lemon/maps.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 22 Jun 2010 15:39:26 +0200
changeset 416 bb871cb8ac06
parent 317 64f8f7cc6168
child 320 12626fc94ccf
permissions -rw-r--r--
Bug fix in (di)graphCopy() (#371)

The target graph is cleared before adding nodes and arcs/edges.
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@25
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@25
     4
 *
alpar@39
     5
 * Copyright (C) 2003-2008
alpar@25
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@25
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@25
     8
 *
alpar@25
     9
 * Permission to use, modify and distribute this software is granted
alpar@25
    10
 * provided that this copyright notice appears in all copies. For
alpar@25
    11
 * precise terms see the accompanying LICENSE file.
alpar@25
    12
 *
alpar@25
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@25
    14
 * express or implied, and with no claim as to its suitability for any
alpar@25
    15
 * purpose.
alpar@25
    16
 *
alpar@25
    17
 */
alpar@25
    18
alpar@25
    19
#ifndef LEMON_MAPS_H
alpar@25
    20
#define LEMON_MAPS_H
alpar@25
    21
alpar@25
    22
#include <iterator>
alpar@25
    23
#include <functional>
alpar@25
    24
#include <vector>
alpar@25
    25
deba@220
    26
#include <lemon/core.h>
alpar@25
    27
alpar@25
    28
///\file
alpar@25
    29
///\ingroup maps
alpar@25
    30
///\brief Miscellaneous property maps
kpeter@80
    31
alpar@25
    32
#include <map>
alpar@25
    33
alpar@25
    34
namespace lemon {
alpar@25
    35
alpar@25
    36
  /// \addtogroup maps
alpar@25
    37
  /// @{
alpar@25
    38
alpar@25
    39
  /// Base class of maps.
alpar@25
    40
kpeter@80
    41
  /// Base class of maps. It provides the necessary type definitions
kpeter@80
    42
  /// required by the map %concepts.
kpeter@80
    43
  template<typename K, typename V>
alpar@25
    44
  class MapBase {
alpar@25
    45
  public:
kpeter@317
    46
    /// \brief The key type of the map.
alpar@25
    47
    typedef K Key;
kpeter@80
    48
    /// \brief The value type of the map.
kpeter@80
    49
    /// (The type of objects associated with the keys).
kpeter@80
    50
    typedef V Value;
alpar@25
    51
  };
alpar@25
    52
kpeter@80
    53
alpar@25
    54
  /// Null map. (a.k.a. DoNothingMap)
alpar@25
    55
kpeter@29
    56
  /// This map can be used if you have to provide a map only for
kpeter@80
    57
  /// its type definitions, or if you have to provide a writable map,
kpeter@80
    58
  /// but data written to it is not required (i.e. it will be sent to
kpeter@29
    59
  /// <tt>/dev/null</tt>).
kpeter@80
    60
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@80
    61
  ///
kpeter@80
    62
  /// \sa ConstMap
kpeter@80
    63
  template<typename K, typename V>
kpeter@80
    64
  class NullMap : public MapBase<K, V> {
alpar@25
    65
  public:
kpeter@80
    66
    typedef MapBase<K, V> Parent;
alpar@25
    67
    typedef typename Parent::Key Key;
alpar@25
    68
    typedef typename Parent::Value Value;
kpeter@80
    69
alpar@25
    70
    /// Gives back a default constructed element.
kpeter@80
    71
    Value operator[](const Key&) const { return Value(); }
alpar@25
    72
    /// Absorbs the value.
kpeter@80
    73
    void set(const Key&, const Value&) {}
alpar@25
    74
  };
alpar@25
    75
kpeter@305
    76
  /// Returns a \c NullMap class
kpeter@305
    77
kpeter@305
    78
  /// This function just returns a \c NullMap class.
kpeter@80
    79
  /// \relates NullMap
kpeter@80
    80
  template <typename K, typename V>
alpar@25
    81
  NullMap<K, V> nullMap() {
alpar@25
    82
    return NullMap<K, V>();
alpar@25
    83
  }
alpar@25
    84
alpar@25
    85
alpar@25
    86
  /// Constant map.
alpar@25
    87
kpeter@82
    88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82
    89
  /// value to each key.
kpeter@80
    90
  ///
kpeter@305
    91
  /// In other aspects it is equivalent to \c NullMap.
kpeter@80
    92
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80
    93
  /// concept, but it absorbs the data written to it.
kpeter@80
    94
  ///
kpeter@80
    95
  /// The simplest way of using this map is through the constMap()
kpeter@80
    96
  /// function.
kpeter@80
    97
  ///
kpeter@80
    98
  /// \sa NullMap
kpeter@80
    99
  /// \sa IdentityMap
kpeter@80
   100
  template<typename K, typename V>
kpeter@80
   101
  class ConstMap : public MapBase<K, V> {
alpar@25
   102
  private:
kpeter@80
   103
    V _value;
alpar@25
   104
  public:
kpeter@80
   105
    typedef MapBase<K, V> Parent;
alpar@25
   106
    typedef typename Parent::Key Key;
alpar@25
   107
    typedef typename Parent::Value Value;
alpar@25
   108
alpar@25
   109
    /// Default constructor
alpar@25
   110
kpeter@29
   111
    /// Default constructor.
kpeter@80
   112
    /// The value of the map will be default constructed.
alpar@25
   113
    ConstMap() {}
kpeter@80
   114
kpeter@29
   115
    /// Constructor with specified initial value
alpar@25
   116
kpeter@29
   117
    /// Constructor with specified initial value.
kpeter@123
   118
    /// \param v The initial value of the map.
kpeter@80
   119
    ConstMap(const Value &v) : _value(v) {}
alpar@25
   120
kpeter@80
   121
    /// Gives back the specified value.
kpeter@80
   122
    Value operator[](const Key&) const { return _value; }
alpar@25
   123
kpeter@80
   124
    /// Absorbs the value.
kpeter@80
   125
    void set(const Key&, const Value&) {}
kpeter@80
   126
kpeter@80
   127
    /// Sets the value that is assigned to each key.
kpeter@80
   128
    void setAll(const Value &v) {
kpeter@80
   129
      _value = v;
kpeter@80
   130
    }
kpeter@80
   131
kpeter@80
   132
    template<typename V1>
kpeter@80
   133
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
alpar@25
   134
  };
alpar@25
   135
kpeter@305
   136
  /// Returns a \c ConstMap class
kpeter@305
   137
kpeter@305
   138
  /// This function just returns a \c ConstMap class.
kpeter@80
   139
  /// \relates ConstMap
kpeter@80
   140
  template<typename K, typename V>
alpar@25
   141
  inline ConstMap<K, V> constMap(const V &v) {
alpar@25
   142
    return ConstMap<K, V>(v);
alpar@25
   143
  }
alpar@25
   144
kpeter@123
   145
  template<typename K, typename V>
kpeter@123
   146
  inline ConstMap<K, V> constMap() {
kpeter@123
   147
    return ConstMap<K, V>();
kpeter@123
   148
  }
kpeter@123
   149
alpar@25
   150
alpar@25
   151
  template<typename T, T v>
kpeter@80
   152
  struct Const {};
alpar@25
   153
alpar@25
   154
  /// Constant map with inlined constant value.
alpar@25
   155
kpeter@82
   156
  /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82
   157
  /// value to each key.
kpeter@80
   158
  ///
kpeter@305
   159
  /// In other aspects it is equivalent to \c NullMap.
kpeter@80
   160
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80
   161
  /// concept, but it absorbs the data written to it.
kpeter@80
   162
  ///
kpeter@80
   163
  /// The simplest way of using this map is through the constMap()
kpeter@80
   164
  /// function.
kpeter@80
   165
  ///
kpeter@80
   166
  /// \sa NullMap
kpeter@80
   167
  /// \sa IdentityMap
alpar@25
   168
  template<typename K, typename V, V v>
alpar@25
   169
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
alpar@25
   170
  public:
alpar@25
   171
    typedef MapBase<K, V> Parent;
alpar@25
   172
    typedef typename Parent::Key Key;
alpar@25
   173
    typedef typename Parent::Value Value;
alpar@25
   174
kpeter@80
   175
    /// Constructor.
kpeter@80
   176
    ConstMap() {}
kpeter@80
   177
kpeter@80
   178
    /// Gives back the specified value.
kpeter@80
   179
    Value operator[](const Key&) const { return v; }
kpeter@80
   180
kpeter@80
   181
    /// Absorbs the value.
kpeter@80
   182
    void set(const Key&, const Value&) {}
alpar@25
   183
  };
alpar@25
   184
kpeter@305
   185
  /// Returns a \c ConstMap class with inlined constant value
kpeter@305
   186
kpeter@305
   187
  /// This function just returns a \c ConstMap class with inlined
kpeter@80
   188
  /// constant value.
kpeter@80
   189
  /// \relates ConstMap
kpeter@80
   190
  template<typename K, typename V, V v>
alpar@25
   191
  inline ConstMap<K, Const<V, v> > constMap() {
alpar@25
   192
    return ConstMap<K, Const<V, v> >();
alpar@25
   193
  }
alpar@25
   194
alpar@25
   195
kpeter@82
   196
  /// Identity map.
kpeter@82
   197
kpeter@82
   198
  /// This \ref concepts::ReadMap "read-only map" gives back the given
kpeter@82
   199
  /// key as value without any modification.
kpeter@80
   200
  ///
kpeter@80
   201
  /// \sa ConstMap
kpeter@80
   202
  template <typename T>
kpeter@80
   203
  class IdentityMap : public MapBase<T, T> {
kpeter@80
   204
  public:
kpeter@80
   205
    typedef MapBase<T, T> Parent;
kpeter@80
   206
    typedef typename Parent::Key Key;
kpeter@80
   207
    typedef typename Parent::Value Value;
kpeter@80
   208
kpeter@80
   209
    /// Gives back the given value without any modification.
kpeter@82
   210
    Value operator[](const Key &k) const {
kpeter@82
   211
      return k;
kpeter@80
   212
    }
kpeter@80
   213
  };
kpeter@80
   214
kpeter@305
   215
  /// Returns an \c IdentityMap class
kpeter@305
   216
kpeter@305
   217
  /// This function just returns an \c IdentityMap class.
kpeter@80
   218
  /// \relates IdentityMap
kpeter@80
   219
  template<typename T>
kpeter@80
   220
  inline IdentityMap<T> identityMap() {
kpeter@80
   221
    return IdentityMap<T>();
kpeter@80
   222
  }
kpeter@80
   223
kpeter@80
   224
kpeter@80
   225
  /// \brief Map for storing values for integer keys from the range
kpeter@80
   226
  /// <tt>[0..size-1]</tt>.
kpeter@80
   227
  ///
kpeter@80
   228
  /// This map is essentially a wrapper for \c std::vector. It assigns
kpeter@80
   229
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
kpeter@80
   230
  /// It can be used with some data structures, for example
kpeter@305
   231
  /// \c UnionFind, \c BinHeap, when the used items are small
kpeter@80
   232
  /// integers. This map conforms the \ref concepts::ReferenceMap
kpeter@80
   233
  /// "ReferenceMap" concept.
kpeter@80
   234
  ///
kpeter@80
   235
  /// The simplest way of using this map is through the rangeMap()
kpeter@80
   236
  /// function.
kpeter@80
   237
  template <typename V>
kpeter@80
   238
  class RangeMap : public MapBase<int, V> {
kpeter@80
   239
    template <typename V1>
kpeter@80
   240
    friend class RangeMap;
kpeter@80
   241
  private:
kpeter@80
   242
kpeter@80
   243
    typedef std::vector<V> Vector;
kpeter@80
   244
    Vector _vector;
kpeter@80
   245
alpar@25
   246
  public:
alpar@25
   247
kpeter@80
   248
    typedef MapBase<int, V> Parent;
kpeter@80
   249
    /// Key type
kpeter@45
   250
    typedef typename Parent::Key Key;
kpeter@80
   251
    /// Value type
kpeter@45
   252
    typedef typename Parent::Value Value;
kpeter@80
   253
    /// Reference type
kpeter@80
   254
    typedef typename Vector::reference Reference;
kpeter@80
   255
    /// Const reference type
kpeter@80
   256
    typedef typename Vector::const_reference ConstReference;
kpeter@80
   257
kpeter@80
   258
    typedef True ReferenceMapTag;
kpeter@80
   259
kpeter@80
   260
  public:
kpeter@80
   261
kpeter@80
   262
    /// Constructor with specified default value.
kpeter@80
   263
    RangeMap(int size = 0, const Value &value = Value())
kpeter@80
   264
      : _vector(size, value) {}
kpeter@80
   265
kpeter@80
   266
    /// Constructs the map from an appropriate \c std::vector.
kpeter@80
   267
    template <typename V1>
kpeter@80
   268
    RangeMap(const std::vector<V1>& vector)
kpeter@80
   269
      : _vector(vector.begin(), vector.end()) {}
kpeter@80
   270
kpeter@305
   271
    /// Constructs the map from another \c RangeMap.
kpeter@80
   272
    template <typename V1>
kpeter@80
   273
    RangeMap(const RangeMap<V1> &c)
kpeter@80
   274
      : _vector(c._vector.begin(), c._vector.end()) {}
kpeter@80
   275
kpeter@80
   276
    /// Returns the size of the map.
kpeter@80
   277
    int size() {
kpeter@80
   278
      return _vector.size();
kpeter@80
   279
    }
kpeter@80
   280
kpeter@80
   281
    /// Resizes the map.
kpeter@80
   282
kpeter@80
   283
    /// Resizes the underlying \c std::vector container, so changes the
kpeter@80
   284
    /// keyset of the map.
kpeter@80
   285
    /// \param size The new size of the map. The new keyset will be the
kpeter@80
   286
    /// range <tt>[0..size-1]</tt>.
kpeter@80
   287
    /// \param value The default value to assign to the new keys.
kpeter@80
   288
    void resize(int size, const Value &value = Value()) {
kpeter@80
   289
      _vector.resize(size, value);
kpeter@80
   290
    }
kpeter@80
   291
kpeter@80
   292
  private:
kpeter@80
   293
kpeter@80
   294
    RangeMap& operator=(const RangeMap&);
kpeter@80
   295
kpeter@80
   296
  public:
kpeter@80
   297
kpeter@80
   298
    ///\e
kpeter@80
   299
    Reference operator[](const Key &k) {
kpeter@80
   300
      return _vector[k];
kpeter@80
   301
    }
kpeter@80
   302
kpeter@80
   303
    ///\e
kpeter@80
   304
    ConstReference operator[](const Key &k) const {
kpeter@80
   305
      return _vector[k];
kpeter@80
   306
    }
kpeter@80
   307
kpeter@80
   308
    ///\e
kpeter@80
   309
    void set(const Key &k, const Value &v) {
kpeter@80
   310
      _vector[k] = v;
kpeter@80
   311
    }
kpeter@80
   312
  };
kpeter@80
   313
kpeter@305
   314
  /// Returns a \c RangeMap class
kpeter@305
   315
kpeter@305
   316
  /// This function just returns a \c RangeMap class.
kpeter@80
   317
  /// \relates RangeMap
kpeter@80
   318
  template<typename V>
kpeter@80
   319
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
kpeter@80
   320
    return RangeMap<V>(size, value);
kpeter@80
   321
  }
kpeter@80
   322
kpeter@305
   323
  /// \brief Returns a \c RangeMap class created from an appropriate
kpeter@80
   324
  /// \c std::vector
kpeter@80
   325
kpeter@305
   326
  /// This function just returns a \c RangeMap class created from an
kpeter@80
   327
  /// appropriate \c std::vector.
kpeter@80
   328
  /// \relates RangeMap
kpeter@80
   329
  template<typename V>
kpeter@80
   330
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
kpeter@80
   331
    return RangeMap<V>(vector);
kpeter@80
   332
  }
kpeter@80
   333
kpeter@80
   334
kpeter@80
   335
  /// Map type based on \c std::map
kpeter@80
   336
kpeter@80
   337
  /// This map is essentially a wrapper for \c std::map with addition
kpeter@80
   338
  /// that you can specify a default value for the keys that are not
kpeter@80
   339
  /// stored actually. This value can be different from the default
kpeter@80
   340
  /// contructed value (i.e. \c %Value()).
kpeter@80
   341
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
kpeter@80
   342
  /// concept.
kpeter@80
   343
  ///
kpeter@80
   344
  /// This map is useful if a default value should be assigned to most of
kpeter@80
   345
  /// the keys and different values should be assigned only to a few
kpeter@80
   346
  /// keys (i.e. the map is "sparse").
kpeter@80
   347
  /// The name of this type also refers to this important usage.
kpeter@80
   348
  ///
kpeter@80
   349
  /// Apart form that this map can be used in many other cases since it
kpeter@80
   350
  /// is based on \c std::map, which is a general associative container.
kpeter@80
   351
  /// However keep in mind that it is usually not as efficient as other
kpeter@80
   352
  /// maps.
kpeter@80
   353
  ///
kpeter@80
   354
  /// The simplest way of using this map is through the sparseMap()
kpeter@80
   355
  /// function.
kpeter@80
   356
  template <typename K, typename V, typename Compare = std::less<K> >
kpeter@80
   357
  class SparseMap : public MapBase<K, V> {
kpeter@80
   358
    template <typename K1, typename V1, typename C1>
kpeter@80
   359
    friend class SparseMap;
kpeter@80
   360
  public:
kpeter@80
   361
kpeter@80
   362
    typedef MapBase<K, V> Parent;
kpeter@80
   363
    /// Key type
kpeter@80
   364
    typedef typename Parent::Key Key;
kpeter@80
   365
    /// Value type
kpeter@80
   366
    typedef typename Parent::Value Value;
kpeter@80
   367
    /// Reference type
kpeter@80
   368
    typedef Value& Reference;
kpeter@80
   369
    /// Const reference type
kpeter@80
   370
    typedef const Value& ConstReference;
alpar@25
   371
kpeter@45
   372
    typedef True ReferenceMapTag;
kpeter@45
   373
alpar@25
   374
  private:
kpeter@80
   375
kpeter@80
   376
    typedef std::map<K, V, Compare> Map;
kpeter@80
   377
    Map _map;
alpar@25
   378
    Value _value;
alpar@25
   379
alpar@25
   380
  public:
alpar@25
   381
kpeter@80
   382
    /// \brief Constructor with specified default value.
kpeter@80
   383
    SparseMap(const Value &value = Value()) : _value(value) {}
kpeter@80
   384
    /// \brief Constructs the map from an appropriate \c std::map, and
kpeter@47
   385
    /// explicitly specifies a default value.
kpeter@80
   386
    template <typename V1, typename Comp1>
kpeter@80
   387
    SparseMap(const std::map<Key, V1, Comp1> &map,
kpeter@80
   388
              const Value &value = Value())
alpar@25
   389
      : _map(map.begin(), map.end()), _value(value) {}
kpeter@80
   390
kpeter@305
   391
    /// \brief Constructs the map from another \c SparseMap.
kpeter@80
   392
    template<typename V1, typename Comp1>
kpeter@80
   393
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
alpar@25
   394
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
alpar@25
   395
alpar@25
   396
  private:
alpar@25
   397
kpeter@80
   398
    SparseMap& operator=(const SparseMap&);
alpar@25
   399
alpar@25
   400
  public:
alpar@25
   401
alpar@25
   402
    ///\e
alpar@25
   403
    Reference operator[](const Key &k) {
alpar@25
   404
      typename Map::iterator it = _map.lower_bound(k);
alpar@25
   405
      if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209
   406
        return it->second;
alpar@25
   407
      else
alpar@209
   408
        return _map.insert(it, std::make_pair(k, _value))->second;
alpar@25
   409
    }
alpar@25
   410
kpeter@80
   411
    ///\e
alpar@25
   412
    ConstReference operator[](const Key &k) const {
alpar@25
   413
      typename Map::const_iterator it = _map.find(k);
alpar@25
   414
      if (it != _map.end())
alpar@209
   415
        return it->second;
alpar@25
   416
      else
alpar@209
   417
        return _value;
alpar@25
   418
    }
alpar@25
   419
kpeter@80
   420
    ///\e
kpeter@80
   421
    void set(const Key &k, const Value &v) {
alpar@25
   422
      typename Map::iterator it = _map.lower_bound(k);
alpar@25
   423
      if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209
   424
        it->second = v;
alpar@25
   425
      else
alpar@209
   426
        _map.insert(it, std::make_pair(k, v));
alpar@25
   427
    }
alpar@25
   428
kpeter@80
   429
    ///\e
kpeter@80
   430
    void setAll(const Value &v) {
kpeter@80
   431
      _value = v;
alpar@25
   432
      _map.clear();
kpeter@80
   433
    }
kpeter@80
   434
  };
alpar@25
   435
kpeter@305
   436
  /// Returns a \c SparseMap class
kpeter@305
   437
kpeter@305
   438
  /// This function just returns a \c SparseMap class with specified
kpeter@80
   439
  /// default value.
kpeter@80
   440
  /// \relates SparseMap
kpeter@80
   441
  template<typename K, typename V, typename Compare>
kpeter@80
   442
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
kpeter@80
   443
    return SparseMap<K, V, Compare>(value);
kpeter@54
   444
  }
kpeter@45
   445
kpeter@80
   446
  template<typename K, typename V>
kpeter@80
   447
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
kpeter@80
   448
    return SparseMap<K, V, std::less<K> >(value);
kpeter@45
   449
  }
alpar@25
   450
kpeter@305
   451
  /// \brief Returns a \c SparseMap class created from an appropriate
kpeter@80
   452
  /// \c std::map
alpar@25
   453
kpeter@305
   454
  /// This function just returns a \c SparseMap class created from an
kpeter@80
   455
  /// appropriate \c std::map.
kpeter@80
   456
  /// \relates SparseMap
kpeter@80
   457
  template<typename K, typename V, typename Compare>
kpeter@80
   458
  inline SparseMap<K, V, Compare>
kpeter@80
   459
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
kpeter@80
   460
  {
kpeter@80
   461
    return SparseMap<K, V, Compare>(map, value);
kpeter@45
   462
  }
alpar@25
   463
alpar@25
   464
  /// @}
alpar@25
   465
alpar@25
   466
  /// \addtogroup map_adaptors
alpar@25
   467
  /// @{
alpar@25
   468
kpeter@80
   469
  /// Composition of two maps
kpeter@80
   470
kpeter@82
   471
  /// This \ref concepts::ReadMap "read-only map" returns the
kpeter@80
   472
  /// composition of two given maps. That is to say, if \c m1 is of
kpeter@80
   473
  /// type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   474
  /// \code
kpeter@80
   475
  ///   ComposeMap<M1, M2> cm(m1,m2);
kpeter@80
   476
  /// \endcode
kpeter@80
   477
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
alpar@25
   478
  ///
kpeter@80
   479
  /// The \c Key type of the map is inherited from \c M2 and the
kpeter@80
   480
  /// \c Value type is from \c M1.
kpeter@80
   481
  /// \c M2::Value must be convertible to \c M1::Key.
kpeter@80
   482
  ///
kpeter@80
   483
  /// The simplest way of using this map is through the composeMap()
kpeter@80
   484
  /// function.
kpeter@80
   485
  ///
kpeter@80
   486
  /// \sa CombineMap
kpeter@80
   487
  template <typename M1, typename M2>
kpeter@80
   488
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
kpeter@80
   489
    const M1 &_m1;
kpeter@80
   490
    const M2 &_m2;
alpar@25
   491
  public:
kpeter@80
   492
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
alpar@25
   493
    typedef typename Parent::Key Key;
alpar@25
   494
    typedef typename Parent::Value Value;
alpar@25
   495
kpeter@80
   496
    /// Constructor
kpeter@80
   497
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   498
alpar@25
   499
    /// \e
kpeter@80
   500
    typename MapTraits<M1>::ConstReturnValue
kpeter@80
   501
    operator[](const Key &k) const { return _m1[_m2[k]]; }
alpar@25
   502
  };
alpar@25
   503
kpeter@305
   504
  /// Returns a \c ComposeMap class
kpeter@305
   505
kpeter@305
   506
  /// This function just returns a \c ComposeMap class.
kpeter@80
   507
  ///
kpeter@80
   508
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
kpeter@80
   509
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
kpeter@80
   510
  /// will be equal to <tt>m1[m2[x]]</tt>.
kpeter@80
   511
  ///
kpeter@80
   512
  /// \relates ComposeMap
kpeter@80
   513
  template <typename M1, typename M2>
kpeter@80
   514
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
kpeter@80
   515
    return ComposeMap<M1, M2>(m1, m2);
alpar@25
   516
  }
alpar@25
   517
kpeter@80
   518
kpeter@80
   519
  /// Combination of two maps using an STL (binary) functor.
kpeter@80
   520
kpeter@82
   521
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
kpeter@80
   522
  /// binary functor and returns the combination of the two given maps
kpeter@80
   523
  /// using the functor.
kpeter@80
   524
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
kpeter@80
   525
  /// and \c f is of \c F, then for
kpeter@80
   526
  /// \code
kpeter@80
   527
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
kpeter@80
   528
  /// \endcode
kpeter@80
   529
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
alpar@26
   530
  ///
kpeter@80
   531
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
kpeter@80
   532
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
kpeter@80
   533
  /// \c M2::Value and \c M1::Value must be convertible to the
kpeter@80
   534
  /// corresponding input parameter of \c F and the return type of \c F
kpeter@80
   535
  /// must be convertible to \c V.
kpeter@80
   536
  ///
kpeter@80
   537
  /// The simplest way of using this map is through the combineMap()
kpeter@80
   538
  /// function.
kpeter@80
   539
  ///
kpeter@80
   540
  /// \sa ComposeMap
kpeter@80
   541
  template<typename M1, typename M2, typename F,
alpar@209
   542
           typename V = typename F::result_type>
kpeter@80
   543
  class CombineMap : public MapBase<typename M1::Key, V> {
kpeter@80
   544
    const M1 &_m1;
kpeter@80
   545
    const M2 &_m2;
kpeter@80
   546
    F _f;
alpar@25
   547
  public:
kpeter@80
   548
    typedef MapBase<typename M1::Key, V> Parent;
alpar@25
   549
    typedef typename Parent::Key Key;
alpar@25
   550
    typedef typename Parent::Value Value;
alpar@25
   551
kpeter@80
   552
    /// Constructor
kpeter@80
   553
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
kpeter@80
   554
      : _m1(m1), _m2(m2), _f(f) {}
kpeter@80
   555
    /// \e
kpeter@80
   556
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
kpeter@80
   557
  };
alpar@25
   558
kpeter@305
   559
  /// Returns a \c CombineMap class
kpeter@305
   560
kpeter@305
   561
  /// This function just returns a \c CombineMap class.
kpeter@80
   562
  ///
kpeter@80
   563
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   564
  /// values, then
kpeter@80
   565
  /// \code
kpeter@80
   566
  ///   combineMap(m1,m2,std::plus<double>())
kpeter@80
   567
  /// \endcode
kpeter@80
   568
  /// is equivalent to
kpeter@80
   569
  /// \code
kpeter@80
   570
  ///   addMap(m1,m2)
kpeter@80
   571
  /// \endcode
kpeter@80
   572
  ///
kpeter@80
   573
  /// This function is specialized for adaptable binary function
kpeter@80
   574
  /// classes and C++ functions.
kpeter@80
   575
  ///
kpeter@80
   576
  /// \relates CombineMap
kpeter@80
   577
  template<typename M1, typename M2, typename F, typename V>
kpeter@80
   578
  inline CombineMap<M1, M2, F, V>
kpeter@80
   579
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80
   580
    return CombineMap<M1, M2, F, V>(m1,m2,f);
alpar@25
   581
  }
alpar@25
   582
kpeter@80
   583
  template<typename M1, typename M2, typename F>
kpeter@80
   584
  inline CombineMap<M1, M2, F, typename F::result_type>
kpeter@80
   585
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80
   586
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
kpeter@80
   587
  }
alpar@25
   588
kpeter@80
   589
  template<typename M1, typename M2, typename K1, typename K2, typename V>
kpeter@80
   590
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
kpeter@80
   591
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
kpeter@80
   592
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
kpeter@80
   593
  }
kpeter@80
   594
kpeter@80
   595
kpeter@80
   596
  /// Converts an STL style (unary) functor to a map
kpeter@80
   597
kpeter@82
   598
  /// This \ref concepts::ReadMap "read-only map" returns the value
kpeter@80
   599
  /// of a given functor. Actually, it just wraps the functor and
kpeter@80
   600
  /// provides the \c Key and \c Value typedefs.
alpar@26
   601
  ///
kpeter@80
   602
  /// Template parameters \c K and \c V will become its \c Key and
kpeter@80
   603
  /// \c Value. In most cases they have to be given explicitly because
kpeter@80
   604
  /// a functor typically does not provide \c argument_type and
kpeter@80
   605
  /// \c result_type typedefs.
kpeter@80
   606
  /// Parameter \c F is the type of the used functor.
kpeter@29
   607
  ///
kpeter@80
   608
  /// The simplest way of using this map is through the functorToMap()
kpeter@80
   609
  /// function.
kpeter@80
   610
  ///
kpeter@80
   611
  /// \sa MapToFunctor
kpeter@80
   612
  template<typename F,
alpar@209
   613
           typename K = typename F::argument_type,
alpar@209
   614
           typename V = typename F::result_type>
kpeter@80
   615
  class FunctorToMap : public MapBase<K, V> {
kpeter@123
   616
    F _f;
kpeter@80
   617
  public:
kpeter@80
   618
    typedef MapBase<K, V> Parent;
kpeter@80
   619
    typedef typename Parent::Key Key;
kpeter@80
   620
    typedef typename Parent::Value Value;
alpar@25
   621
kpeter@80
   622
    /// Constructor
kpeter@80
   623
    FunctorToMap(const F &f = F()) : _f(f) {}
kpeter@80
   624
    /// \e
kpeter@80
   625
    Value operator[](const Key &k) const { return _f(k); }
kpeter@80
   626
  };
kpeter@80
   627
kpeter@305
   628
  /// Returns a \c FunctorToMap class
kpeter@305
   629
kpeter@305
   630
  /// This function just returns a \c FunctorToMap class.
kpeter@80
   631
  ///
kpeter@80
   632
  /// This function is specialized for adaptable binary function
kpeter@80
   633
  /// classes and C++ functions.
kpeter@80
   634
  ///
kpeter@80
   635
  /// \relates FunctorToMap
kpeter@80
   636
  template<typename K, typename V, typename F>
kpeter@80
   637
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
kpeter@80
   638
    return FunctorToMap<F, K, V>(f);
kpeter@80
   639
  }
kpeter@80
   640
kpeter@80
   641
  template <typename F>
kpeter@80
   642
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
kpeter@80
   643
    functorToMap(const F &f)
kpeter@80
   644
  {
kpeter@80
   645
    return FunctorToMap<F, typename F::argument_type,
kpeter@80
   646
      typename F::result_type>(f);
kpeter@80
   647
  }
kpeter@80
   648
kpeter@80
   649
  template <typename K, typename V>
kpeter@80
   650
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
kpeter@80
   651
    return FunctorToMap<V (*)(K), K, V>(f);
kpeter@80
   652
  }
kpeter@80
   653
kpeter@80
   654
kpeter@80
   655
  /// Converts a map to an STL style (unary) functor
kpeter@80
   656
kpeter@80
   657
  /// This class converts a map to an STL style (unary) functor.
kpeter@80
   658
  /// That is it provides an <tt>operator()</tt> to read its values.
kpeter@80
   659
  ///
kpeter@80
   660
  /// For the sake of convenience it also works as a usual
kpeter@80
   661
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
kpeter@80
   662
  /// and the \c Key and \c Value typedefs also exist.
kpeter@80
   663
  ///
kpeter@80
   664
  /// The simplest way of using this map is through the mapToFunctor()
kpeter@80
   665
  /// function.
kpeter@80
   666
  ///
kpeter@80
   667
  ///\sa FunctorToMap
kpeter@80
   668
  template <typename M>
kpeter@80
   669
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
   670
    const M &_m;
alpar@25
   671
  public:
alpar@25
   672
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
   673
    typedef typename Parent::Key Key;
alpar@25
   674
    typedef typename Parent::Value Value;
alpar@25
   675
kpeter@80
   676
    typedef typename Parent::Key argument_type;
kpeter@80
   677
    typedef typename Parent::Value result_type;
kpeter@80
   678
kpeter@80
   679
    /// Constructor
kpeter@80
   680
    MapToFunctor(const M &m) : _m(m) {}
kpeter@80
   681
    /// \e
kpeter@80
   682
    Value operator()(const Key &k) const { return _m[k]; }
kpeter@80
   683
    /// \e
kpeter@80
   684
    Value operator[](const Key &k) const { return _m[k]; }
alpar@25
   685
  };
kpeter@45
   686
kpeter@305
   687
  /// Returns a \c MapToFunctor class
kpeter@305
   688
kpeter@305
   689
  /// This function just returns a \c MapToFunctor class.
kpeter@80
   690
  /// \relates MapToFunctor
kpeter@45
   691
  template<typename M>
kpeter@80
   692
  inline MapToFunctor<M> mapToFunctor(const M &m) {
kpeter@80
   693
    return MapToFunctor<M>(m);
kpeter@45
   694
  }
alpar@25
   695
alpar@25
   696
kpeter@80
   697
  /// \brief Map adaptor to convert the \c Value type of a map to
kpeter@80
   698
  /// another type using the default conversion.
kpeter@80
   699
kpeter@80
   700
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
kpeter@80
   701
  /// "readable map" to another type using the default conversion.
kpeter@80
   702
  /// The \c Key type of it is inherited from \c M and the \c Value
kpeter@80
   703
  /// type is \c V.
kpeter@80
   704
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
alpar@26
   705
  ///
kpeter@80
   706
  /// The simplest way of using this map is through the convertMap()
kpeter@80
   707
  /// function.
kpeter@80
   708
  template <typename M, typename V>
kpeter@80
   709
  class ConvertMap : public MapBase<typename M::Key, V> {
kpeter@80
   710
    const M &_m;
kpeter@80
   711
  public:
kpeter@80
   712
    typedef MapBase<typename M::Key, V> Parent;
kpeter@80
   713
    typedef typename Parent::Key Key;
kpeter@80
   714
    typedef typename Parent::Value Value;
kpeter@80
   715
kpeter@80
   716
    /// Constructor
kpeter@80
   717
kpeter@80
   718
    /// Constructor.
kpeter@80
   719
    /// \param m The underlying map.
kpeter@80
   720
    ConvertMap(const M &m) : _m(m) {}
kpeter@80
   721
kpeter@80
   722
    /// \e
kpeter@80
   723
    Value operator[](const Key &k) const { return _m[k]; }
kpeter@80
   724
  };
kpeter@80
   725
kpeter@305
   726
  /// Returns a \c ConvertMap class
kpeter@305
   727
kpeter@305
   728
  /// This function just returns a \c ConvertMap class.
kpeter@80
   729
  /// \relates ConvertMap
kpeter@80
   730
  template<typename V, typename M>
kpeter@80
   731
  inline ConvertMap<M, V> convertMap(const M &map) {
kpeter@80
   732
    return ConvertMap<M, V>(map);
kpeter@80
   733
  }
kpeter@80
   734
kpeter@80
   735
kpeter@80
   736
  /// Applies all map setting operations to two maps
kpeter@80
   737
kpeter@80
   738
  /// This map has two \ref concepts::WriteMap "writable map" parameters
kpeter@80
   739
  /// and each write request will be passed to both of them.
kpeter@80
   740
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
kpeter@80
   741
  /// operations will return the corresponding values of \c M1.
kpeter@29
   742
  ///
kpeter@80
   743
  /// The \c Key and \c Value types are inherited from \c M1.
kpeter@80
   744
  /// The \c Key and \c Value of \c M2 must be convertible from those
kpeter@80
   745
  /// of \c M1.
kpeter@80
   746
  ///
kpeter@80
   747
  /// The simplest way of using this map is through the forkMap()
kpeter@80
   748
  /// function.
kpeter@80
   749
  template<typename  M1, typename M2>
kpeter@80
   750
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   751
    M1 &_m1;
kpeter@80
   752
    M2 &_m2;
kpeter@80
   753
  public:
kpeter@80
   754
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   755
    typedef typename Parent::Key Key;
kpeter@80
   756
    typedef typename Parent::Value Value;
alpar@25
   757
kpeter@80
   758
    /// Constructor
kpeter@80
   759
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   760
    /// Returns the value associated with the given key in the first map.
kpeter@80
   761
    Value operator[](const Key &k) const { return _m1[k]; }
kpeter@80
   762
    /// Sets the value associated with the given key in both maps.
kpeter@80
   763
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
kpeter@80
   764
  };
kpeter@80
   765
kpeter@305
   766
  /// Returns a \c ForkMap class
kpeter@305
   767
kpeter@305
   768
  /// This function just returns a \c ForkMap class.
kpeter@80
   769
  /// \relates ForkMap
kpeter@80
   770
  template <typename M1, typename M2>
kpeter@80
   771
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
kpeter@80
   772
    return ForkMap<M1,M2>(m1,m2);
kpeter@80
   773
  }
kpeter@80
   774
kpeter@80
   775
kpeter@80
   776
  /// Sum of two maps
kpeter@80
   777
kpeter@82
   778
  /// This \ref concepts::ReadMap "read-only map" returns the sum
kpeter@80
   779
  /// of the values of the two given maps.
kpeter@80
   780
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   781
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   782
  /// \c M1.
kpeter@80
   783
  ///
kpeter@80
   784
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   785
  /// \code
kpeter@80
   786
  ///   AddMap<M1,M2> am(m1,m2);
kpeter@80
   787
  /// \endcode
kpeter@80
   788
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
kpeter@80
   789
  ///
kpeter@80
   790
  /// The simplest way of using this map is through the addMap()
kpeter@80
   791
  /// function.
kpeter@80
   792
  ///
kpeter@80
   793
  /// \sa SubMap, MulMap, DivMap
kpeter@80
   794
  /// \sa ShiftMap, ShiftWriteMap
kpeter@80
   795
  template<typename M1, typename M2>
alpar@25
   796
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   797
    const M1 &_m1;
kpeter@80
   798
    const M2 &_m2;
alpar@25
   799
  public:
alpar@25
   800
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
alpar@25
   801
    typedef typename Parent::Key Key;
alpar@25
   802
    typedef typename Parent::Value Value;
alpar@25
   803
kpeter@80
   804
    /// Constructor
kpeter@80
   805
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   806
    /// \e
kpeter@80
   807
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
alpar@25
   808
  };
alpar@25
   809
kpeter@305
   810
  /// Returns an \c AddMap class
kpeter@305
   811
kpeter@305
   812
  /// This function just returns an \c AddMap class.
alpar@25
   813
  ///
kpeter@80
   814
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   815
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   816
  /// <tt>m1[x]+m2[x]</tt>.
kpeter@80
   817
  ///
kpeter@80
   818
  /// \relates AddMap
kpeter@80
   819
  template<typename M1, typename M2>
kpeter@80
   820
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
alpar@25
   821
    return AddMap<M1, M2>(m1,m2);
alpar@25
   822
  }
alpar@25
   823
alpar@25
   824
kpeter@80
   825
  /// Difference of two maps
kpeter@80
   826
kpeter@82
   827
  /// This \ref concepts::ReadMap "read-only map" returns the difference
kpeter@80
   828
  /// of the values of the two given maps.
kpeter@80
   829
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   830
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   831
  /// \c M1.
alpar@25
   832
  ///
kpeter@80
   833
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   834
  /// \code
kpeter@80
   835
  ///   SubMap<M1,M2> sm(m1,m2);
kpeter@80
   836
  /// \endcode
kpeter@80
   837
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
kpeter@29
   838
  ///
kpeter@80
   839
  /// The simplest way of using this map is through the subMap()
kpeter@80
   840
  /// function.
kpeter@80
   841
  ///
kpeter@80
   842
  /// \sa AddMap, MulMap, DivMap
kpeter@80
   843
  template<typename M1, typename M2>
kpeter@80
   844
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   845
    const M1 &_m1;
kpeter@80
   846
    const M2 &_m2;
kpeter@80
   847
  public:
kpeter@80
   848
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   849
    typedef typename Parent::Key Key;
kpeter@80
   850
    typedef typename Parent::Value Value;
kpeter@80
   851
kpeter@80
   852
    /// Constructor
kpeter@80
   853
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   854
    /// \e
kpeter@80
   855
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
kpeter@80
   856
  };
kpeter@80
   857
kpeter@305
   858
  /// Returns a \c SubMap class
kpeter@305
   859
kpeter@305
   860
  /// This function just returns a \c SubMap class.
kpeter@80
   861
  ///
kpeter@80
   862
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   863
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   864
  /// <tt>m1[x]-m2[x]</tt>.
kpeter@80
   865
  ///
kpeter@80
   866
  /// \relates SubMap
kpeter@80
   867
  template<typename M1, typename M2>
kpeter@80
   868
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
kpeter@80
   869
    return SubMap<M1, M2>(m1,m2);
kpeter@80
   870
  }
kpeter@80
   871
kpeter@80
   872
kpeter@80
   873
  /// Product of two maps
kpeter@80
   874
kpeter@82
   875
  /// This \ref concepts::ReadMap "read-only map" returns the product
kpeter@80
   876
  /// of the values of the two given maps.
kpeter@80
   877
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   878
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   879
  /// \c M1.
kpeter@80
   880
  ///
kpeter@80
   881
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   882
  /// \code
kpeter@80
   883
  ///   MulMap<M1,M2> mm(m1,m2);
kpeter@80
   884
  /// \endcode
kpeter@80
   885
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
kpeter@80
   886
  ///
kpeter@80
   887
  /// The simplest way of using this map is through the mulMap()
kpeter@80
   888
  /// function.
kpeter@80
   889
  ///
kpeter@80
   890
  /// \sa AddMap, SubMap, DivMap
kpeter@80
   891
  /// \sa ScaleMap, ScaleWriteMap
kpeter@80
   892
  template<typename M1, typename M2>
kpeter@80
   893
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   894
    const M1 &_m1;
kpeter@80
   895
    const M2 &_m2;
kpeter@80
   896
  public:
kpeter@80
   897
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   898
    typedef typename Parent::Key Key;
kpeter@80
   899
    typedef typename Parent::Value Value;
kpeter@80
   900
kpeter@80
   901
    /// Constructor
kpeter@80
   902
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   903
    /// \e
kpeter@80
   904
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
kpeter@80
   905
  };
kpeter@80
   906
kpeter@305
   907
  /// Returns a \c MulMap class
kpeter@305
   908
kpeter@305
   909
  /// This function just returns a \c MulMap class.
kpeter@80
   910
  ///
kpeter@80
   911
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   912
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   913
  /// <tt>m1[x]*m2[x]</tt>.
kpeter@80
   914
  ///
kpeter@80
   915
  /// \relates MulMap
kpeter@80
   916
  template<typename M1, typename M2>
kpeter@80
   917
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
kpeter@80
   918
    return MulMap<M1, M2>(m1,m2);
kpeter@80
   919
  }
kpeter@80
   920
kpeter@80
   921
kpeter@80
   922
  /// Quotient of two maps
kpeter@80
   923
kpeter@82
   924
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
kpeter@80
   925
  /// of the values of the two given maps.
kpeter@80
   926
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   927
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   928
  /// \c M1.
kpeter@80
   929
  ///
kpeter@80
   930
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   931
  /// \code
kpeter@80
   932
  ///   DivMap<M1,M2> dm(m1,m2);
kpeter@80
   933
  /// \endcode
kpeter@80
   934
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
kpeter@80
   935
  ///
kpeter@80
   936
  /// The simplest way of using this map is through the divMap()
kpeter@80
   937
  /// function.
kpeter@80
   938
  ///
kpeter@80
   939
  /// \sa AddMap, SubMap, MulMap
kpeter@80
   940
  template<typename M1, typename M2>
kpeter@80
   941
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   942
    const M1 &_m1;
kpeter@80
   943
    const M2 &_m2;
kpeter@80
   944
  public:
kpeter@80
   945
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   946
    typedef typename Parent::Key Key;
kpeter@80
   947
    typedef typename Parent::Value Value;
kpeter@80
   948
kpeter@80
   949
    /// Constructor
kpeter@80
   950
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   951
    /// \e
kpeter@80
   952
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
kpeter@80
   953
  };
kpeter@80
   954
kpeter@305
   955
  /// Returns a \c DivMap class
kpeter@305
   956
kpeter@305
   957
  /// This function just returns a \c DivMap class.
kpeter@80
   958
  ///
kpeter@80
   959
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   960
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   961
  /// <tt>m1[x]/m2[x]</tt>.
kpeter@80
   962
  ///
kpeter@80
   963
  /// \relates DivMap
kpeter@80
   964
  template<typename M1, typename M2>
kpeter@80
   965
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
kpeter@80
   966
    return DivMap<M1, M2>(m1,m2);
kpeter@80
   967
  }
kpeter@80
   968
kpeter@80
   969
kpeter@80
   970
  /// Shifts a map with a constant.
kpeter@80
   971
kpeter@82
   972
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
kpeter@80
   973
  /// the given map and a constant value (i.e. it shifts the map with
kpeter@80
   974
  /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80
   975
  ///
kpeter@80
   976
  /// Actually,
kpeter@80
   977
  /// \code
kpeter@80
   978
  ///   ShiftMap<M> sh(m,v);
kpeter@80
   979
  /// \endcode
kpeter@80
   980
  /// is equivalent to
kpeter@80
   981
  /// \code
kpeter@80
   982
  ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80
   983
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
kpeter@80
   984
  /// \endcode
kpeter@80
   985
  ///
kpeter@80
   986
  /// The simplest way of using this map is through the shiftMap()
kpeter@80
   987
  /// function.
kpeter@80
   988
  ///
kpeter@80
   989
  /// \sa ShiftWriteMap
kpeter@80
   990
  template<typename M, typename C = typename M::Value>
alpar@25
   991
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
   992
    const M &_m;
kpeter@80
   993
    C _v;
alpar@25
   994
  public:
alpar@25
   995
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
   996
    typedef typename Parent::Key Key;
alpar@25
   997
    typedef typename Parent::Value Value;
alpar@25
   998
kpeter@80
   999
    /// Constructor
alpar@25
  1000
kpeter@80
  1001
    /// Constructor.
kpeter@80
  1002
    /// \param m The undelying map.
kpeter@80
  1003
    /// \param v The constant value.
kpeter@80
  1004
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
kpeter@80
  1005
    /// \e
kpeter@80
  1006
    Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25
  1007
  };
alpar@25
  1008
kpeter@80
  1009
  /// Shifts a map with a constant (read-write version).
alpar@25
  1010
kpeter@80
  1011
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
kpeter@80
  1012
  /// of the given map and a constant value (i.e. it shifts the map with
kpeter@80
  1013
  /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1014
  /// It makes also possible to write the map.
alpar@25
  1015
  ///
kpeter@80
  1016
  /// The simplest way of using this map is through the shiftWriteMap()
kpeter@80
  1017
  /// function.
kpeter@80
  1018
  ///
kpeter@80
  1019
  /// \sa ShiftMap
kpeter@80
  1020
  template<typename M, typename C = typename M::Value>
alpar@25
  1021
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1022
    M &_m;
kpeter@80
  1023
    C _v;
alpar@25
  1024
  public:
alpar@25
  1025
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1026
    typedef typename Parent::Key Key;
alpar@25
  1027
    typedef typename Parent::Value Value;
alpar@25
  1028
kpeter@80
  1029
    /// Constructor
alpar@25
  1030
kpeter@80
  1031
    /// Constructor.
kpeter@80
  1032
    /// \param m The undelying map.
kpeter@80
  1033
    /// \param v The constant value.
kpeter@80
  1034
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1035
    /// \e
kpeter@80
  1036
    Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25
  1037
    /// \e
kpeter@80
  1038
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
alpar@25
  1039
  };
alpar@25
  1040
kpeter@305
  1041
  /// Returns a \c ShiftMap class
kpeter@305
  1042
kpeter@305
  1043
  /// This function just returns a \c ShiftMap class.
kpeter@80
  1044
  ///
kpeter@80
  1045
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1046
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
kpeter@80
  1047
  /// <tt>m[x]+v</tt>.
kpeter@80
  1048
  ///
kpeter@80
  1049
  /// \relates ShiftMap
kpeter@80
  1050
  template<typename M, typename C>
kpeter@80
  1051
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
alpar@25
  1052
    return ShiftMap<M, C>(m,v);
alpar@25
  1053
  }
alpar@25
  1054
kpeter@305
  1055
  /// Returns a \c ShiftWriteMap class
kpeter@305
  1056
kpeter@305
  1057
  /// This function just returns a \c ShiftWriteMap class.
kpeter@80
  1058
  ///
kpeter@80
  1059
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1060
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
kpeter@80
  1061
  /// <tt>m[x]+v</tt>.
kpeter@80
  1062
  /// Moreover it makes also possible to write the map.
kpeter@80
  1063
  ///
kpeter@80
  1064
  /// \relates ShiftWriteMap
kpeter@80
  1065
  template<typename M, typename C>
kpeter@80
  1066
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
alpar@25
  1067
    return ShiftWriteMap<M, C>(m,v);
alpar@25
  1068
  }
alpar@25
  1069
alpar@25
  1070
kpeter@80
  1071
  /// Scales a map with a constant.
kpeter@80
  1072
kpeter@82
  1073
  /// This \ref concepts::ReadMap "read-only map" returns the value of
kpeter@80
  1074
  /// the given map multiplied from the left side with a constant value.
kpeter@80
  1075
  /// Its \c Key and \c Value are inherited from \c M.
alpar@26
  1076
  ///
kpeter@80
  1077
  /// Actually,
kpeter@80
  1078
  /// \code
kpeter@80
  1079
  ///   ScaleMap<M> sc(m,v);
kpeter@80
  1080
  /// \endcode
kpeter@80
  1081
  /// is equivalent to
kpeter@80
  1082
  /// \code
kpeter@80
  1083
  ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80
  1084
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
kpeter@80
  1085
  /// \endcode
alpar@25
  1086
  ///
kpeter@80
  1087
  /// The simplest way of using this map is through the scaleMap()
kpeter@80
  1088
  /// function.
alpar@25
  1089
  ///
kpeter@80
  1090
  /// \sa ScaleWriteMap
kpeter@80
  1091
  template<typename M, typename C = typename M::Value>
alpar@25
  1092
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1093
    const M &_m;
kpeter@80
  1094
    C _v;
alpar@25
  1095
  public:
alpar@25
  1096
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1097
    typedef typename Parent::Key Key;
alpar@25
  1098
    typedef typename Parent::Value Value;
alpar@25
  1099
kpeter@80
  1100
    /// Constructor
alpar@25
  1101
kpeter@80
  1102
    /// Constructor.
kpeter@80
  1103
    /// \param m The undelying map.
kpeter@80
  1104
    /// \param v The constant value.
kpeter@80
  1105
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1106
    /// \e
kpeter@80
  1107
    Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25
  1108
  };
alpar@25
  1109
kpeter@80
  1110
  /// Scales a map with a constant (read-write version).
alpar@25
  1111
kpeter@80
  1112
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
kpeter@80
  1113
  /// the given map multiplied from the left side with a constant value.
kpeter@80
  1114
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1115
  /// It can also be used as write map if the \c / operator is defined
kpeter@80
  1116
  /// between \c Value and \c C and the given multiplier is not zero.
kpeter@29
  1117
  ///
kpeter@80
  1118
  /// The simplest way of using this map is through the scaleWriteMap()
kpeter@80
  1119
  /// function.
kpeter@80
  1120
  ///
kpeter@80
  1121
  /// \sa ScaleMap
kpeter@80
  1122
  template<typename M, typename C = typename M::Value>
alpar@25
  1123
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1124
    M &_m;
kpeter@80
  1125
    C _v;
alpar@25
  1126
  public:
alpar@25
  1127
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1128
    typedef typename Parent::Key Key;
alpar@25
  1129
    typedef typename Parent::Value Value;
alpar@25
  1130
kpeter@80
  1131
    /// Constructor
alpar@25
  1132
kpeter@80
  1133
    /// Constructor.
kpeter@80
  1134
    /// \param m The undelying map.
kpeter@80
  1135
    /// \param v The constant value.
kpeter@80
  1136
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1137
    /// \e
kpeter@80
  1138
    Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25
  1139
    /// \e
kpeter@80
  1140
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
alpar@25
  1141
  };
alpar@25
  1142
kpeter@305
  1143
  /// Returns a \c ScaleMap class
kpeter@305
  1144
kpeter@305
  1145
  /// This function just returns a \c ScaleMap class.
kpeter@80
  1146
  ///
kpeter@80
  1147
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1148
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
kpeter@80
  1149
  /// <tt>v*m[x]</tt>.
kpeter@80
  1150
  ///
kpeter@80
  1151
  /// \relates ScaleMap
kpeter@80
  1152
  template<typename M, typename C>
kpeter@80
  1153
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
alpar@25
  1154
    return ScaleMap<M, C>(m,v);
alpar@25
  1155
  }
alpar@25
  1156
kpeter@305
  1157
  /// Returns a \c ScaleWriteMap class
kpeter@305
  1158
kpeter@305
  1159
  /// This function just returns a \c ScaleWriteMap class.
kpeter@80
  1160
  ///
kpeter@80
  1161
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1162
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
kpeter@80
  1163
  /// <tt>v*m[x]</tt>.
kpeter@80
  1164
  /// Moreover it makes also possible to write the map.
kpeter@80
  1165
  ///
kpeter@80
  1166
  /// \relates ScaleWriteMap
kpeter@80
  1167
  template<typename M, typename C>
kpeter@80
  1168
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
alpar@25
  1169
    return ScaleWriteMap<M, C>(m,v);
alpar@25
  1170
  }
alpar@25
  1171
alpar@25
  1172
kpeter@80
  1173
  /// Negative of a map
alpar@25
  1174
kpeter@82
  1175
  /// This \ref concepts::ReadMap "read-only map" returns the negative
kpeter@80
  1176
  /// of the values of the given map (using the unary \c - operator).
kpeter@80
  1177
  /// Its \c Key and \c Value are inherited from \c M.
alpar@25
  1178
  ///
kpeter@80
  1179
  /// If M::Value is \c int, \c double etc., then
kpeter@80
  1180
  /// \code
kpeter@80
  1181
  ///   NegMap<M> neg(m);
kpeter@80
  1182
  /// \endcode
kpeter@80
  1183
  /// is equivalent to
kpeter@80
  1184
  /// \code
kpeter@80
  1185
  ///   ScaleMap<M> neg(m,-1);
kpeter@80
  1186
  /// \endcode
kpeter@29
  1187
  ///
kpeter@80
  1188
  /// The simplest way of using this map is through the negMap()
kpeter@80
  1189
  /// function.
kpeter@29
  1190
  ///
kpeter@80
  1191
  /// \sa NegWriteMap
kpeter@80
  1192
  template<typename M>
alpar@25
  1193
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1194
    const M& _m;
alpar@25
  1195
  public:
alpar@25
  1196
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1197
    typedef typename Parent::Key Key;
alpar@25
  1198
    typedef typename Parent::Value Value;
alpar@25
  1199
kpeter@80
  1200
    /// Constructor
kpeter@80
  1201
    NegMap(const M &m) : _m(m) {}
alpar@25
  1202
    /// \e
kpeter@80
  1203
    Value operator[](const Key &k) const { return -_m[k]; }
alpar@25
  1204
  };
alpar@25
  1205
kpeter@80
  1206
  /// Negative of a map (read-write version)
kpeter@80
  1207
kpeter@80
  1208
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80
  1209
  /// negative of the values of the given map (using the unary \c -
kpeter@80
  1210
  /// operator).
kpeter@80
  1211
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1212
  /// It makes also possible to write the map.
kpeter@80
  1213
  ///
kpeter@80
  1214
  /// If M::Value is \c int, \c double etc., then
kpeter@80
  1215
  /// \code
kpeter@80
  1216
  ///   NegWriteMap<M> neg(m);
kpeter@80
  1217
  /// \endcode
kpeter@80
  1218
  /// is equivalent to
kpeter@80
  1219
  /// \code
kpeter@80
  1220
  ///   ScaleWriteMap<M> neg(m,-1);
kpeter@80
  1221
  /// \endcode
kpeter@80
  1222
  ///
kpeter@80
  1223
  /// The simplest way of using this map is through the negWriteMap()
kpeter@80
  1224
  /// function.
kpeter@29
  1225
  ///
kpeter@29
  1226
  /// \sa NegMap
kpeter@80
  1227
  template<typename M>
alpar@25
  1228
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1229
    M &_m;
alpar@25
  1230
  public:
alpar@25
  1231
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1232
    typedef typename Parent::Key Key;
alpar@25
  1233
    typedef typename Parent::Value Value;
alpar@25
  1234
kpeter@80
  1235
    /// Constructor
kpeter@80
  1236
    NegWriteMap(M &m) : _m(m) {}
alpar@25
  1237
    /// \e
kpeter@80
  1238
    Value operator[](const Key &k) const { return -_m[k]; }
alpar@25
  1239
    /// \e
kpeter@80
  1240
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
alpar@25
  1241
  };
alpar@25
  1242
kpeter@305
  1243
  /// Returns a \c NegMap class
kpeter@305
  1244
kpeter@305
  1245
  /// This function just returns a \c NegMap class.
kpeter@80
  1246
  ///
kpeter@80
  1247
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1248
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80
  1249
  ///
kpeter@80
  1250
  /// \relates NegMap
kpeter@80
  1251
  template <typename M>
alpar@25
  1252
  inline NegMap<M> negMap(const M &m) {
alpar@25
  1253
    return NegMap<M>(m);
alpar@25
  1254
  }
alpar@25
  1255
kpeter@305
  1256
  /// Returns a \c NegWriteMap class
kpeter@305
  1257
kpeter@305
  1258
  /// This function just returns a \c NegWriteMap class.
kpeter@80
  1259
  ///
kpeter@80
  1260
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1261
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80
  1262
  /// Moreover it makes also possible to write the map.
kpeter@80
  1263
  ///
kpeter@80
  1264
  /// \relates NegWriteMap
kpeter@80
  1265
  template <typename M>
kpeter@80
  1266
  inline NegWriteMap<M> negWriteMap(M &m) {
alpar@25
  1267
    return NegWriteMap<M>(m);
alpar@25
  1268
  }
alpar@25
  1269
alpar@25
  1270
kpeter@80
  1271
  /// Absolute value of a map
kpeter@80
  1272
kpeter@82
  1273
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
kpeter@80
  1274
  /// value of the values of the given map.
kpeter@80
  1275
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1276
  /// \c Value must be comparable to \c 0 and the unary \c -
kpeter@80
  1277
  /// operator must be defined for it, of course.
kpeter@80
  1278
  ///
kpeter@80
  1279
  /// The simplest way of using this map is through the absMap()
kpeter@80
  1280
  /// function.
kpeter@80
  1281
  template<typename M>
alpar@25
  1282
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1283
    const M &_m;
alpar@25
  1284
  public:
alpar@25
  1285
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1286
    typedef typename Parent::Key Key;
alpar@25
  1287
    typedef typename Parent::Value Value;
alpar@25
  1288
kpeter@80
  1289
    /// Constructor
kpeter@80
  1290
    AbsMap(const M &m) : _m(m) {}
alpar@25
  1291
    /// \e
kpeter@80
  1292
    Value operator[](const Key &k) const {
kpeter@80
  1293
      Value tmp = _m[k];
alpar@25
  1294
      return tmp >= 0 ? tmp : -tmp;
alpar@25
  1295
    }
alpar@25
  1296
alpar@25
  1297
  };
alpar@25
  1298
kpeter@305
  1299
  /// Returns an \c AbsMap class
kpeter@305
  1300
kpeter@305
  1301
  /// This function just returns an \c AbsMap class.
kpeter@80
  1302
  ///
kpeter@80
  1303
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1304
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
kpeter@80
  1305
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
kpeter@80
  1306
  /// negative.
kpeter@80
  1307
  ///
kpeter@80
  1308
  /// \relates AbsMap
kpeter@80
  1309
  template<typename M>
alpar@25
  1310
  inline AbsMap<M> absMap(const M &m) {
alpar@25
  1311
    return AbsMap<M>(m);
alpar@25
  1312
  }
alpar@25
  1313
kpeter@82
  1314
  /// @}
alpar@209
  1315
kpeter@82
  1316
  // Logical maps and map adaptors:
kpeter@82
  1317
kpeter@82
  1318
  /// \addtogroup maps
kpeter@82
  1319
  /// @{
kpeter@82
  1320
kpeter@82
  1321
  /// Constant \c true map.
kpeter@82
  1322
kpeter@82
  1323
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1324
  /// each key.
kpeter@82
  1325
  ///
kpeter@82
  1326
  /// Note that
kpeter@82
  1327
  /// \code
kpeter@82
  1328
  ///   TrueMap<K> tm;
kpeter@82
  1329
  /// \endcode
kpeter@82
  1330
  /// is equivalent to
kpeter@82
  1331
  /// \code
kpeter@82
  1332
  ///   ConstMap<K,bool> tm(true);
kpeter@82
  1333
  /// \endcode
kpeter@82
  1334
  ///
kpeter@82
  1335
  /// \sa FalseMap
kpeter@82
  1336
  /// \sa ConstMap
kpeter@82
  1337
  template <typename K>
kpeter@82
  1338
  class TrueMap : public MapBase<K, bool> {
kpeter@82
  1339
  public:
kpeter@82
  1340
    typedef MapBase<K, bool> Parent;
kpeter@82
  1341
    typedef typename Parent::Key Key;
kpeter@82
  1342
    typedef typename Parent::Value Value;
kpeter@82
  1343
kpeter@82
  1344
    /// Gives back \c true.
kpeter@82
  1345
    Value operator[](const Key&) const { return true; }
kpeter@82
  1346
  };
kpeter@82
  1347
kpeter@305
  1348
  /// Returns a \c TrueMap class
kpeter@305
  1349
kpeter@305
  1350
  /// This function just returns a \c TrueMap class.
kpeter@82
  1351
  /// \relates TrueMap
kpeter@82
  1352
  template<typename K>
kpeter@82
  1353
  inline TrueMap<K> trueMap() {
kpeter@82
  1354
    return TrueMap<K>();
kpeter@82
  1355
  }
kpeter@82
  1356
kpeter@82
  1357
kpeter@82
  1358
  /// Constant \c false map.
kpeter@82
  1359
kpeter@82
  1360
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
kpeter@82
  1361
  /// each key.
kpeter@82
  1362
  ///
kpeter@82
  1363
  /// Note that
kpeter@82
  1364
  /// \code
kpeter@82
  1365
  ///   FalseMap<K> fm;
kpeter@82
  1366
  /// \endcode
kpeter@82
  1367
  /// is equivalent to
kpeter@82
  1368
  /// \code
kpeter@82
  1369
  ///   ConstMap<K,bool> fm(false);
kpeter@82
  1370
  /// \endcode
kpeter@82
  1371
  ///
kpeter@82
  1372
  /// \sa TrueMap
kpeter@82
  1373
  /// \sa ConstMap
kpeter@82
  1374
  template <typename K>
kpeter@82
  1375
  class FalseMap : public MapBase<K, bool> {
kpeter@82
  1376
  public:
kpeter@82
  1377
    typedef MapBase<K, bool> Parent;
kpeter@82
  1378
    typedef typename Parent::Key Key;
kpeter@82
  1379
    typedef typename Parent::Value Value;
kpeter@82
  1380
kpeter@82
  1381
    /// Gives back \c false.
kpeter@82
  1382
    Value operator[](const Key&) const { return false; }
kpeter@82
  1383
  };
kpeter@82
  1384
kpeter@305
  1385
  /// Returns a \c FalseMap class
kpeter@305
  1386
kpeter@305
  1387
  /// This function just returns a \c FalseMap class.
kpeter@82
  1388
  /// \relates FalseMap
kpeter@82
  1389
  template<typename K>
kpeter@82
  1390
  inline FalseMap<K> falseMap() {
kpeter@82
  1391
    return FalseMap<K>();
kpeter@82
  1392
  }
kpeter@82
  1393
kpeter@82
  1394
  /// @}
kpeter@82
  1395
kpeter@82
  1396
  /// \addtogroup map_adaptors
kpeter@82
  1397
  /// @{
kpeter@82
  1398
kpeter@82
  1399
  /// Logical 'and' of two maps
kpeter@82
  1400
kpeter@82
  1401
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82
  1402
  /// 'and' of the values of the two given maps.
kpeter@82
  1403
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1404
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1405
  ///
kpeter@82
  1406
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1407
  /// \code
kpeter@82
  1408
  ///   AndMap<M1,M2> am(m1,m2);
kpeter@82
  1409
  /// \endcode
kpeter@82
  1410
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
kpeter@82
  1411
  ///
kpeter@82
  1412
  /// The simplest way of using this map is through the andMap()
kpeter@82
  1413
  /// function.
kpeter@82
  1414
  ///
kpeter@82
  1415
  /// \sa OrMap
kpeter@82
  1416
  /// \sa NotMap, NotWriteMap
kpeter@82
  1417
  template<typename M1, typename M2>
kpeter@82
  1418
  class AndMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1419
    const M1 &_m1;
kpeter@82
  1420
    const M2 &_m2;
kpeter@82
  1421
  public:
kpeter@82
  1422
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1423
    typedef typename Parent::Key Key;
kpeter@82
  1424
    typedef typename Parent::Value Value;
kpeter@82
  1425
kpeter@82
  1426
    /// Constructor
kpeter@82
  1427
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1428
    /// \e
kpeter@82
  1429
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
kpeter@82
  1430
  };
kpeter@82
  1431
kpeter@305
  1432
  /// Returns an \c AndMap class
kpeter@305
  1433
kpeter@305
  1434
  /// This function just returns an \c AndMap class.
kpeter@82
  1435
  ///
kpeter@82
  1436
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82
  1437
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1438
  /// <tt>m1[x]&&m2[x]</tt>.
kpeter@82
  1439
  ///
kpeter@82
  1440
  /// \relates AndMap
kpeter@82
  1441
  template<typename M1, typename M2>
kpeter@82
  1442
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1443
    return AndMap<M1, M2>(m1,m2);
kpeter@82
  1444
  }
kpeter@82
  1445
kpeter@82
  1446
kpeter@82
  1447
  /// Logical 'or' of two maps
kpeter@82
  1448
kpeter@82
  1449
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82
  1450
  /// 'or' of the values of the two given maps.
kpeter@82
  1451
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1452
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1453
  ///
kpeter@82
  1454
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1455
  /// \code
kpeter@82
  1456
  ///   OrMap<M1,M2> om(m1,m2);
kpeter@82
  1457
  /// \endcode
kpeter@82
  1458
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
kpeter@82
  1459
  ///
kpeter@82
  1460
  /// The simplest way of using this map is through the orMap()
kpeter@82
  1461
  /// function.
kpeter@82
  1462
  ///
kpeter@82
  1463
  /// \sa AndMap
kpeter@82
  1464
  /// \sa NotMap, NotWriteMap
kpeter@82
  1465
  template<typename M1, typename M2>
kpeter@82
  1466
  class OrMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1467
    const M1 &_m1;
kpeter@82
  1468
    const M2 &_m2;
kpeter@82
  1469
  public:
kpeter@82
  1470
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1471
    typedef typename Parent::Key Key;
kpeter@82
  1472
    typedef typename Parent::Value Value;
kpeter@82
  1473
kpeter@82
  1474
    /// Constructor
kpeter@82
  1475
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1476
    /// \e
kpeter@82
  1477
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
kpeter@82
  1478
  };
kpeter@82
  1479
kpeter@305
  1480
  /// Returns an \c OrMap class
kpeter@305
  1481
kpeter@305
  1482
  /// This function just returns an \c OrMap class.
kpeter@82
  1483
  ///
kpeter@82
  1484
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82
  1485
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1486
  /// <tt>m1[x]||m2[x]</tt>.
kpeter@82
  1487
  ///
kpeter@82
  1488
  /// \relates OrMap
kpeter@82
  1489
  template<typename M1, typename M2>
kpeter@82
  1490
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1491
    return OrMap<M1, M2>(m1,m2);
kpeter@82
  1492
  }
kpeter@82
  1493
alpar@25
  1494
kpeter@80
  1495
  /// Logical 'not' of a map
kpeter@80
  1496
kpeter@82
  1497
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@80
  1498
  /// negation of the values of the given map.
kpeter@80
  1499
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
alpar@25
  1500
  ///
kpeter@80
  1501
  /// The simplest way of using this map is through the notMap()
kpeter@80
  1502
  /// function.
alpar@25
  1503
  ///
kpeter@80
  1504
  /// \sa NotWriteMap
kpeter@80
  1505
  template <typename M>
alpar@25
  1506
  class NotMap : public MapBase<typename M::Key, bool> {
kpeter@80
  1507
    const M &_m;
alpar@25
  1508
  public:
alpar@25
  1509
    typedef MapBase<typename M::Key, bool> Parent;
alpar@25
  1510
    typedef typename Parent::Key Key;
alpar@25
  1511
    typedef typename Parent::Value Value;
alpar@25
  1512
alpar@25
  1513
    /// Constructor
kpeter@80
  1514
    NotMap(const M &m) : _m(m) {}
kpeter@80
  1515
    /// \e
kpeter@80
  1516
    Value operator[](const Key &k) const { return !_m[k]; }
alpar@25
  1517
  };
alpar@25
  1518
kpeter@80
  1519
  /// Logical 'not' of a map (read-write version)
kpeter@80
  1520
kpeter@80
  1521
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80
  1522
  /// logical negation of the values of the given map.
kpeter@80
  1523
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
kpeter@80
  1524
  /// It makes also possible to write the map. When a value is set,
kpeter@80
  1525
  /// the opposite value is set to the original map.
kpeter@29
  1526
  ///
kpeter@80
  1527
  /// The simplest way of using this map is through the notWriteMap()
kpeter@80
  1528
  /// function.
kpeter@80
  1529
  ///
kpeter@80
  1530
  /// \sa NotMap
kpeter@80
  1531
  template <typename M>
alpar@25
  1532
  class NotWriteMap : public MapBase<typename M::Key, bool> {
kpeter@80
  1533
    M &_m;
alpar@25
  1534
  public:
alpar@25
  1535
    typedef MapBase<typename M::Key, bool> Parent;
alpar@25
  1536
    typedef typename Parent::Key Key;
alpar@25
  1537
    typedef typename Parent::Value Value;
alpar@25
  1538
alpar@25
  1539
    /// Constructor
kpeter@80
  1540
    NotWriteMap(M &m) : _m(m) {}
kpeter@80
  1541
    /// \e
kpeter@80
  1542
    Value operator[](const Key &k) const { return !_m[k]; }
kpeter@80
  1543
    /// \e
kpeter@80
  1544
    void set(const Key &k, bool v) { _m.set(k, !v); }
alpar@25
  1545
  };
kpeter@80
  1546
kpeter@305
  1547
  /// Returns a \c NotMap class
kpeter@305
  1548
kpeter@305
  1549
  /// This function just returns a \c NotMap class.
kpeter@80
  1550
  ///
kpeter@80
  1551
  /// For example, if \c m is a map with \c bool values, then
kpeter@80
  1552
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80
  1553
  ///
kpeter@80
  1554
  /// \relates NotMap
kpeter@80
  1555
  template <typename M>
alpar@25
  1556
  inline NotMap<M> notMap(const M &m) {
alpar@25
  1557
    return NotMap<M>(m);
alpar@25
  1558
  }
kpeter@80
  1559
kpeter@305
  1560
  /// Returns a \c NotWriteMap class
kpeter@305
  1561
kpeter@305
  1562
  /// This function just returns a \c NotWriteMap class.
kpeter@80
  1563
  ///
kpeter@80
  1564
  /// For example, if \c m is a map with \c bool values, then
kpeter@80
  1565
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80
  1566
  /// Moreover it makes also possible to write the map.
kpeter@80
  1567
  ///
kpeter@80
  1568
  /// \relates NotWriteMap
kpeter@80
  1569
  template <typename M>
kpeter@80
  1570
  inline NotWriteMap<M> notWriteMap(M &m) {
alpar@25
  1571
    return NotWriteMap<M>(m);
alpar@25
  1572
  }
alpar@25
  1573
kpeter@82
  1574
kpeter@82
  1575
  /// Combination of two maps using the \c == operator
kpeter@82
  1576
kpeter@82
  1577
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1578
  /// the keys for which the corresponding values of the two maps are
kpeter@82
  1579
  /// equal.
kpeter@82
  1580
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1581
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1582
  ///
kpeter@82
  1583
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1584
  /// \code
kpeter@82
  1585
  ///   EqualMap<M1,M2> em(m1,m2);
kpeter@82
  1586
  /// \endcode
kpeter@82
  1587
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
kpeter@82
  1588
  ///
kpeter@82
  1589
  /// The simplest way of using this map is through the equalMap()
kpeter@82
  1590
  /// function.
kpeter@82
  1591
  ///
kpeter@82
  1592
  /// \sa LessMap
kpeter@82
  1593
  template<typename M1, typename M2>
kpeter@82
  1594
  class EqualMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1595
    const M1 &_m1;
kpeter@82
  1596
    const M2 &_m2;
kpeter@82
  1597
  public:
kpeter@82
  1598
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1599
    typedef typename Parent::Key Key;
kpeter@82
  1600
    typedef typename Parent::Value Value;
kpeter@82
  1601
kpeter@82
  1602
    /// Constructor
kpeter@82
  1603
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1604
    /// \e
kpeter@82
  1605
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
kpeter@82
  1606
  };
kpeter@82
  1607
kpeter@305
  1608
  /// Returns an \c EqualMap class
kpeter@305
  1609
kpeter@305
  1610
  /// This function just returns an \c EqualMap class.
kpeter@82
  1611
  ///
kpeter@82
  1612
  /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82
  1613
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1614
  /// <tt>m1[x]==m2[x]</tt>.
kpeter@82
  1615
  ///
kpeter@82
  1616
  /// \relates EqualMap
kpeter@82
  1617
  template<typename M1, typename M2>
kpeter@82
  1618
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1619
    return EqualMap<M1, M2>(m1,m2);
kpeter@82
  1620
  }
kpeter@82
  1621
kpeter@82
  1622
kpeter@82
  1623
  /// Combination of two maps using the \c < operator
kpeter@82
  1624
kpeter@82
  1625
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1626
  /// the keys for which the corresponding value of the first map is
kpeter@82
  1627
  /// less then the value of the second map.
kpeter@82
  1628
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1629
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1630
  ///
kpeter@82
  1631
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1632
  /// \code
kpeter@82
  1633
  ///   LessMap<M1,M2> lm(m1,m2);
kpeter@82
  1634
  /// \endcode
kpeter@82
  1635
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
kpeter@82
  1636
  ///
kpeter@82
  1637
  /// The simplest way of using this map is through the lessMap()
kpeter@82
  1638
  /// function.
kpeter@82
  1639
  ///
kpeter@82
  1640
  /// \sa EqualMap
kpeter@82
  1641
  template<typename M1, typename M2>
kpeter@82
  1642
  class LessMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1643
    const M1 &_m1;
kpeter@82
  1644
    const M2 &_m2;
kpeter@82
  1645
  public:
kpeter@82
  1646
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1647
    typedef typename Parent::Key Key;
kpeter@82
  1648
    typedef typename Parent::Value Value;
kpeter@82
  1649
kpeter@82
  1650
    /// Constructor
kpeter@82
  1651
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1652
    /// \e
kpeter@82
  1653
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
kpeter@82
  1654
  };
kpeter@82
  1655
kpeter@305
  1656
  /// Returns an \c LessMap class
kpeter@305
  1657
kpeter@305
  1658
  /// This function just returns an \c LessMap class.
kpeter@82
  1659
  ///
kpeter@82
  1660
  /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82
  1661
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1662
  /// <tt>m1[x]<m2[x]</tt>.
kpeter@82
  1663
  ///
kpeter@82
  1664
  /// \relates LessMap
kpeter@82
  1665
  template<typename M1, typename M2>
kpeter@82
  1666
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1667
    return LessMap<M1, M2>(m1,m2);
kpeter@82
  1668
  }
kpeter@82
  1669
alpar@104
  1670
  namespace _maps_bits {
alpar@104
  1671
alpar@104
  1672
    template <typename _Iterator, typename Enable = void>
alpar@104
  1673
    struct IteratorTraits {
alpar@104
  1674
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
alpar@104
  1675
    };
alpar@104
  1676
alpar@104
  1677
    template <typename _Iterator>
alpar@104
  1678
    struct IteratorTraits<_Iterator,
alpar@104
  1679
      typename exists<typename _Iterator::container_type>::type>
alpar@104
  1680
    {
alpar@104
  1681
      typedef typename _Iterator::container_type::value_type Value;
alpar@104
  1682
    };
alpar@104
  1683
alpar@104
  1684
  }
alpar@104
  1685
kpeter@318
  1686
  /// @}
kpeter@318
  1687
kpeter@318
  1688
  /// \addtogroup maps
kpeter@318
  1689
  /// @{
kpeter@318
  1690
alpar@104
  1691
  /// \brief Writable bool map for logging each \c true assigned element
alpar@104
  1692
  ///
kpeter@159
  1693
  /// A \ref concepts::WriteMap "writable" bool map for logging
alpar@104
  1694
  /// each \c true assigned element, i.e it copies subsequently each
alpar@104
  1695
  /// keys set to \c true to the given iterator.
kpeter@159
  1696
  /// The most important usage of it is storing certain nodes or arcs
kpeter@159
  1697
  /// that were marked \c true by an algorithm.
alpar@104
  1698
  ///
kpeter@159
  1699
  /// There are several algorithms that provide solutions through bool
kpeter@159
  1700
  /// maps and most of them assign \c true at most once for each key.
kpeter@159
  1701
  /// In these cases it is a natural request to store each \c true
kpeter@159
  1702
  /// assigned elements (in order of the assignment), which can be
kpeter@167
  1703
  /// easily done with LoggerBoolMap.
kpeter@159
  1704
  ///
kpeter@167
  1705
  /// The simplest way of using this map is through the loggerBoolMap()
kpeter@159
  1706
  /// function.
kpeter@159
  1707
  ///
kpeter@159
  1708
  /// \tparam It The type of the iterator.
kpeter@159
  1709
  /// \tparam Ke The key type of the map. The default value set
kpeter@159
  1710
  /// according to the iterator type should work in most cases.
alpar@104
  1711
  ///
alpar@104
  1712
  /// \note The container of the iterator must contain enough space
kpeter@159
  1713
  /// for the elements or the iterator should be an inserter iterator.
kpeter@159
  1714
#ifdef DOXYGEN
kpeter@159
  1715
  template <typename It, typename Ke>
kpeter@159
  1716
#else
alpar@104
  1717
  template <typename It,
alpar@209
  1718
            typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
kpeter@159
  1719
#endif
kpeter@167
  1720
  class LoggerBoolMap {
alpar@104
  1721
  public:
alpar@104
  1722
    typedef It Iterator;
alpar@104
  1723
alpar@104
  1724
    typedef Ke Key;
alpar@104
  1725
    typedef bool Value;
alpar@104
  1726
alpar@104
  1727
    /// Constructor
kpeter@167
  1728
    LoggerBoolMap(Iterator it)
alpar@104
  1729
      : _begin(it), _end(it) {}
alpar@104
  1730
alpar@104
  1731
    /// Gives back the given iterator set for the first key
alpar@104
  1732
    Iterator begin() const {
alpar@104
  1733
      return _begin;
alpar@104
  1734
    }
alpar@104
  1735
alpar@104
  1736
    /// Gives back the the 'after the last' iterator
alpar@104
  1737
    Iterator end() const {
alpar@104
  1738
      return _end;
alpar@104
  1739
    }
alpar@104
  1740
alpar@104
  1741
    /// The set function of the map
kpeter@159
  1742
    void set(const Key& key, Value value) {
alpar@104
  1743
      if (value) {
alpar@209
  1744
        *_end++ = key;
alpar@104
  1745
      }
alpar@104
  1746
    }
alpar@104
  1747
alpar@104
  1748
  private:
alpar@104
  1749
    Iterator _begin;
kpeter@159
  1750
    Iterator _end;
alpar@104
  1751
  };
alpar@209
  1752
kpeter@305
  1753
  /// Returns a \c LoggerBoolMap class
kpeter@305
  1754
kpeter@305
  1755
  /// This function just returns a \c LoggerBoolMap class.
kpeter@159
  1756
  ///
kpeter@159
  1757
  /// The most important usage of it is storing certain nodes or arcs
kpeter@159
  1758
  /// that were marked \c true by an algorithm.
kpeter@159
  1759
  /// For example it makes easier to store the nodes in the processing
kpeter@159
  1760
  /// order of Dfs algorithm, as the following examples show.
kpeter@159
  1761
  /// \code
kpeter@159
  1762
  ///   std::vector<Node> v;
kpeter@167
  1763
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
kpeter@159
  1764
  /// \endcode
kpeter@159
  1765
  /// \code
kpeter@159
  1766
  ///   std::vector<Node> v(countNodes(g));
kpeter@167
  1767
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
kpeter@159
  1768
  /// \endcode
kpeter@159
  1769
  ///
kpeter@159
  1770
  /// \note The container of the iterator must contain enough space
kpeter@159
  1771
  /// for the elements or the iterator should be an inserter iterator.
kpeter@159
  1772
  ///
kpeter@167
  1773
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
kpeter@159
  1774
  /// it cannot be used when a readable map is needed, for example as
kpeter@305
  1775
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
kpeter@159
  1776
  ///
kpeter@167
  1777
  /// \relates LoggerBoolMap
kpeter@159
  1778
  template<typename Iterator>
kpeter@167
  1779
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
kpeter@167
  1780
    return LoggerBoolMap<Iterator>(it);
kpeter@159
  1781
  }
alpar@104
  1782
kpeter@318
  1783
  /// @}
kpeter@318
  1784
kpeter@318
  1785
  /// \addtogroup graph_maps
kpeter@318
  1786
  /// @{
kpeter@318
  1787
deba@220
  1788
  /// Provides an immutable and unique id for each item in the graph.
deba@220
  1789
deba@220
  1790
  /// The IdMap class provides a unique and immutable id for each item of the
deba@220
  1791
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
deba@220
  1792
  /// different items (nodes) get different ids <li>\b immutable: the id of an
deba@220
  1793
  /// item (node) does not change (even if you delete other nodes).  </ul>
deba@220
  1794
  /// Through this map you get access (i.e. can read) the inner id values of
deba@220
  1795
  /// the items stored in the graph. This map can be inverted with its member
deba@220
  1796
  /// class \c InverseMap or with the \c operator() member.
deba@220
  1797
  ///
deba@220
  1798
  template <typename _Graph, typename _Item>
deba@220
  1799
  class IdMap {
deba@220
  1800
  public:
deba@220
  1801
    typedef _Graph Graph;
deba@220
  1802
    typedef int Value;
deba@220
  1803
    typedef _Item Item;
deba@220
  1804
    typedef _Item Key;
deba@220
  1805
deba@220
  1806
    /// \brief Constructor.
deba@220
  1807
    ///
deba@220
  1808
    /// Constructor of the map.
deba@220
  1809
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
deba@220
  1810
deba@220
  1811
    /// \brief Gives back the \e id of the item.
deba@220
  1812
    ///
deba@220
  1813
    /// Gives back the immutable and unique \e id of the item.
deba@220
  1814
    int operator[](const Item& item) const { return _graph->id(item);}
deba@220
  1815
deba@220
  1816
    /// \brief Gives back the item by its id.
deba@220
  1817
    ///
deba@220
  1818
    /// Gives back the item by its id.
deba@220
  1819
    Item operator()(int id) { return _graph->fromId(id, Item()); }
deba@220
  1820
deba@220
  1821
  private:
deba@220
  1822
    const Graph* _graph;
deba@220
  1823
deba@220
  1824
  public:
deba@220
  1825
deba@220
  1826
    /// \brief The class represents the inverse of its owner (IdMap).
deba@220
  1827
    ///
deba@220
  1828
    /// The class represents the inverse of its owner (IdMap).
deba@220
  1829
    /// \see inverse()
deba@220
  1830
    class InverseMap {
deba@220
  1831
    public:
deba@220
  1832
deba@220
  1833
      /// \brief Constructor.
deba@220
  1834
      ///
deba@220
  1835
      /// Constructor for creating an id-to-item map.
deba@220
  1836
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
deba@220
  1837
deba@220
  1838
      /// \brief Constructor.
deba@220
  1839
      ///
deba@220
  1840
      /// Constructor for creating an id-to-item map.
deba@220
  1841
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
deba@220
  1842
deba@220
  1843
      /// \brief Gives back the given item from its id.
deba@220
  1844
      ///
deba@220
  1845
      /// Gives back the given item from its id.
deba@220
  1846
      ///
deba@220
  1847
      Item operator[](int id) const { return _graph->fromId(id, Item());}
deba@220
  1848
deba@220
  1849
    private:
deba@220
  1850
      const Graph* _graph;
deba@220
  1851
    };
deba@220
  1852
deba@220
  1853
    /// \brief Gives back the inverse of the map.
deba@220
  1854
    ///
deba@220
  1855
    /// Gives back the inverse of the IdMap.
deba@220
  1856
    InverseMap inverse() const { return InverseMap(*_graph);}
deba@220
  1857
deba@220
  1858
  };
deba@220
  1859
deba@220
  1860
deba@220
  1861
  /// \brief General invertable graph-map type.
deba@220
  1862
deba@220
  1863
  /// This type provides simple invertable graph-maps.
deba@220
  1864
  /// The InvertableMap wraps an arbitrary ReadWriteMap
deba@220
  1865
  /// and if a key is set to a new value then store it
deba@220
  1866
  /// in the inverse map.
deba@220
  1867
  ///
deba@220
  1868
  /// The values of the map can be accessed
deba@220
  1869
  /// with stl compatible forward iterator.
deba@220
  1870
  ///
deba@220
  1871
  /// \tparam _Graph The graph type.
deba@220
  1872
  /// \tparam _Item The item type of the graph.
deba@220
  1873
  /// \tparam _Value The value type of the map.
deba@220
  1874
  ///
deba@220
  1875
  /// \see IterableValueMap
deba@220
  1876
  template <typename _Graph, typename _Item, typename _Value>
deba@220
  1877
  class InvertableMap
deba@220
  1878
    : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {
deba@220
  1879
  private:
deba@220
  1880
deba@220
  1881
    typedef typename ItemSetTraits<_Graph, _Item>::
deba@220
  1882
    template Map<_Value>::Type Map;
deba@220
  1883
    typedef _Graph Graph;
deba@220
  1884
deba@220
  1885
    typedef std::map<_Value, _Item> Container;
deba@220
  1886
    Container _inv_map;
deba@220
  1887
deba@220
  1888
  public:
deba@220
  1889
deba@220
  1890
    /// The key type of InvertableMap (Node, Arc, Edge).
deba@220
  1891
    typedef typename Map::Key Key;
deba@220
  1892
    /// The value type of the InvertableMap.
deba@220
  1893
    typedef typename Map::Value Value;
deba@220
  1894
deba@220
  1895
    /// \brief Constructor.
deba@220
  1896
    ///
deba@220
  1897
    /// Construct a new InvertableMap for the graph.
deba@220
  1898
    ///
deba@220
  1899
    explicit InvertableMap(const Graph& graph) : Map(graph) {}
deba@220
  1900
deba@220
  1901
    /// \brief Forward iterator for values.
deba@220
  1902
    ///
deba@220
  1903
    /// This iterator is an stl compatible forward
deba@220
  1904
    /// iterator on the values of the map. The values can
deba@220
  1905
    /// be accessed in the [beginValue, endValue) range.
deba@220
  1906
    ///
deba@220
  1907
    class ValueIterator
deba@220
  1908
      : public std::iterator<std::forward_iterator_tag, Value> {
deba@220
  1909
      friend class InvertableMap;
deba@220
  1910
    private:
deba@220
  1911
      ValueIterator(typename Container::const_iterator _it)
deba@220
  1912
        : it(_it) {}
deba@220
  1913
    public:
deba@220
  1914
deba@220
  1915
      ValueIterator() {}
deba@220
  1916
deba@220
  1917
      ValueIterator& operator++() { ++it; return *this; }
deba@220
  1918
      ValueIterator operator++(int) {
deba@220
  1919
        ValueIterator tmp(*this);
deba@220
  1920
        operator++();
deba@220
  1921
        return tmp;
deba@220
  1922
      }
deba@220
  1923
deba@220
  1924
      const Value& operator*() const { return it->first; }
deba@220
  1925
      const Value* operator->() const { return &(it->first); }
deba@220
  1926
deba@220
  1927
      bool operator==(ValueIterator jt) const { return it == jt.it; }
deba@220
  1928
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
deba@220
  1929
deba@220
  1930
    private:
deba@220
  1931
      typename Container::const_iterator it;
deba@220
  1932
    };
deba@220
  1933
deba@220
  1934
    /// \brief Returns an iterator to the first value.
deba@220
  1935
    ///
deba@220
  1936
    /// Returns an stl compatible iterator to the
deba@220
  1937
    /// first value of the map. The values of the
deba@220
  1938
    /// map can be accessed in the [beginValue, endValue)
deba@220
  1939
    /// range.
deba@220
  1940
    ValueIterator beginValue() const {
deba@220
  1941
      return ValueIterator(_inv_map.begin());
deba@220
  1942
    }
deba@220
  1943
deba@220
  1944
    /// \brief Returns an iterator after the last value.
deba@220
  1945
    ///
deba@220
  1946
    /// Returns an stl compatible iterator after the
deba@220
  1947
    /// last value of the map. The values of the
deba@220
  1948
    /// map can be accessed in the [beginValue, endValue)
deba@220
  1949
    /// range.
deba@220
  1950
    ValueIterator endValue() const {
deba@220
  1951
      return ValueIterator(_inv_map.end());
deba@220
  1952
    }
deba@220
  1953
deba@220
  1954
    /// \brief The setter function of the map.
deba@220
  1955
    ///
deba@220
  1956
    /// Sets the mapped value.
deba@220
  1957
    void set(const Key& key, const Value& val) {
deba@220
  1958
      Value oldval = Map::operator[](key);
deba@220
  1959
      typename Container::iterator it = _inv_map.find(oldval);
deba@220
  1960
      if (it != _inv_map.end() && it->second == key) {
deba@220
  1961
        _inv_map.erase(it);
deba@220
  1962
      }
deba@220
  1963
      _inv_map.insert(make_pair(val, key));
deba@220
  1964
      Map::set(key, val);
deba@220
  1965
    }
deba@220
  1966
deba@220
  1967
    /// \brief The getter function of the map.
deba@220
  1968
    ///
deba@220
  1969
    /// It gives back the value associated with the key.
deba@220
  1970
    typename MapTraits<Map>::ConstReturnValue
deba@220
  1971
    operator[](const Key& key) const {
deba@220
  1972
      return Map::operator[](key);
deba@220
  1973
    }
deba@220
  1974
deba@220
  1975
    /// \brief Gives back the item by its value.
deba@220
  1976
    ///
deba@220
  1977
    /// Gives back the item by its value.
deba@220
  1978
    Key operator()(const Value& key) const {
deba@220
  1979
      typename Container::const_iterator it = _inv_map.find(key);
deba@220
  1980
      return it != _inv_map.end() ? it->second : INVALID;
deba@220
  1981
    }
deba@220
  1982
deba@220
  1983
  protected:
deba@220
  1984
deba@220
  1985
    /// \brief Erase the key from the map.
deba@220
  1986
    ///
deba@220
  1987
    /// Erase the key to the map. It is called by the
deba@220
  1988
    /// \c AlterationNotifier.
deba@220
  1989
    virtual void erase(const Key& key) {
deba@220
  1990
      Value val = Map::operator[](key);
deba@220
  1991
      typename Container::iterator it = _inv_map.find(val);
deba@220
  1992
      if (it != _inv_map.end() && it->second == key) {
deba@220
  1993
        _inv_map.erase(it);
deba@220
  1994
      }
deba@220
  1995
      Map::erase(key);
deba@220
  1996
    }
deba@220
  1997
deba@220
  1998
    /// \brief Erase more keys from the map.
deba@220
  1999
    ///
deba@220
  2000
    /// Erase more keys from the map. It is called by the
deba@220
  2001
    /// \c AlterationNotifier.
deba@220
  2002
    virtual void erase(const std::vector<Key>& keys) {
deba@220
  2003
      for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2004
        Value val = Map::operator[](keys[i]);
deba@220
  2005
        typename Container::iterator it = _inv_map.find(val);
deba@220
  2006
        if (it != _inv_map.end() && it->second == keys[i]) {
deba@220
  2007
          _inv_map.erase(it);
deba@220
  2008
        }
deba@220
  2009
      }
deba@220
  2010
      Map::erase(keys);
deba@220
  2011
    }
deba@220
  2012
deba@220
  2013
    /// \brief Clear the keys from the map and inverse map.
deba@220
  2014
    ///
deba@220
  2015
    /// Clear the keys from the map and inverse map. It is called by the
deba@220
  2016
    /// \c AlterationNotifier.
deba@220
  2017
    virtual void clear() {
deba@220
  2018
      _inv_map.clear();
deba@220
  2019
      Map::clear();
deba@220
  2020
    }
deba@220
  2021
deba@220
  2022
  public:
deba@220
  2023
deba@220
  2024
    /// \brief The inverse map type.
deba@220
  2025
    ///
deba@220
  2026
    /// The inverse of this map. The subscript operator of the map
deba@220
  2027
    /// gives back always the item what was last assigned to the value.
deba@220
  2028
    class InverseMap {
deba@220
  2029
    public:
deba@220
  2030
      /// \brief Constructor of the InverseMap.
deba@220
  2031
      ///
deba@220
  2032
      /// Constructor of the InverseMap.
deba@220
  2033
      explicit InverseMap(const InvertableMap& inverted)
deba@220
  2034
        : _inverted(inverted) {}
deba@220
  2035
deba@220
  2036
      /// The value type of the InverseMap.
deba@220
  2037
      typedef typename InvertableMap::Key Value;
deba@220
  2038
      /// The key type of the InverseMap.
deba@220
  2039
      typedef typename InvertableMap::Value Key;
deba@220
  2040
deba@220
  2041
      /// \brief Subscript operator.
deba@220
  2042
      ///
deba@220
  2043
      /// Subscript operator. It gives back always the item
deba@220
  2044
      /// what was last assigned to the value.
deba@220
  2045
      Value operator[](const Key& key) const {
deba@220
  2046
        return _inverted(key);
deba@220
  2047
      }
deba@220
  2048
deba@220
  2049
    private:
deba@220
  2050
      const InvertableMap& _inverted;
deba@220
  2051
    };
deba@220
  2052
deba@220
  2053
    /// \brief It gives back the just readable inverse map.
deba@220
  2054
    ///
deba@220
  2055
    /// It gives back the just readable inverse map.
deba@220
  2056
    InverseMap inverse() const {
deba@220
  2057
      return InverseMap(*this);
deba@220
  2058
    }
deba@220
  2059
deba@220
  2060
  };
deba@220
  2061
deba@220
  2062
  /// \brief Provides a mutable, continuous and unique descriptor for each
deba@220
  2063
  /// item in the graph.
deba@220
  2064
  ///
deba@220
  2065
  /// The DescriptorMap class provides a unique and continuous (but mutable)
deba@220
  2066
  /// descriptor (id) for each item of the same type (e.g. node) in the
deba@220
  2067
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
deba@220
  2068
  /// different ids <li>\b continuous: the range of the ids is the set of
deba@220
  2069
  /// integers between 0 and \c n-1, where \c n is the number of the items of
deba@220
  2070
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
deba@220
  2071
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
deba@220
  2072
  /// with its member class \c InverseMap, or with the \c operator() member.
deba@220
  2073
  ///
deba@220
  2074
  /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
deba@220
  2075
  /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
deba@220
  2076
  /// Edge.
deba@220
  2077
  template <typename _Graph, typename _Item>
deba@220
  2078
  class DescriptorMap
deba@220
  2079
    : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {
deba@220
  2080
deba@220
  2081
    typedef _Item Item;
deba@220
  2082
    typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;
deba@220
  2083
deba@220
  2084
  public:
deba@220
  2085
    /// The graph class of DescriptorMap.
deba@220
  2086
    typedef _Graph Graph;
deba@220
  2087
deba@220
  2088
    /// The key type of DescriptorMap (Node, Arc, Edge).
deba@220
  2089
    typedef typename Map::Key Key;
deba@220
  2090
    /// The value type of DescriptorMap.
deba@220
  2091
    typedef typename Map::Value Value;
deba@220
  2092
deba@220
  2093
    /// \brief Constructor.
deba@220
  2094
    ///
deba@220
  2095
    /// Constructor for descriptor map.
deba@220
  2096
    explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
deba@220
  2097
      Item it;
deba@220
  2098
      const typename Map::Notifier* nf = Map::notifier();
deba@220
  2099
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2100
        Map::set(it, _inv_map.size());
deba@220
  2101
        _inv_map.push_back(it);
deba@220
  2102
      }
deba@220
  2103
    }
deba@220
  2104
deba@220
  2105
  protected:
deba@220
  2106
deba@220
  2107
    /// \brief Add a new key to the map.
deba@220
  2108
    ///
deba@220
  2109
    /// Add a new key to the map. It is called by the
deba@220
  2110
    /// \c AlterationNotifier.
deba@220
  2111
    virtual void add(const Item& item) {
deba@220
  2112
      Map::add(item);
deba@220
  2113
      Map::set(item, _inv_map.size());
deba@220
  2114
      _inv_map.push_back(item);
deba@220
  2115
    }
deba@220
  2116
deba@220
  2117
    /// \brief Add more new keys to the map.
deba@220
  2118
    ///
deba@220
  2119
    /// Add more new keys to the map. It is called by the
deba@220
  2120
    /// \c AlterationNotifier.
deba@220
  2121
    virtual void add(const std::vector<Item>& items) {
deba@220
  2122
      Map::add(items);
deba@220
  2123
      for (int i = 0; i < int(items.size()); ++i) {
deba@220
  2124
        Map::set(items[i], _inv_map.size());
deba@220
  2125
        _inv_map.push_back(items[i]);
deba@220
  2126
      }
deba@220
  2127
    }
deba@220
  2128
deba@220
  2129
    /// \brief Erase the key from the map.
deba@220
  2130
    ///
deba@220
  2131
    /// Erase the key from the map. It is called by the
deba@220
  2132
    /// \c AlterationNotifier.
deba@220
  2133
    virtual void erase(const Item& item) {
deba@220
  2134
      Map::set(_inv_map.back(), Map::operator[](item));
deba@220
  2135
      _inv_map[Map::operator[](item)] = _inv_map.back();
deba@220
  2136
      _inv_map.pop_back();
deba@220
  2137
      Map::erase(item);
deba@220
  2138
    }
deba@220
  2139
deba@220
  2140
    /// \brief Erase more keys from the map.
deba@220
  2141
    ///
deba@220
  2142
    /// Erase more keys from the map. It is called by the
deba@220
  2143
    /// \c AlterationNotifier.
deba@220
  2144
    virtual void erase(const std::vector<Item>& items) {
deba@220
  2145
      for (int i = 0; i < int(items.size()); ++i) {
deba@220
  2146
        Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@220
  2147
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@220
  2148
        _inv_map.pop_back();
deba@220
  2149
      }
deba@220
  2150
      Map::erase(items);
deba@220
  2151
    }
deba@220
  2152
deba@220
  2153
    /// \brief Build the unique map.
deba@220
  2154
    ///
deba@220
  2155
    /// Build the unique map. It is called by the
deba@220
  2156
    /// \c AlterationNotifier.
deba@220
  2157
    virtual void build() {
deba@220
  2158
      Map::build();
deba@220
  2159
      Item it;
deba@220
  2160
      const typename Map::Notifier* nf = Map::notifier();
deba@220
  2161
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2162
        Map::set(it, _inv_map.size());
deba@220
  2163
        _inv_map.push_back(it);
deba@220
  2164
      }
deba@220
  2165
    }
deba@220
  2166
deba@220
  2167
    /// \brief Clear the keys from the map.
deba@220
  2168
    ///
deba@220
  2169
    /// Clear the keys from the map. It is called by the
deba@220
  2170
    /// \c AlterationNotifier.
deba@220
  2171
    virtual void clear() {
deba@220
  2172
      _inv_map.clear();
deba@220
  2173
      Map::clear();
deba@220
  2174
    }
deba@220
  2175
deba@220
  2176
  public:
deba@220
  2177
deba@220
  2178
    /// \brief Returns the maximal value plus one.
deba@220
  2179
    ///
deba@220
  2180
    /// Returns the maximal value plus one in the map.
deba@220
  2181
    unsigned int size() const {
deba@220
  2182
      return _inv_map.size();
deba@220
  2183
    }
deba@220
  2184
deba@220
  2185
    /// \brief Swaps the position of the two items in the map.
deba@220
  2186
    ///
deba@220
  2187
    /// Swaps the position of the two items in the map.
deba@220
  2188
    void swap(const Item& p, const Item& q) {
deba@220
  2189
      int pi = Map::operator[](p);
deba@220
  2190
      int qi = Map::operator[](q);
deba@220
  2191
      Map::set(p, qi);
deba@220
  2192
      _inv_map[qi] = p;
deba@220
  2193
      Map::set(q, pi);
deba@220
  2194
      _inv_map[pi] = q;
deba@220
  2195
    }
deba@220
  2196
deba@220
  2197
    /// \brief Gives back the \e descriptor of the item.
deba@220
  2198
    ///
deba@220
  2199
    /// Gives back the mutable and unique \e descriptor of the map.
deba@220
  2200
    int operator[](const Item& item) const {
deba@220
  2201
      return Map::operator[](item);
deba@220
  2202
    }
deba@220
  2203
deba@220
  2204
    /// \brief Gives back the item by its descriptor.
deba@220
  2205
    ///
deba@220
  2206
    /// Gives back th item by its descriptor.
deba@220
  2207
    Item operator()(int id) const {
deba@220
  2208
      return _inv_map[id];
deba@220
  2209
    }
deba@220
  2210
deba@220
  2211
  private:
deba@220
  2212
deba@220
  2213
    typedef std::vector<Item> Container;
deba@220
  2214
    Container _inv_map;
deba@220
  2215
deba@220
  2216
  public:
deba@220
  2217
    /// \brief The inverse map type of DescriptorMap.
deba@220
  2218
    ///
deba@220
  2219
    /// The inverse map type of DescriptorMap.
deba@220
  2220
    class InverseMap {
deba@220
  2221
    public:
deba@220
  2222
      /// \brief Constructor of the InverseMap.
deba@220
  2223
      ///
deba@220
  2224
      /// Constructor of the InverseMap.
deba@220
  2225
      explicit InverseMap(const DescriptorMap& inverted)
deba@220
  2226
        : _inverted(inverted) {}
deba@220
  2227
deba@220
  2228
deba@220
  2229
      /// The value type of the InverseMap.
deba@220
  2230
      typedef typename DescriptorMap::Key Value;
deba@220
  2231
      /// The key type of the InverseMap.
deba@220
  2232
      typedef typename DescriptorMap::Value Key;
deba@220
  2233
deba@220
  2234
      /// \brief Subscript operator.
deba@220
  2235
      ///
deba@220
  2236
      /// Subscript operator. It gives back the item
deba@220
  2237
      /// that the descriptor belongs to currently.
deba@220
  2238
      Value operator[](const Key& key) const {
deba@220
  2239
        return _inverted(key);
deba@220
  2240
      }
deba@220
  2241
deba@220
  2242
      /// \brief Size of the map.
deba@220
  2243
      ///
deba@220
  2244
      /// Returns the size of the map.
deba@220
  2245
      unsigned int size() const {
deba@220
  2246
        return _inverted.size();
deba@220
  2247
      }
deba@220
  2248
deba@220
  2249
    private:
deba@220
  2250
      const DescriptorMap& _inverted;
deba@220
  2251
    };
deba@220
  2252
deba@220
  2253
    /// \brief Gives back the inverse of the map.
deba@220
  2254
    ///
deba@220
  2255
    /// Gives back the inverse of the map.
deba@220
  2256
    const InverseMap inverse() const {
deba@220
  2257
      return InverseMap(*this);
deba@220
  2258
    }
deba@220
  2259
  };
deba@220
  2260
deba@220
  2261
  /// \brief Returns the source of the given arc.
deba@220
  2262
  ///
deba@220
  2263
  /// The SourceMap gives back the source Node of the given arc.
deba@220
  2264
  /// \see TargetMap
deba@220
  2265
  template <typename Digraph>
deba@220
  2266
  class SourceMap {
deba@220
  2267
  public:
deba@220
  2268
deba@220
  2269
    typedef typename Digraph::Node Value;
deba@220
  2270
    typedef typename Digraph::Arc Key;
deba@220
  2271
deba@220
  2272
    /// \brief Constructor
deba@220
  2273
    ///
deba@220
  2274
    /// Constructor
kpeter@317
  2275
    /// \param digraph The digraph that the map belongs to.
deba@220
  2276
    explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220
  2277
deba@220
  2278
    /// \brief The subscript operator.
deba@220
  2279
    ///
deba@220
  2280
    /// The subscript operator.
deba@220
  2281
    /// \param arc The arc
deba@220
  2282
    /// \return The source of the arc
deba@220
  2283
    Value operator[](const Key& arc) const {
deba@220
  2284
      return _digraph.source(arc);
deba@220
  2285
    }
deba@220
  2286
deba@220
  2287
  private:
deba@220
  2288
    const Digraph& _digraph;
deba@220
  2289
  };
deba@220
  2290
kpeter@305
  2291
  /// \brief Returns a \c SourceMap class.
deba@220
  2292
  ///
kpeter@305
  2293
  /// This function just returns an \c SourceMap class.
deba@220
  2294
  /// \relates SourceMap
deba@220
  2295
  template <typename Digraph>
deba@220
  2296
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
deba@220
  2297
    return SourceMap<Digraph>(digraph);
deba@220
  2298
  }
deba@220
  2299
deba@220
  2300
  /// \brief Returns the target of the given arc.
deba@220
  2301
  ///
deba@220
  2302
  /// The TargetMap gives back the target Node of the given arc.
deba@220
  2303
  /// \see SourceMap
deba@220
  2304
  template <typename Digraph>
deba@220
  2305
  class TargetMap {
deba@220
  2306
  public:
deba@220
  2307
deba@220
  2308
    typedef typename Digraph::Node Value;
deba@220
  2309
    typedef typename Digraph::Arc Key;
deba@220
  2310
deba@220
  2311
    /// \brief Constructor
deba@220
  2312
    ///
deba@220
  2313
    /// Constructor
kpeter@317
  2314
    /// \param digraph The digraph that the map belongs to.
deba@220
  2315
    explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220
  2316
deba@220
  2317
    /// \brief The subscript operator.
deba@220
  2318
    ///
deba@220
  2319
    /// The subscript operator.
deba@220
  2320
    /// \param e The arc
deba@220
  2321
    /// \return The target of the arc
deba@220
  2322
    Value operator[](const Key& e) const {
deba@220
  2323
      return _digraph.target(e);
deba@220
  2324
    }
deba@220
  2325
deba@220
  2326
  private:
deba@220
  2327
    const Digraph& _digraph;
deba@220
  2328
  };
deba@220
  2329
kpeter@305
  2330
  /// \brief Returns a \c TargetMap class.
deba@220
  2331
  ///
kpeter@305
  2332
  /// This function just returns a \c TargetMap class.
deba@220
  2333
  /// \relates TargetMap
deba@220
  2334
  template <typename Digraph>
deba@220
  2335
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
deba@220
  2336
    return TargetMap<Digraph>(digraph);
deba@220
  2337
  }
deba@220
  2338
deba@220
  2339
  /// \brief Returns the "forward" directed arc view of an edge.
deba@220
  2340
  ///
deba@220
  2341
  /// Returns the "forward" directed arc view of an edge.
deba@220
  2342
  /// \see BackwardMap
deba@220
  2343
  template <typename Graph>
deba@220
  2344
  class ForwardMap {
deba@220
  2345
  public:
deba@220
  2346
deba@220
  2347
    typedef typename Graph::Arc Value;
deba@220
  2348
    typedef typename Graph::Edge Key;
deba@220
  2349
deba@220
  2350
    /// \brief Constructor
deba@220
  2351
    ///
deba@220
  2352
    /// Constructor
kpeter@317
  2353
    /// \param graph The graph that the map belongs to.
deba@220
  2354
    explicit ForwardMap(const Graph& graph) : _graph(graph) {}
deba@220
  2355
deba@220
  2356
    /// \brief The subscript operator.
deba@220
  2357
    ///
deba@220
  2358
    /// The subscript operator.
deba@220
  2359
    /// \param key An edge
deba@220
  2360
    /// \return The "forward" directed arc view of edge
deba@220
  2361
    Value operator[](const Key& key) const {
deba@220
  2362
      return _graph.direct(key, true);
deba@220
  2363
    }
deba@220
  2364
deba@220
  2365
  private:
deba@220
  2366
    const Graph& _graph;
deba@220
  2367
  };
deba@220
  2368
kpeter@305
  2369
  /// \brief Returns a \c ForwardMap class.
deba@220
  2370
  ///
kpeter@305
  2371
  /// This function just returns an \c ForwardMap class.
deba@220
  2372
  /// \relates ForwardMap
deba@220
  2373
  template <typename Graph>
deba@220
  2374
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@220
  2375
    return ForwardMap<Graph>(graph);
deba@220
  2376
  }
deba@220
  2377
deba@220
  2378
  /// \brief Returns the "backward" directed arc view of an edge.
deba@220
  2379
  ///
deba@220
  2380
  /// Returns the "backward" directed arc view of an edge.
deba@220
  2381
  /// \see ForwardMap
deba@220
  2382
  template <typename Graph>
deba@220
  2383
  class BackwardMap {
deba@220
  2384
  public:
deba@220
  2385
deba@220
  2386
    typedef typename Graph::Arc Value;
deba@220
  2387
    typedef typename Graph::Edge Key;
deba@220
  2388
deba@220
  2389
    /// \brief Constructor
deba@220
  2390
    ///
deba@220
  2391
    /// Constructor
kpeter@317
  2392
    /// \param graph The graph that the map belongs to.
deba@220
  2393
    explicit BackwardMap(const Graph& graph) : _graph(graph) {}
deba@220
  2394
deba@220
  2395
    /// \brief The subscript operator.
deba@220
  2396
    ///
deba@220
  2397
    /// The subscript operator.
deba@220
  2398
    /// \param key An edge
deba@220
  2399
    /// \return The "backward" directed arc view of edge
deba@220
  2400
    Value operator[](const Key& key) const {
deba@220
  2401
      return _graph.direct(key, false);
deba@220
  2402
    }
deba@220
  2403
deba@220
  2404
  private:
deba@220
  2405
    const Graph& _graph;
deba@220
  2406
  };
deba@220
  2407
kpeter@305
  2408
  /// \brief Returns a \c BackwardMap class
kpeter@305
  2409
kpeter@305
  2410
  /// This function just returns a \c BackwardMap class.
deba@220
  2411
  /// \relates BackwardMap
deba@220
  2412
  template <typename Graph>
deba@220
  2413
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@220
  2414
    return BackwardMap<Graph>(graph);
deba@220
  2415
  }
deba@220
  2416
deba@220
  2417
  /// \brief Potential difference map
deba@220
  2418
  ///
deba@220
  2419
  /// If there is an potential map on the nodes then we
deba@220
  2420
  /// can get an arc map as we get the substraction of the
deba@220
  2421
  /// values of the target and source.
deba@220
  2422
  template <typename Digraph, typename NodeMap>
deba@220
  2423
  class PotentialDifferenceMap {
deba@220
  2424
  public:
deba@220
  2425
    typedef typename Digraph::Arc Key;
deba@220
  2426
    typedef typename NodeMap::Value Value;
deba@220
  2427
deba@220
  2428
    /// \brief Constructor
deba@220
  2429
    ///
deba@220
  2430
    /// Contructor of the map
deba@220
  2431
    explicit PotentialDifferenceMap(const Digraph& digraph,
deba@220
  2432
                                    const NodeMap& potential)
deba@220
  2433
      : _digraph(digraph), _potential(potential) {}
deba@220
  2434
deba@220
  2435
    /// \brief Const subscription operator
deba@220
  2436
    ///
deba@220
  2437
    /// Const subscription operator
deba@220
  2438
    Value operator[](const Key& arc) const {
deba@220
  2439
      return _potential[_digraph.target(arc)] -
deba@220
  2440
        _potential[_digraph.source(arc)];
deba@220
  2441
    }
deba@220
  2442
deba@220
  2443
  private:
deba@220
  2444
    const Digraph& _digraph;
deba@220
  2445
    const NodeMap& _potential;
deba@220
  2446
  };
deba@220
  2447
deba@220
  2448
  /// \brief Returns a PotentialDifferenceMap.
deba@220
  2449
  ///
deba@220
  2450
  /// This function just returns a PotentialDifferenceMap.
deba@220
  2451
  /// \relates PotentialDifferenceMap
deba@220
  2452
  template <typename Digraph, typename NodeMap>
deba@220
  2453
  PotentialDifferenceMap<Digraph, NodeMap>
deba@220
  2454
  potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
deba@220
  2455
    return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
deba@220
  2456
  }
deba@220
  2457
deba@220
  2458
  /// \brief Map of the node in-degrees.
deba@220
  2459
  ///
deba@220
  2460
  /// This map returns the in-degree of a node. Once it is constructed,
deba@220
  2461
  /// the degrees are stored in a standard NodeMap, so each query is done
deba@220
  2462
  /// in constant time. On the other hand, the values are updated automatically
deba@220
  2463
  /// whenever the digraph changes.
deba@220
  2464
  ///
deba@220
  2465
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220
  2466
  /// alternative ways to modify the digraph. The correct behavior of InDegMap
deba@220
  2467
  /// is not guarantied if these additional features are used. For example
deba@220
  2468
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220
  2469
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220
  2470
  /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220
  2471
  /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220
  2472
  ///
deba@220
  2473
  /// \sa OutDegMap
deba@220
  2474
deba@220
  2475
  template <typename _Digraph>
deba@220
  2476
  class InDegMap
deba@220
  2477
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220
  2478
      ::ItemNotifier::ObserverBase {
deba@220
  2479
deba@220
  2480
  public:
deba@220
  2481
deba@220
  2482
    typedef _Digraph Digraph;
deba@220
  2483
    typedef int Value;
deba@220
  2484
    typedef typename Digraph::Node Key;
deba@220
  2485
deba@220
  2486
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220
  2487
    ::ItemNotifier::ObserverBase Parent;
deba@220
  2488
deba@220
  2489
  private:
deba@220
  2490
deba@220
  2491
    class AutoNodeMap
deba@220
  2492
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220
  2493
    public:
deba@220
  2494
deba@220
  2495
      typedef typename ItemSetTraits<Digraph, Key>::
deba@220
  2496
      template Map<int>::Type Parent;
deba@220
  2497
deba@220
  2498
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220
  2499
deba@220
  2500
      virtual void add(const Key& key) {
deba@220
  2501
        Parent::add(key);
deba@220
  2502
        Parent::set(key, 0);
deba@220
  2503
      }
deba@220
  2504
deba@220
  2505
      virtual void add(const std::vector<Key>& keys) {
deba@220
  2506
        Parent::add(keys);
deba@220
  2507
        for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2508
          Parent::set(keys[i], 0);
deba@220
  2509
        }
deba@220
  2510
      }
deba@220
  2511
deba@220
  2512
      virtual void build() {
deba@220
  2513
        Parent::build();
deba@220
  2514
        Key it;
deba@220
  2515
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  2516
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2517
          Parent::set(it, 0);
deba@220
  2518
        }
deba@220
  2519
      }
deba@220
  2520
    };
deba@220
  2521
deba@220
  2522
  public:
deba@220
  2523
deba@220
  2524
    /// \brief Constructor.
deba@220
  2525
    ///
deba@220
  2526
    /// Constructor for creating in-degree map.
deba@220
  2527
    explicit InDegMap(const Digraph& digraph)
deba@220
  2528
      : _digraph(digraph), _deg(digraph) {
deba@220
  2529
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220
  2530
deba@220
  2531
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2532
        _deg[it] = countInArcs(_digraph, it);
deba@220
  2533
      }
deba@220
  2534
    }
deba@220
  2535
deba@220
  2536
    /// Gives back the in-degree of a Node.
deba@220
  2537
    int operator[](const Key& key) const {
deba@220
  2538
      return _deg[key];
deba@220
  2539
    }
deba@220
  2540
deba@220
  2541
  protected:
deba@220
  2542
deba@220
  2543
    typedef typename Digraph::Arc Arc;
deba@220
  2544
deba@220
  2545
    virtual void add(const Arc& arc) {
deba@220
  2546
      ++_deg[_digraph.target(arc)];
deba@220
  2547
    }
deba@220
  2548
deba@220
  2549
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  2550
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2551
        ++_deg[_digraph.target(arcs[i])];
deba@220
  2552
      }
deba@220
  2553
    }
deba@220
  2554
deba@220
  2555
    virtual void erase(const Arc& arc) {
deba@220
  2556
      --_deg[_digraph.target(arc)];
deba@220
  2557
    }
deba@220
  2558
deba@220
  2559
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  2560
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2561
        --_deg[_digraph.target(arcs[i])];
deba@220
  2562
      }
deba@220
  2563
    }
deba@220
  2564
deba@220
  2565
    virtual void build() {
deba@220
  2566
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2567
        _deg[it] = countInArcs(_digraph, it);
deba@220
  2568
      }
deba@220
  2569
    }
deba@220
  2570
deba@220
  2571
    virtual void clear() {
deba@220
  2572
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2573
        _deg[it] = 0;
deba@220
  2574
      }
deba@220
  2575
    }
deba@220
  2576
  private:
deba@220
  2577
deba@220
  2578
    const Digraph& _digraph;
deba@220
  2579
    AutoNodeMap _deg;
deba@220
  2580
  };
deba@220
  2581
deba@220
  2582
  /// \brief Map of the node out-degrees.
deba@220
  2583
  ///
deba@220
  2584
  /// This map returns the out-degree of a node. Once it is constructed,
deba@220
  2585
  /// the degrees are stored in a standard NodeMap, so each query is done
deba@220
  2586
  /// in constant time. On the other hand, the values are updated automatically
deba@220
  2587
  /// whenever the digraph changes.
deba@220
  2588
  ///
deba@220
  2589
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220
  2590
  /// alternative ways to modify the digraph. The correct behavior of OutDegMap
deba@220
  2591
  /// is not guarantied if these additional features are used. For example
deba@220
  2592
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220
  2593
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220
  2594
  /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220
  2595
  /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220
  2596
  ///
deba@220
  2597
  /// \sa InDegMap
deba@220
  2598
deba@220
  2599
  template <typename _Digraph>
deba@220
  2600
  class OutDegMap
deba@220
  2601
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220
  2602
      ::ItemNotifier::ObserverBase {
deba@220
  2603
deba@220
  2604
  public:
deba@220
  2605
deba@220
  2606
    typedef _Digraph Digraph;
deba@220
  2607
    typedef int Value;
deba@220
  2608
    typedef typename Digraph::Node Key;
deba@220
  2609
deba@220
  2610
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220
  2611
    ::ItemNotifier::ObserverBase Parent;
deba@220
  2612
deba@220
  2613
  private:
deba@220
  2614
deba@220
  2615
    class AutoNodeMap
deba@220
  2616
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220
  2617
    public:
deba@220
  2618
deba@220
  2619
      typedef typename ItemSetTraits<Digraph, Key>::
deba@220
  2620
      template Map<int>::Type Parent;
deba@220
  2621
deba@220
  2622
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220
  2623
deba@220
  2624
      virtual void add(const Key& key) {
deba@220
  2625
        Parent::add(key);
deba@220
  2626
        Parent::set(key, 0);
deba@220
  2627
      }
deba@220
  2628
      virtual void add(const std::vector<Key>& keys) {
deba@220
  2629
        Parent::add(keys);
deba@220
  2630
        for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2631
          Parent::set(keys[i], 0);
deba@220
  2632
        }
deba@220
  2633
      }
deba@220
  2634
      virtual void build() {
deba@220
  2635
        Parent::build();
deba@220
  2636
        Key it;
deba@220
  2637
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  2638
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2639
          Parent::set(it, 0);
deba@220
  2640
        }
deba@220
  2641
      }
deba@220
  2642
    };
deba@220
  2643
deba@220
  2644
  public:
deba@220
  2645
deba@220
  2646
    /// \brief Constructor.
deba@220
  2647
    ///
deba@220
  2648
    /// Constructor for creating out-degree map.
deba@220
  2649
    explicit OutDegMap(const Digraph& digraph)
deba@220
  2650
      : _digraph(digraph), _deg(digraph) {
deba@220
  2651
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220
  2652
deba@220
  2653
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2654
        _deg[it] = countOutArcs(_digraph, it);
deba@220
  2655
      }
deba@220
  2656
    }
deba@220
  2657
deba@220
  2658
    /// Gives back the out-degree of a Node.
deba@220
  2659
    int operator[](const Key& key) const {
deba@220
  2660
      return _deg[key];
deba@220
  2661
    }
deba@220
  2662
deba@220
  2663
  protected:
deba@220
  2664
deba@220
  2665
    typedef typename Digraph::Arc Arc;
deba@220
  2666
deba@220
  2667
    virtual void add(const Arc& arc) {
deba@220
  2668
      ++_deg[_digraph.source(arc)];
deba@220
  2669
    }
deba@220
  2670
deba@220
  2671
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  2672
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2673
        ++_deg[_digraph.source(arcs[i])];
deba@220
  2674
      }
deba@220
  2675
    }
deba@220
  2676
deba@220
  2677
    virtual void erase(const Arc& arc) {
deba@220
  2678
      --_deg[_digraph.source(arc)];
deba@220
  2679
    }
deba@220
  2680
deba@220
  2681
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  2682
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2683
        --_deg[_digraph.source(arcs[i])];
deba@220
  2684
      }
deba@220
  2685
    }
deba@220
  2686
deba@220
  2687
    virtual void build() {
deba@220
  2688
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2689
        _deg[it] = countOutArcs(_digraph, it);
deba@220
  2690
      }
deba@220
  2691
    }
deba@220
  2692
deba@220
  2693
    virtual void clear() {
deba@220
  2694
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2695
        _deg[it] = 0;
deba@220
  2696
      }
deba@220
  2697
    }
deba@220
  2698
  private:
deba@220
  2699
deba@220
  2700
    const Digraph& _digraph;
deba@220
  2701
    AutoNodeMap _deg;
deba@220
  2702
  };
deba@220
  2703
alpar@25
  2704
  /// @}
alpar@25
  2705
}
alpar@25
  2706
alpar@25
  2707
#endif // LEMON_MAPS_H