
2065 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap
|
deba@220
|
2066 |
/// is not guarantied if these additional features are used. For example
|
deba@220
|
2067 |
/// the functions \ref ListDigraph::changeSource() "changeSource()",
|
deba@220
|
2068 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
deba@220
|
2069 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
deba@220
|
2070 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
deba@220
|
2071 |
///
|
deba@220
|
2072 |
/// \sa OutDegMap
|
deba@220
|
2073 |
|
deba@220
|
2074 |
template <typename _Digraph>
|
deba@220
|
2075 |
class InDegMap
|
deba@220
|
2076 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
deba@220
|
2077 |
::ItemNotifier::ObserverBase {
|
deba@220
|
2078 |
|
deba@220
|
2079 |
public:
|
deba@220
|
2080 |
|
deba@220
|
2081 |
typedef _Digraph Digraph;
|
deba@220
|
2082 |
typedef int Value;
|
deba@220
|
2083 |
typedef typename Digraph::Node Key;
|
deba@220
|
2084 |
|
deba@220
|
2085 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
deba@220
|
2086 |
::ItemNotifier::ObserverBase Parent;
|
deba@220
|
2087 |
|
deba@220
|
2088 |
private:
|
deba@220
|
2089 |
|
deba@220
|
2090 |
class AutoNodeMap
|
deba@220
|
2091 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
deba@220
|
2092 |
public:
|
deba@220
|
2093 |
|
deba@220
|
2094 |
typedef typename ItemSetTraits<Digraph, Key>::
|
deba@220
|
2095 |
template Map<int>::Type Parent;
|
deba@220
|
2096 |
|
deba@220
|
2097 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
deba@220
|
2098 |
|
deba@220
|
2099 |
virtual void add(const Key& key) {
|
deba@220
|
2100 |
Parent::add(key);
|
deba@220
|
2101 |
Parent::set(key, 0);
|
deba@220
|
2102 |
}
|
deba@220
|
2103 |
|
deba@220
|
2104 |
virtual void add(const std::vector<Key>& keys) {
|
deba@220
|
2105 |
Parent::add(keys);
|
deba@220
|
2106 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@220
|
2107 |
Parent::set(keys[i], 0);
|
deba@220
|
2108 |
}
|
deba@220
|
2109 |
}
|
deba@220
|
2110 |
|
deba@220
|
2111 |
virtual void build() {
|
deba@220
|
2112 |
Parent::build();
|
deba@220
|
2113 |
Key it;
|
deba@220
|
2114 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@220
|
2115 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
2116 |
Parent::set(it, 0);
|
deba@220
|
2117 |
}
|
deba@220
|
2118 |
}
|
deba@220
|
2119 |
};
|
deba@220
|
2120 |
|
deba@220
|
2121 |
public:
|
deba@220
|
2122 |
|
deba@220
|
2123 |
/// \brief Constructor.
|
deba@220
|
2124 |
///
|
deba@220
|
2125 |
/// Constructor for creating in-degree map.
|
deba@220
|
2126 |
explicit InDegMap(const Digraph& digraph)
|
deba@220
|
2127 |
: _digraph(digraph), _deg(digraph) {
|
deba@220
|
2128 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
deba@220
|
2129 |
|
deba@220
|
2130 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2131 |
_deg[it] = countInArcs(_digraph, it);
|
deba@220
|
2132 |
}
|
deba@220
|
2133 |
}
|
deba@220
|
2134 |
|
deba@220
|
2135 |
/// Gives back the in-degree of a Node.
|
deba@220
|
2136 |
int operator[](const Key& key) const {
|
deba@220
|
2137 |
return _deg[key];
|
deba@220
|
2138 |
}
|
deba@220
|
2139 |
|
deba@220
|
2140 |
protected:
|
deba@220
|
2141 |
|
deba@220
|
2142 |
typedef typename Digraph::Arc Arc;
|
deba@220
|
2143 |
|
deba@220
|
2144 |
virtual void add(const Arc& arc) {
|
deba@220
|
2145 |
++_deg[_digraph.target(arc)];
|
deba@220
|
2146 |
}
|
deba@220
|
2147 |
|
deba@220
|
2148 |
virtual void add(const std::vector<Arc>& arcs) {
|
deba@220
|
2149 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
2150 |
++_deg[_digraph.target(arcs[i])];
|
deba@220
|
2151 |
}
|
deba@220
|
2152 |
}
|
deba@220
|
2153 |
|
deba@220
|
2154 |
virtual void erase(const Arc& arc) {
|
deba@220
|
2155 |
--_deg[_digraph.target(arc)];
|
deba@220
|
2156 |
}
|
deba@220
|
2157 |
|
deba@220
|
2158 |
virtual void erase(const std::vector<Arc>& arcs) {
|
deba@220
|
2159 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
2160 |
--_deg[_digraph.target(arcs[i])];
|
deba@220
|
2161 |
}
|
deba@220
|
2162 |
}
|
deba@220
|
2163 |
|
deba@220
|
2164 |
virtual void build() {
|
deba@220
|
2165 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2166 |
_deg[it] = countInArcs(_digraph, it);
|
deba@220
|
2167 |
}
|
deba@220
|
2168 |
}
|
deba@220
|
2169 |
|
deba@220
|
2170 |
virtual void clear() {
|
deba@220
|
2171 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2172 |
_deg[it] = 0;
|
deba@220
|
2173 |
}
|
deba@220
|
2174 |
}
|
deba@220
|
2175 |
private:
|
deba@220
|
2176 |
|
deba@220
|
2177 |
const Digraph& _digraph;
|
deba@220
|
2178 |
AutoNodeMap _deg;
|
deba@220
|
2179 |
};
|
deba@220
|
2180 |
|
deba@220
|
2181 |
/// \brief Map of the node out-degrees.
|
deba@220
|
2182 |
///
|
deba@220
|
2183 |
/// This map returns the out-degree of a node. Once it is constructed,
|
deba@220
|
2184 |
/// the degrees are stored in a standard NodeMap, so each query is done
|
deba@220
|
2185 |
/// in constant time. On the other hand, the values are updated automatically
|
deba@220
|
2186 |
/// whenever the digraph changes.
|
deba@220
|
2187 |
///
|
deba@220
|
2188 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide
|
deba@220
|
2189 |
/// alternative ways to modify the digraph. The correct behavior of OutDegMap
|
deba@220
|
2190 |
/// is not guarantied if these additional features are used. For example
|
deba@220
|
2191 |
/// the functions \ref ListDigraph::changeSource() "changeSource()",
|
deba@220
|
2192 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and
|
deba@220
|
2193 |
/// \ref ListDigraph::reverseArc() "reverseArc()"
|
deba@220
|
2194 |
/// of \ref ListDigraph will \e not update the degree values correctly.
|
deba@220
|
2195 |
///
|
deba@220
|
2196 |
/// \sa InDegMap
|
deba@220
|
2197 |
|
deba@220
|
2198 |
template <typename _Digraph>
|
deba@220
|
2199 |
class OutDegMap
|
deba@220
|
2200 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
|
deba@220
|
2201 |
::ItemNotifier::ObserverBase {
|
deba@220
|
2202 |
|
deba@220
|
2203 |
public:
|
deba@220
|
2204 |
|
deba@220
|
2205 |
typedef _Digraph Digraph;
|
deba@220
|
2206 |
typedef int Value;
|
deba@220
|
2207 |
typedef typename Digraph::Node Key;
|
deba@220
|
2208 |
|
deba@220
|
2209 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
|
deba@220
|
2210 |
::ItemNotifier::ObserverBase Parent;
|
deba@220
|
2211 |
|
deba@220
|
2212 |
private:
|
deba@220
|
2213 |
|
deba@220
|
2214 |
class AutoNodeMap
|
deba@220
|
2215 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
deba@220
|
2216 |
public:
|
deba@220
|
2217 |
|
deba@220
|
2218 |
typedef typename ItemSetTraits<Digraph, Key>::
|
deba@220
|
2219 |
template Map<int>::Type Parent;
|
deba@220
|
2220 |
|
deba@220
|
2221 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
deba@220
|
2222 |
|
deba@220
|
2223 |
virtual void add(const Key& key) {
|
deba@220
|
2224 |
Parent::add(key);
|
deba@220
|
2225 |
Parent::set(key, 0);
|
deba@220
|
2226 |
}
|
deba@220
|
2227 |
virtual void add(const std::vector<Key>& keys) {
|
deba@220
|
2228 |
Parent::add(keys);
|
deba@220
|
2229 |
for (int i = 0; i < int(keys.size()); ++i) {
|
deba@220
|
2230 |
Parent::set(keys[i], 0);
|
deba@220
|
2231 |
}
|
deba@220
|
2232 |
}
|
deba@220
|
2233 |
virtual void build() {
|
deba@220
|
2234 |
Parent::build();
|
deba@220
|
2235 |
Key it;
|
deba@220
|
2236 |
typename Parent::Notifier* nf = Parent::notifier();
|
deba@220
|
2237 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
deba@220
|
2238 |
Parent::set(it, 0);
|
deba@220
|
2239 |
}
|
deba@220
|
2240 |
}
|
deba@220
|
2241 |
};
|
deba@220
|
2242 |
|
deba@220
|
2243 |
public:
|
deba@220
|
2244 |
|
deba@220
|
2245 |
/// \brief Constructor.
|
deba@220
|
2246 |
///
|
deba@220
|
2247 |
/// Constructor for creating out-degree map.
|
deba@220
|
2248 |
explicit OutDegMap(const Digraph& digraph)
|
deba@220
|
2249 |
: _digraph(digraph), _deg(digraph) {
|
deba@220
|
2250 |
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
|
deba@220
|
2251 |
|
deba@220
|
2252 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2253 |
_deg[it] = countOutArcs(_digraph, it);
|
deba@220
|
2254 |
}
|
deba@220
|
2255 |
}
|
deba@220
|
2256 |
|
deba@220
|
2257 |
/// Gives back the out-degree of a Node.
|
deba@220
|
2258 |
int operator[](const Key& key) const {
|
deba@220
|
2259 |
return _deg[key];
|
deba@220
|
2260 |
}
|
deba@220
|
2261 |
|
deba@220
|
2262 |
protected:
|
deba@220
|
2263 |
|
deba@220
|
2264 |
typedef typename Digraph::Arc Arc;
|
deba@220
|
2265 |
|
deba@220
|
2266 |
virtual void add(const Arc& arc) {
|
deba@220
|
2267 |
++_deg[_digraph.source(arc)];
|
deba@220
|
2268 |
}
|
deba@220
|
2269 |
|
deba@220
|
2270 |
virtual void add(const std::vector<Arc>& arcs) {
|
deba@220
|
2271 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
2272 |
++_deg[_digraph.source(arcs[i])];
|
deba@220
|
2273 |
}
|
deba@220
|
2274 |
}
|
deba@220
|
2275 |
|
deba@220
|
2276 |
virtual void erase(const Arc& arc) {
|
deba@220
|
2277 |
--_deg[_digraph.source(arc)];
|
deba@220
|
2278 |
}
|
deba@220
|
2279 |
|
deba@220
|
2280 |
virtual void erase(const std::vector<Arc>& arcs) {
|
deba@220
|
2281 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
deba@220
|
2282 |
--_deg[_digraph.source(arcs[i])];
|
deba@220
|
2283 |
}
|
deba@220
|
2284 |
}
|
deba@220
|
2285 |
|
deba@220
|
2286 |
virtual void build() {
|
deba@220
|
2287 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2288 |
_deg[it] = countOutArcs(_digraph, it);
|
deba@220
|
2289 |
}
|
deba@220
|
2290 |
}
|
deba@220
|
2291 |
|
deba@220
|
2292 |
virtual void clear() {
|
deba@220
|
2293 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
deba@220
|
2294 |
_deg[it] = 0;
|
deba@220
|
2295 |
}
|
deba@220
|
2296 |
}
|
deba@220
|
2297 |
private:
|
deba@220
|
2298 |
|
deba@220
|
2299 |
const Digraph& _digraph;
|
deba@220
|
2300 |
AutoNodeMap _deg;
|
deba@220
|
2301 |
};
|
deba@220
|
2302 |
|
alpar@25
|
2303 |
/// @}
|
alpar@25
|
2304 |
}
|
alpar@25
|
2305 |
|
alpar@25
|
2306 |
#endif // LEMON_MAPS_H
|