lemon/bfs.h
changeset 100 4f754b4cf82b
child 157 2ccc1afc2c52
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/bfs.h	Thu Feb 07 21:37:07 2008 +0000
     1.3 @@ -0,0 +1,1597 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_BFS_H
    1.23 +#define LEMON_BFS_H
    1.24 +
    1.25 +///\ingroup search
    1.26 +///\file
    1.27 +///\brief Bfs algorithm.
    1.28 +
    1.29 +#include <lemon/list_graph.h>
    1.30 +#include <lemon/graph_utils.h>
    1.31 +#include <lemon/bits/path_dump.h>
    1.32 +#include <lemon/bits/invalid.h>
    1.33 +#include <lemon/error.h>
    1.34 +#include <lemon/maps.h>
    1.35 +
    1.36 +namespace lemon {
    1.37 +
    1.38 +
    1.39 +  
    1.40 +  ///Default traits class of Bfs class.
    1.41 +
    1.42 +  ///Default traits class of Bfs class.
    1.43 +  ///\param GR Digraph type.
    1.44 +  template<class GR>
    1.45 +  struct BfsDefaultTraits
    1.46 +  {
    1.47 +    ///The digraph type the algorithm runs on. 
    1.48 +    typedef GR Digraph;
    1.49 +    ///\brief The type of the map that stores the last
    1.50 +    ///arcs of the shortest paths.
    1.51 +    /// 
    1.52 +    ///The type of the map that stores the last
    1.53 +    ///arcs of the shortest paths.
    1.54 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    1.55 +    ///
    1.56 +    typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
    1.57 +    ///Instantiates a PredMap.
    1.58 + 
    1.59 +    ///This function instantiates a \ref PredMap. 
    1.60 +    ///\param G is the digraph, to which we would like to define the PredMap.
    1.61 +    ///\todo The digraph alone may be insufficient to initialize
    1.62 +    static PredMap *createPredMap(const GR &G) 
    1.63 +    {
    1.64 +      return new PredMap(G);
    1.65 +    }
    1.66 +    ///The type of the map that indicates which nodes are processed.
    1.67 + 
    1.68 +    ///The type of the map that indicates which nodes are processed.
    1.69 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    1.70 +    ///\todo named parameter to set this type, function to read and write.
    1.71 +    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    1.72 +    ///Instantiates a ProcessedMap.
    1.73 + 
    1.74 +    ///This function instantiates a \ref ProcessedMap. 
    1.75 +    ///\param g is the digraph, to which
    1.76 +    ///we would like to define the \ref ProcessedMap
    1.77 +#ifdef DOXYGEN
    1.78 +    static ProcessedMap *createProcessedMap(const GR &g)
    1.79 +#else
    1.80 +    static ProcessedMap *createProcessedMap(const GR &)
    1.81 +#endif
    1.82 +    {
    1.83 +      return new ProcessedMap();
    1.84 +    }
    1.85 +    ///The type of the map that indicates which nodes are reached.
    1.86 + 
    1.87 +    ///The type of the map that indicates which nodes are reached.
    1.88 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    1.89 +    ///\todo named parameter to set this type, function to read and write.
    1.90 +    typedef typename Digraph::template NodeMap<bool> ReachedMap;
    1.91 +    ///Instantiates a ReachedMap.
    1.92 + 
    1.93 +    ///This function instantiates a \ref ReachedMap. 
    1.94 +    ///\param G is the digraph, to which
    1.95 +    ///we would like to define the \ref ReachedMap.
    1.96 +    static ReachedMap *createReachedMap(const GR &G)
    1.97 +    {
    1.98 +      return new ReachedMap(G);
    1.99 +    }
   1.100 +    ///The type of the map that stores the dists of the nodes.
   1.101 + 
   1.102 +    ///The type of the map that stores the dists of the nodes.
   1.103 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   1.104 +    ///
   1.105 +    typedef typename Digraph::template NodeMap<int> DistMap;
   1.106 +    ///Instantiates a DistMap.
   1.107 + 
   1.108 +    ///This function instantiates a \ref DistMap. 
   1.109 +    ///\param G is the digraph, to which we would like to define the \ref DistMap
   1.110 +    static DistMap *createDistMap(const GR &G)
   1.111 +    {
   1.112 +      return new DistMap(G);
   1.113 +    }
   1.114 +  };
   1.115 +  
   1.116 +  ///%BFS algorithm class.
   1.117 +  
   1.118 +  ///\ingroup search
   1.119 +  ///This class provides an efficient implementation of the %BFS algorithm.
   1.120 +  ///
   1.121 +  ///\param GR The digraph type the algorithm runs on. The default value is
   1.122 +  ///\ref ListDigraph. The value of GR is not used directly by Bfs, it
   1.123 +  ///is only passed to \ref BfsDefaultTraits.
   1.124 +  ///\param TR Traits class to set various data types used by the algorithm.
   1.125 +  ///The default traits class is
   1.126 +  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
   1.127 +  ///See \ref BfsDefaultTraits for the documentation of
   1.128 +  ///a Bfs traits class.
   1.129 +  ///
   1.130 +  ///\author Alpar Juttner
   1.131 +
   1.132 +#ifdef DOXYGEN
   1.133 +  template <typename GR,
   1.134 +	    typename TR>
   1.135 +#else
   1.136 +  template <typename GR=ListDigraph,
   1.137 +	    typename TR=BfsDefaultTraits<GR> >
   1.138 +#endif
   1.139 +  class Bfs {
   1.140 +  public:
   1.141 +    /**
   1.142 +     * \brief \ref Exception for uninitialized parameters.
   1.143 +     *
   1.144 +     * This error represents problems in the initialization
   1.145 +     * of the parameters of the algorithms.
   1.146 +     */
   1.147 +    class UninitializedParameter : public lemon::UninitializedParameter {
   1.148 +    public:
   1.149 +      virtual const char* what() const throw() {
   1.150 +	return "lemon::Bfs::UninitializedParameter";
   1.151 +      }
   1.152 +    };
   1.153 +
   1.154 +    typedef TR Traits;
   1.155 +    ///The type of the underlying digraph.
   1.156 +    typedef typename TR::Digraph Digraph;
   1.157 +    
   1.158 +    ///\brief The type of the map that stores the last
   1.159 +    ///arcs of the shortest paths.
   1.160 +    typedef typename TR::PredMap PredMap;
   1.161 +    ///The type of the map indicating which nodes are reached.
   1.162 +    typedef typename TR::ReachedMap ReachedMap;
   1.163 +    ///The type of the map indicating which nodes are processed.
   1.164 +    typedef typename TR::ProcessedMap ProcessedMap;
   1.165 +    ///The type of the map that stores the dists of the nodes.
   1.166 +    typedef typename TR::DistMap DistMap;
   1.167 +  private:
   1.168 +
   1.169 +    typedef typename Digraph::Node Node;
   1.170 +    typedef typename Digraph::NodeIt NodeIt;
   1.171 +    typedef typename Digraph::Arc Arc;
   1.172 +    typedef typename Digraph::OutArcIt OutArcIt;
   1.173 +
   1.174 +    /// Pointer to the underlying digraph.
   1.175 +    const Digraph *G;
   1.176 +    ///Pointer to the map of predecessors arcs.
   1.177 +    PredMap *_pred;
   1.178 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   1.179 +    bool local_pred;
   1.180 +    ///Pointer to the map of distances.
   1.181 +    DistMap *_dist;
   1.182 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   1.183 +    bool local_dist;
   1.184 +    ///Pointer to the map of reached status of the nodes.
   1.185 +    ReachedMap *_reached;
   1.186 +    ///Indicates if \ref _reached is locally allocated (\c true) or not.
   1.187 +    bool local_reached;
   1.188 +    ///Pointer to the map of processed status of the nodes.
   1.189 +    ProcessedMap *_processed;
   1.190 +    ///Indicates if \ref _processed is locally allocated (\c true) or not.
   1.191 +    bool local_processed;
   1.192 +
   1.193 +    std::vector<typename Digraph::Node> _queue;
   1.194 +    int _queue_head,_queue_tail,_queue_next_dist;
   1.195 +    int _curr_dist;
   1.196 +
   1.197 +    ///Creates the maps if necessary.
   1.198 +    
   1.199 +    ///\todo Better memory allocation (instead of new).
   1.200 +    void create_maps() 
   1.201 +    {
   1.202 +      if(!_pred) {
   1.203 +	local_pred = true;
   1.204 +	_pred = Traits::createPredMap(*G);
   1.205 +      }
   1.206 +      if(!_dist) {
   1.207 +	local_dist = true;
   1.208 +	_dist = Traits::createDistMap(*G);
   1.209 +      }
   1.210 +      if(!_reached) {
   1.211 +	local_reached = true;
   1.212 +	_reached = Traits::createReachedMap(*G);
   1.213 +      }
   1.214 +      if(!_processed) {
   1.215 +	local_processed = true;
   1.216 +	_processed = Traits::createProcessedMap(*G);
   1.217 +      }
   1.218 +    }
   1.219 +
   1.220 +  protected:
   1.221 +    
   1.222 +    Bfs() {}
   1.223 +    
   1.224 +  public:
   1.225 + 
   1.226 +    typedef Bfs Create;
   1.227 +
   1.228 +    ///\name Named template parameters
   1.229 +
   1.230 +    ///@{
   1.231 +
   1.232 +    template <class T>
   1.233 +    struct DefPredMapTraits : public Traits {
   1.234 +      typedef T PredMap;
   1.235 +      static PredMap *createPredMap(const Digraph &) 
   1.236 +      {
   1.237 +	throw UninitializedParameter();
   1.238 +      }
   1.239 +    };
   1.240 +    ///\brief \ref named-templ-param "Named parameter" for setting
   1.241 +    ///PredMap type
   1.242 +    ///
   1.243 +    ///\ref named-templ-param "Named parameter" for setting PredMap type
   1.244 +    ///
   1.245 +    template <class T>
   1.246 +    struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { 
   1.247 +      typedef Bfs< Digraph, DefPredMapTraits<T> > Create;
   1.248 +    };
   1.249 +    
   1.250 +    template <class T>
   1.251 +    struct DefDistMapTraits : public Traits {
   1.252 +      typedef T DistMap;
   1.253 +      static DistMap *createDistMap(const Digraph &) 
   1.254 +      {
   1.255 +	throw UninitializedParameter();
   1.256 +      }
   1.257 +    };
   1.258 +    ///\brief \ref named-templ-param "Named parameter" for setting
   1.259 +    ///DistMap type
   1.260 +    ///
   1.261 +    ///\ref named-templ-param "Named parameter" for setting DistMap type
   1.262 +    ///
   1.263 +    template <class T>
   1.264 +    struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { 
   1.265 +      typedef Bfs< Digraph, DefDistMapTraits<T> > Create;
   1.266 +    };
   1.267 +    
   1.268 +    template <class T>
   1.269 +    struct DefReachedMapTraits : public Traits {
   1.270 +      typedef T ReachedMap;
   1.271 +      static ReachedMap *createReachedMap(const Digraph &) 
   1.272 +      {
   1.273 +	throw UninitializedParameter();
   1.274 +      }
   1.275 +    };
   1.276 +    ///\brief \ref named-templ-param "Named parameter" for setting
   1.277 +    ///ReachedMap type
   1.278 +    ///
   1.279 +    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   1.280 +    ///
   1.281 +    template <class T>
   1.282 +    struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { 
   1.283 +      typedef Bfs< Digraph, DefReachedMapTraits<T> > Create;
   1.284 +    };
   1.285 +    
   1.286 +    template <class T>
   1.287 +    struct DefProcessedMapTraits : public Traits {
   1.288 +      typedef T ProcessedMap;
   1.289 +      static ProcessedMap *createProcessedMap(const Digraph &) 
   1.290 +      {
   1.291 +	throw UninitializedParameter();
   1.292 +      }
   1.293 +    };
   1.294 +    ///\brief \ref named-templ-param "Named parameter" for setting
   1.295 +    ///ProcessedMap type
   1.296 +    ///
   1.297 +    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   1.298 +    ///
   1.299 +    template <class T>
   1.300 +    struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > {
   1.301 +      typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create;
   1.302 +    };
   1.303 +    
   1.304 +    struct DefDigraphProcessedMapTraits : public Traits {
   1.305 +      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
   1.306 +      static ProcessedMap *createProcessedMap(const Digraph &G) 
   1.307 +      {
   1.308 +	return new ProcessedMap(G);
   1.309 +      }
   1.310 +    };
   1.311 +    ///\brief \ref named-templ-param "Named parameter"
   1.312 +    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
   1.313 +    ///
   1.314 +    ///\ref named-templ-param "Named parameter"
   1.315 +    ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
   1.316 +    ///If you don't set it explicitly, it will be automatically allocated.
   1.317 +    template <class T>
   1.318 +    struct DefProcessedMapToBeDefaultMap :
   1.319 +      public Bfs< Digraph, DefDigraphProcessedMapTraits> { 
   1.320 +      typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create;
   1.321 +    };
   1.322 +    
   1.323 +    ///@}
   1.324 +
   1.325 +  public:      
   1.326 +    
   1.327 +    ///Constructor.
   1.328 +    
   1.329 +    ///\param _G the digraph the algorithm will run on.
   1.330 +    ///
   1.331 +    Bfs(const Digraph& _G) :
   1.332 +      G(&_G),
   1.333 +      _pred(NULL), local_pred(false),
   1.334 +      _dist(NULL), local_dist(false),
   1.335 +      _reached(NULL), local_reached(false),
   1.336 +      _processed(NULL), local_processed(false)
   1.337 +    { }
   1.338 +    
   1.339 +    ///Destructor.
   1.340 +    ~Bfs() 
   1.341 +    {
   1.342 +      if(local_pred) delete _pred;
   1.343 +      if(local_dist) delete _dist;
   1.344 +      if(local_reached) delete _reached;
   1.345 +      if(local_processed) delete _processed;
   1.346 +    }
   1.347 +
   1.348 +    ///Sets the map storing the predecessor arcs.
   1.349 +
   1.350 +    ///Sets the map storing the predecessor arcs.
   1.351 +    ///If you don't use this function before calling \ref run(),
   1.352 +    ///it will allocate one. The destructor deallocates this
   1.353 +    ///automatically allocated map, of course.
   1.354 +    ///\return <tt> (*this) </tt>
   1.355 +    Bfs &predMap(PredMap &m) 
   1.356 +    {
   1.357 +      if(local_pred) {
   1.358 +	delete _pred;
   1.359 +	local_pred=false;
   1.360 +      }
   1.361 +      _pred = &m;
   1.362 +      return *this;
   1.363 +    }
   1.364 +
   1.365 +    ///Sets the map indicating the reached nodes.
   1.366 +
   1.367 +    ///Sets the map indicating the reached nodes.
   1.368 +    ///If you don't use this function before calling \ref run(),
   1.369 +    ///it will allocate one. The destructor deallocates this
   1.370 +    ///automatically allocated map, of course.
   1.371 +    ///\return <tt> (*this) </tt>
   1.372 +    Bfs &reachedMap(ReachedMap &m) 
   1.373 +    {
   1.374 +      if(local_reached) {
   1.375 +	delete _reached;
   1.376 +	local_reached=false;
   1.377 +      }
   1.378 +      _reached = &m;
   1.379 +      return *this;
   1.380 +    }
   1.381 +
   1.382 +    ///Sets the map indicating the processed nodes.
   1.383 +
   1.384 +    ///Sets the map indicating the processed nodes.
   1.385 +    ///If you don't use this function before calling \ref run(),
   1.386 +    ///it will allocate one. The destructor deallocates this
   1.387 +    ///automatically allocated map, of course.
   1.388 +    ///\return <tt> (*this) </tt>
   1.389 +    Bfs &processedMap(ProcessedMap &m) 
   1.390 +    {
   1.391 +      if(local_processed) {
   1.392 +	delete _processed;
   1.393 +	local_processed=false;
   1.394 +      }
   1.395 +      _processed = &m;
   1.396 +      return *this;
   1.397 +    }
   1.398 +
   1.399 +    ///Sets the map storing the distances calculated by the algorithm.
   1.400 +
   1.401 +    ///Sets the map storing the distances calculated by the algorithm.
   1.402 +    ///If you don't use this function before calling \ref run(),
   1.403 +    ///it will allocate one. The destructor deallocates this
   1.404 +    ///automatically allocated map, of course.
   1.405 +    ///\return <tt> (*this) </tt>
   1.406 +    Bfs &distMap(DistMap &m) 
   1.407 +    {
   1.408 +      if(local_dist) {
   1.409 +	delete _dist;
   1.410 +	local_dist=false;
   1.411 +      }
   1.412 +      _dist = &m;
   1.413 +      return *this;
   1.414 +    }
   1.415 +
   1.416 +  public:
   1.417 +    ///\name Execution control
   1.418 +    ///The simplest way to execute the algorithm is to use
   1.419 +    ///one of the member functions called \c run(...).
   1.420 +    ///\n
   1.421 +    ///If you need more control on the execution,
   1.422 +    ///first you must call \ref init(), then you can add several source nodes
   1.423 +    ///with \ref addSource().
   1.424 +    ///Finally \ref start() will perform the actual path
   1.425 +    ///computation.
   1.426 +
   1.427 +    ///@{
   1.428 +
   1.429 +    ///\brief Initializes the internal data structures.
   1.430 +    ///
   1.431 +    ///Initializes the internal data structures.
   1.432 +    ///
   1.433 +    void init()
   1.434 +    {
   1.435 +      create_maps();
   1.436 +      _queue.resize(countNodes(*G));
   1.437 +      _queue_head=_queue_tail=0;
   1.438 +      _curr_dist=1;
   1.439 +      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   1.440 +	_pred->set(u,INVALID);
   1.441 +	_reached->set(u,false);
   1.442 +	_processed->set(u,false);
   1.443 +      }
   1.444 +    }
   1.445 +    
   1.446 +    ///Adds a new source node.
   1.447 +
   1.448 +    ///Adds a new source node to the set of nodes to be processed.
   1.449 +    ///
   1.450 +    void addSource(Node s)
   1.451 +    {
   1.452 +      if(!(*_reached)[s])
   1.453 +	{
   1.454 +	  _reached->set(s,true);
   1.455 +	  _pred->set(s,INVALID);
   1.456 +	  _dist->set(s,0);
   1.457 +	  _queue[_queue_head++]=s;
   1.458 +	  _queue_next_dist=_queue_head;
   1.459 +	}
   1.460 +    }
   1.461 +    
   1.462 +    ///Processes the next node.
   1.463 +
   1.464 +    ///Processes the next node.
   1.465 +    ///
   1.466 +    ///\return The processed node.
   1.467 +    ///
   1.468 +    ///\warning The queue must not be empty!
   1.469 +    Node processNextNode()
   1.470 +    {
   1.471 +      if(_queue_tail==_queue_next_dist) {
   1.472 +	_curr_dist++;
   1.473 +	_queue_next_dist=_queue_head;
   1.474 +      }
   1.475 +      Node n=_queue[_queue_tail++];
   1.476 +      _processed->set(n,true);
   1.477 +      Node m;
   1.478 +      for(OutArcIt e(*G,n);e!=INVALID;++e)
   1.479 +	if(!(*_reached)[m=G->target(e)]) {
   1.480 +	  _queue[_queue_head++]=m;
   1.481 +	  _reached->set(m,true);
   1.482 +	  _pred->set(m,e);
   1.483 +	  _dist->set(m,_curr_dist);
   1.484 +	}
   1.485 +      return n;
   1.486 +    }
   1.487 +
   1.488 +    ///Processes the next node.
   1.489 +
   1.490 +    ///Processes the next node. And checks that the given target node
   1.491 +    ///is reached. If the target node is reachable from the processed
   1.492 +    ///node then the reached parameter will be set true. The reached
   1.493 +    ///parameter should be initially false.
   1.494 +    ///
   1.495 +    ///\param target The target node.
   1.496 +    ///\retval reach Indicates that the target node is reached.
   1.497 +    ///\return The processed node.
   1.498 +    ///
   1.499 +    ///\warning The queue must not be empty!
   1.500 +    Node processNextNode(Node target, bool& reach)
   1.501 +    {
   1.502 +      if(_queue_tail==_queue_next_dist) {
   1.503 +	_curr_dist++;
   1.504 +	_queue_next_dist=_queue_head;
   1.505 +      }
   1.506 +      Node n=_queue[_queue_tail++];
   1.507 +      _processed->set(n,true);
   1.508 +      Node m;
   1.509 +      for(OutArcIt e(*G,n);e!=INVALID;++e)
   1.510 +	if(!(*_reached)[m=G->target(e)]) {
   1.511 +	  _queue[_queue_head++]=m;
   1.512 +	  _reached->set(m,true);
   1.513 +	  _pred->set(m,e);
   1.514 +	  _dist->set(m,_curr_dist);
   1.515 +          reach = reach || (target == m);
   1.516 +	}
   1.517 +      return n;
   1.518 +    }
   1.519 +
   1.520 +    ///Processes the next node.
   1.521 +
   1.522 +    ///Processes the next node. And checks that at least one of
   1.523 +    ///reached node has true value in the \c nm node map. If one node
   1.524 +    ///with true value is reachable from the processed node then the
   1.525 +    ///rnode parameter will be set to the first of such nodes.
   1.526 +    ///
   1.527 +    ///\param nm The node map of possible targets.
   1.528 +    ///\retval rnode The reached target node.
   1.529 +    ///\return The processed node.
   1.530 +    ///
   1.531 +    ///\warning The queue must not be empty!
   1.532 +    template<class NM>
   1.533 +    Node processNextNode(const NM& nm, Node& rnode)
   1.534 +    {
   1.535 +      if(_queue_tail==_queue_next_dist) {
   1.536 +	_curr_dist++;
   1.537 +	_queue_next_dist=_queue_head;
   1.538 +      }
   1.539 +      Node n=_queue[_queue_tail++];
   1.540 +      _processed->set(n,true);
   1.541 +      Node m;
   1.542 +      for(OutArcIt e(*G,n);e!=INVALID;++e)
   1.543 +	if(!(*_reached)[m=G->target(e)]) {
   1.544 +	  _queue[_queue_head++]=m;
   1.545 +	  _reached->set(m,true);
   1.546 +	  _pred->set(m,e);
   1.547 +	  _dist->set(m,_curr_dist);
   1.548 +	  if (nm[m] && rnode == INVALID) rnode = m;
   1.549 +	}
   1.550 +      return n;
   1.551 +    }
   1.552 +      
   1.553 +    ///Next node to be processed.
   1.554 +
   1.555 +    ///Next node to be processed.
   1.556 +    ///
   1.557 +    ///\return The next node to be processed or INVALID if the queue is
   1.558 +    /// empty.
   1.559 +    Node nextNode()
   1.560 +    { 
   1.561 +      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
   1.562 +    }
   1.563 + 
   1.564 +    ///\brief Returns \c false if there are nodes
   1.565 +    ///to be processed in the queue
   1.566 +    ///
   1.567 +    ///Returns \c false if there are nodes
   1.568 +    ///to be processed in the queue
   1.569 +    bool emptyQueue() { return _queue_tail==_queue_head; }
   1.570 +    ///Returns the number of the nodes to be processed.
   1.571 +    
   1.572 +    ///Returns the number of the nodes to be processed in the queue.
   1.573 +    int queueSize() { return _queue_head-_queue_tail; }
   1.574 +    
   1.575 +    ///Executes the algorithm.
   1.576 +
   1.577 +    ///Executes the algorithm.
   1.578 +    ///
   1.579 +    ///\pre init() must be called and at least one node should be added
   1.580 +    ///with addSource() before using this function.
   1.581 +    ///
   1.582 +    ///This method runs the %BFS algorithm from the root node(s)
   1.583 +    ///in order to
   1.584 +    ///compute the
   1.585 +    ///shortest path to each node. The algorithm computes
   1.586 +    ///- The shortest path tree.
   1.587 +    ///- The distance of each node from the root(s).
   1.588 +    void start()
   1.589 +    {
   1.590 +      while ( !emptyQueue() ) processNextNode();
   1.591 +    }
   1.592 +    
   1.593 +    ///Executes the algorithm until \c dest is reached.
   1.594 +
   1.595 +    ///Executes the algorithm until \c dest is reached.
   1.596 +    ///
   1.597 +    ///\pre init() must be called and at least one node should be added
   1.598 +    ///with addSource() before using this function.
   1.599 +    ///
   1.600 +    ///This method runs the %BFS algorithm from the root node(s)
   1.601 +    ///in order to compute the shortest path to \c dest.
   1.602 +    ///The algorithm computes
   1.603 +    ///- The shortest path to \c  dest.
   1.604 +    ///- The distance of \c dest from the root(s).
   1.605 +    void start(Node dest)
   1.606 +    {
   1.607 +      bool reach = false;
   1.608 +      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
   1.609 +    }
   1.610 +    
   1.611 +    ///Executes the algorithm until a condition is met.
   1.612 +
   1.613 +    ///Executes the algorithm until a condition is met.
   1.614 +    ///
   1.615 +    ///\pre init() must be called and at least one node should be added
   1.616 +    ///with addSource() before using this function.
   1.617 +    ///
   1.618 +    ///\param nm must be a bool (or convertible) node map. The
   1.619 +    ///algorithm will stop when it reaches a node \c v with
   1.620 +    /// <tt>nm[v]</tt> true.
   1.621 +    ///
   1.622 +    ///\return The reached node \c v with <tt>nm[v]</tt> true or
   1.623 +    ///\c INVALID if no such node was found.
   1.624 +    template<class NM>
   1.625 +    Node start(const NM &nm)
   1.626 +    {
   1.627 +      Node rnode = INVALID;
   1.628 +      while ( !emptyQueue() && rnode == INVALID ) {
   1.629 +	processNextNode(nm, rnode);
   1.630 +      }
   1.631 +      return rnode;
   1.632 +    }
   1.633 +    
   1.634 +    ///Runs %BFS algorithm from node \c s.
   1.635 +    
   1.636 +    ///This method runs the %BFS algorithm from a root node \c s
   1.637 +    ///in order to
   1.638 +    ///compute the
   1.639 +    ///shortest path to each node. The algorithm computes
   1.640 +    ///- The shortest path tree.
   1.641 +    ///- The distance of each node from the root.
   1.642 +    ///
   1.643 +    ///\note b.run(s) is just a shortcut of the following code.
   1.644 +    ///\code
   1.645 +    ///  b.init();
   1.646 +    ///  b.addSource(s);
   1.647 +    ///  b.start();
   1.648 +    ///\endcode
   1.649 +    void run(Node s) {
   1.650 +      init();
   1.651 +      addSource(s);
   1.652 +      start();
   1.653 +    }
   1.654 +    
   1.655 +    ///Finds the shortest path between \c s and \c t.
   1.656 +    
   1.657 +    ///Finds the shortest path between \c s and \c t.
   1.658 +    ///
   1.659 +    ///\return The length of the shortest s---t path if there exists one,
   1.660 +    ///0 otherwise.
   1.661 +    ///\note Apart from the return value, b.run(s) is
   1.662 +    ///just a shortcut of the following code.
   1.663 +    ///\code
   1.664 +    ///  b.init();
   1.665 +    ///  b.addSource(s);
   1.666 +    ///  b.start(t);
   1.667 +    ///\endcode
   1.668 +    int run(Node s,Node t) {
   1.669 +      init();
   1.670 +      addSource(s);
   1.671 +      start(t);
   1.672 +      return reached(t) ? _curr_dist : 0;
   1.673 +    }
   1.674 +    
   1.675 +    ///@}
   1.676 +
   1.677 +    ///\name Query Functions
   1.678 +    ///The result of the %BFS algorithm can be obtained using these
   1.679 +    ///functions.\n
   1.680 +    ///Before the use of these functions,
   1.681 +    ///either run() or start() must be calleb.
   1.682 +    
   1.683 +    ///@{
   1.684 +
   1.685 +    typedef PredMapPath<Digraph, PredMap> Path;
   1.686 +
   1.687 +    ///Gives back the shortest path.
   1.688 +    
   1.689 +    ///Gives back the shortest path.
   1.690 +    ///\pre The \c t should be reachable from the source.
   1.691 +    Path path(Node t) 
   1.692 +    {
   1.693 +      return Path(*G, *_pred, t);
   1.694 +    }
   1.695 +
   1.696 +    ///The distance of a node from the root(s).
   1.697 +
   1.698 +    ///Returns the distance of a node from the root(s).
   1.699 +    ///\pre \ref run() must be called before using this function.
   1.700 +    ///\warning If node \c v in unreachable from the root(s) the return value
   1.701 +    ///of this function is undefined.
   1.702 +    int dist(Node v) const { return (*_dist)[v]; }
   1.703 +
   1.704 +    ///Returns the 'previous arc' of the shortest path tree.
   1.705 +
   1.706 +    ///For a node \c v it returns the 'previous arc'
   1.707 +    ///of the shortest path tree,
   1.708 +    ///i.e. it returns the last arc of a shortest path from the root(s) to \c
   1.709 +    ///v. It is \ref INVALID
   1.710 +    ///if \c v is unreachable from the root(s) or \c v is a root. The
   1.711 +    ///shortest path tree used here is equal to the shortest path tree used in
   1.712 +    ///\ref predNode().
   1.713 +    ///\pre Either \ref run() or \ref start() must be called before using
   1.714 +    ///this function.
   1.715 +    Arc predArc(Node v) const { return (*_pred)[v];}
   1.716 +
   1.717 +    ///Returns the 'previous node' of the shortest path tree.
   1.718 +
   1.719 +    ///For a node \c v it returns the 'previous node'
   1.720 +    ///of the shortest path tree,
   1.721 +    ///i.e. it returns the last but one node from a shortest path from the
   1.722 +    ///root(a) to \c /v.
   1.723 +    ///It is INVALID if \c v is unreachable from the root(s) or
   1.724 +    ///if \c v itself a root.
   1.725 +    ///The shortest path tree used here is equal to the shortest path
   1.726 +    ///tree used in \ref predArc().
   1.727 +    ///\pre Either \ref run() or \ref start() must be called before
   1.728 +    ///using this function.
   1.729 +    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   1.730 +				  G->source((*_pred)[v]); }
   1.731 +    
   1.732 +    ///Returns a reference to the NodeMap of distances.
   1.733 +
   1.734 +    ///Returns a reference to the NodeMap of distances.
   1.735 +    ///\pre Either \ref run() or \ref init() must
   1.736 +    ///be called before using this function.
   1.737 +    const DistMap &distMap() const { return *_dist;}
   1.738 + 
   1.739 +    ///Returns a reference to the shortest path tree map.
   1.740 +
   1.741 +    ///Returns a reference to the NodeMap of the arcs of the
   1.742 +    ///shortest path tree.
   1.743 +    ///\pre Either \ref run() or \ref init()
   1.744 +    ///must be called before using this function.
   1.745 +    const PredMap &predMap() const { return *_pred;}
   1.746 + 
   1.747 +    ///Checks if a node is reachable from the root.
   1.748 +
   1.749 +    ///Returns \c true if \c v is reachable from the root.
   1.750 +    ///\warning The source nodes are indicated as unreached.
   1.751 +    ///\pre Either \ref run() or \ref start()
   1.752 +    ///must be called before using this function.
   1.753 +    ///
   1.754 +    bool reached(Node v) { return (*_reached)[v]; }
   1.755 +    
   1.756 +    ///@}
   1.757 +  };
   1.758 +
   1.759 +  ///Default traits class of Bfs function.
   1.760 +
   1.761 +  ///Default traits class of Bfs function.
   1.762 +  ///\param GR Digraph type.
   1.763 +  template<class GR>
   1.764 +  struct BfsWizardDefaultTraits
   1.765 +  {
   1.766 +    ///The digraph type the algorithm runs on. 
   1.767 +    typedef GR Digraph;
   1.768 +    ///\brief The type of the map that stores the last
   1.769 +    ///arcs of the shortest paths.
   1.770 +    /// 
   1.771 +    ///The type of the map that stores the last
   1.772 +    ///arcs of the shortest paths.
   1.773 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   1.774 +    ///
   1.775 +    typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap;
   1.776 +    ///Instantiates a PredMap.
   1.777 + 
   1.778 +    ///This function instantiates a \ref PredMap. 
   1.779 +    ///\param g is the digraph, to which we would like to define the PredMap.
   1.780 +    ///\todo The digraph alone may be insufficient to initialize
   1.781 +#ifdef DOXYGEN
   1.782 +    static PredMap *createPredMap(const GR &g) 
   1.783 +#else
   1.784 +    static PredMap *createPredMap(const GR &) 
   1.785 +#endif
   1.786 +    {
   1.787 +      return new PredMap();
   1.788 +    }
   1.789 +
   1.790 +    ///The type of the map that indicates which nodes are processed.
   1.791 + 
   1.792 +    ///The type of the map that indicates which nodes are processed.
   1.793 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   1.794 +    ///\todo named parameter to set this type, function to read and write.
   1.795 +    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
   1.796 +    ///Instantiates a ProcessedMap.
   1.797 + 
   1.798 +    ///This function instantiates a \ref ProcessedMap. 
   1.799 +    ///\param g is the digraph, to which
   1.800 +    ///we would like to define the \ref ProcessedMap
   1.801 +#ifdef DOXYGEN
   1.802 +    static ProcessedMap *createProcessedMap(const GR &g)
   1.803 +#else
   1.804 +    static ProcessedMap *createProcessedMap(const GR &)
   1.805 +#endif
   1.806 +    {
   1.807 +      return new ProcessedMap();
   1.808 +    }
   1.809 +    ///The type of the map that indicates which nodes are reached.
   1.810 + 
   1.811 +    ///The type of the map that indicates which nodes are reached.
   1.812 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   1.813 +    ///\todo named parameter to set this type, function to read and write.
   1.814 +    typedef typename Digraph::template NodeMap<bool> ReachedMap;
   1.815 +    ///Instantiates a ReachedMap.
   1.816 + 
   1.817 +    ///This function instantiates a \ref ReachedMap. 
   1.818 +    ///\param G is the digraph, to which
   1.819 +    ///we would like to define the \ref ReachedMap.
   1.820 +    static ReachedMap *createReachedMap(const GR &G)
   1.821 +    {
   1.822 +      return new ReachedMap(G);
   1.823 +    }
   1.824 +    ///The type of the map that stores the dists of the nodes.
   1.825 + 
   1.826 +    ///The type of the map that stores the dists of the nodes.
   1.827 +    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   1.828 +    ///
   1.829 +    typedef NullMap<typename Digraph::Node,int> DistMap;
   1.830 +    ///Instantiates a DistMap.
   1.831 + 
   1.832 +    ///This function instantiates a \ref DistMap. 
   1.833 +    ///\param g is the digraph, to which we would like to define the \ref DistMap
   1.834 +#ifdef DOXYGEN
   1.835 +    static DistMap *createDistMap(const GR &g)
   1.836 +#else
   1.837 +    static DistMap *createDistMap(const GR &)
   1.838 +#endif
   1.839 +    {
   1.840 +      return new DistMap();
   1.841 +    }
   1.842 +  };
   1.843 +  
   1.844 +  /// Default traits used by \ref BfsWizard
   1.845 +
   1.846 +  /// To make it easier to use Bfs algorithm
   1.847 +  ///we have created a wizard class.
   1.848 +  /// This \ref BfsWizard class needs default traits,
   1.849 +  ///as well as the \ref Bfs class.
   1.850 +  /// The \ref BfsWizardBase is a class to be the default traits of the
   1.851 +  /// \ref BfsWizard class.
   1.852 +  template<class GR>
   1.853 +  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
   1.854 +  {
   1.855 +
   1.856 +    typedef BfsWizardDefaultTraits<GR> Base;
   1.857 +  protected:
   1.858 +    /// Type of the nodes in the digraph.
   1.859 +    typedef typename Base::Digraph::Node Node;
   1.860 +
   1.861 +    /// Pointer to the underlying digraph.
   1.862 +    void *_g;
   1.863 +    ///Pointer to the map of reached nodes.
   1.864 +    void *_reached;
   1.865 +    ///Pointer to the map of processed nodes.
   1.866 +    void *_processed;
   1.867 +    ///Pointer to the map of predecessors arcs.
   1.868 +    void *_pred;
   1.869 +    ///Pointer to the map of distances.
   1.870 +    void *_dist;
   1.871 +    ///Pointer to the source node.
   1.872 +    Node _source;
   1.873 +    
   1.874 +    public:
   1.875 +    /// Constructor.
   1.876 +    
   1.877 +    /// This constructor does not require parameters, therefore it initiates
   1.878 +    /// all of the attributes to default values (0, INVALID).
   1.879 +    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   1.880 +			   _dist(0), _source(INVALID) {}
   1.881 +
   1.882 +    /// Constructor.
   1.883 +    
   1.884 +    /// This constructor requires some parameters,
   1.885 +    /// listed in the parameters list.
   1.886 +    /// Others are initiated to 0.
   1.887 +    /// \param g is the initial value of  \ref _g
   1.888 +    /// \param s is the initial value of  \ref _source
   1.889 +    BfsWizardBase(const GR &g, Node s=INVALID) :
   1.890 +      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), 
   1.891 +      _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
   1.892 +
   1.893 +  };
   1.894 +  
   1.895 +  /// A class to make the usage of Bfs algorithm easier
   1.896 +
   1.897 +  /// This class is created to make it easier to use Bfs algorithm.
   1.898 +  /// It uses the functions and features of the plain \ref Bfs,
   1.899 +  /// but it is much simpler to use it.
   1.900 +  ///
   1.901 +  /// Simplicity means that the way to change the types defined
   1.902 +  /// in the traits class is based on functions that returns the new class
   1.903 +  /// and not on templatable built-in classes.
   1.904 +  /// When using the plain \ref Bfs
   1.905 +  /// the new class with the modified type comes from
   1.906 +  /// the original class by using the ::
   1.907 +  /// operator. In the case of \ref BfsWizard only
   1.908 +  /// a function have to be called and it will
   1.909 +  /// return the needed class.
   1.910 +  ///
   1.911 +  /// It does not have own \ref run method. When its \ref run method is called
   1.912 +  /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
   1.913 +  /// method of it.
   1.914 +  template<class TR>
   1.915 +  class BfsWizard : public TR
   1.916 +  {
   1.917 +    typedef TR Base;
   1.918 +
   1.919 +    ///The type of the underlying digraph.
   1.920 +    typedef typename TR::Digraph Digraph;
   1.921 +    //\e
   1.922 +    typedef typename Digraph::Node Node;
   1.923 +    //\e
   1.924 +    typedef typename Digraph::NodeIt NodeIt;
   1.925 +    //\e
   1.926 +    typedef typename Digraph::Arc Arc;
   1.927 +    //\e
   1.928 +    typedef typename Digraph::OutArcIt OutArcIt;
   1.929 +    
   1.930 +    ///\brief The type of the map that stores
   1.931 +    ///the reached nodes
   1.932 +    typedef typename TR::ReachedMap ReachedMap;
   1.933 +    ///\brief The type of the map that stores
   1.934 +    ///the processed nodes
   1.935 +    typedef typename TR::ProcessedMap ProcessedMap;
   1.936 +    ///\brief The type of the map that stores the last
   1.937 +    ///arcs of the shortest paths.
   1.938 +    typedef typename TR::PredMap PredMap;
   1.939 +    ///The type of the map that stores the dists of the nodes.
   1.940 +    typedef typename TR::DistMap DistMap;
   1.941 +
   1.942 +  public:
   1.943 +    /// Constructor.
   1.944 +    BfsWizard() : TR() {}
   1.945 +
   1.946 +    /// Constructor that requires parameters.
   1.947 +
   1.948 +    /// Constructor that requires parameters.
   1.949 +    /// These parameters will be the default values for the traits class.
   1.950 +    BfsWizard(const Digraph &g, Node s=INVALID) :
   1.951 +      TR(g,s) {}
   1.952 +
   1.953 +    ///Copy constructor
   1.954 +    BfsWizard(const TR &b) : TR(b) {}
   1.955 +
   1.956 +    ~BfsWizard() {}
   1.957 +
   1.958 +    ///Runs Bfs algorithm from a given node.
   1.959 +    
   1.960 +    ///Runs Bfs algorithm from a given node.
   1.961 +    ///The node can be given by the \ref source function.
   1.962 +    void run()
   1.963 +    {
   1.964 +      if(Base::_source==INVALID) throw UninitializedParameter();
   1.965 +      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
   1.966 +      if(Base::_reached)
   1.967 +	alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
   1.968 +      if(Base::_processed) 
   1.969 +        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
   1.970 +      if(Base::_pred) 
   1.971 +        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   1.972 +      if(Base::_dist) 
   1.973 +        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   1.974 +      alg.run(Base::_source);
   1.975 +    }
   1.976 +
   1.977 +    ///Runs Bfs algorithm from the given node.
   1.978 +
   1.979 +    ///Runs Bfs algorithm from the given node.
   1.980 +    ///\param s is the given source.
   1.981 +    void run(Node s)
   1.982 +    {
   1.983 +      Base::_source=s;
   1.984 +      run();
   1.985 +    }
   1.986 +
   1.987 +    template<class T>
   1.988 +    struct DefPredMapBase : public Base {
   1.989 +      typedef T PredMap;
   1.990 +      static PredMap *createPredMap(const Digraph &) { return 0; };
   1.991 +      DefPredMapBase(const TR &b) : TR(b) {}
   1.992 +    };
   1.993 +    
   1.994 +    ///\brief \ref named-templ-param "Named parameter"
   1.995 +    ///function for setting PredMap
   1.996 +    ///
   1.997 +    /// \ref named-templ-param "Named parameter"
   1.998 +    ///function for setting PredMap
   1.999 +    ///
  1.1000 +    template<class T>
  1.1001 +    BfsWizard<DefPredMapBase<T> > predMap(const T &t) 
  1.1002 +    {
  1.1003 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1004 +      return BfsWizard<DefPredMapBase<T> >(*this);
  1.1005 +    }
  1.1006 +    
  1.1007 + 
  1.1008 +    template<class T>
  1.1009 +    struct DefReachedMapBase : public Base {
  1.1010 +      typedef T ReachedMap;
  1.1011 +      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
  1.1012 +      DefReachedMapBase(const TR &b) : TR(b) {}
  1.1013 +    };
  1.1014 +    
  1.1015 +    ///\brief \ref named-templ-param "Named parameter"
  1.1016 +    ///function for setting ReachedMap
  1.1017 +    ///
  1.1018 +    /// \ref named-templ-param "Named parameter"
  1.1019 +    ///function for setting ReachedMap
  1.1020 +    ///
  1.1021 +    template<class T>
  1.1022 +    BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
  1.1023 +    {
  1.1024 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1025 +      return BfsWizard<DefReachedMapBase<T> >(*this);
  1.1026 +    }
  1.1027 +    
  1.1028 +
  1.1029 +    template<class T>
  1.1030 +    struct DefProcessedMapBase : public Base {
  1.1031 +      typedef T ProcessedMap;
  1.1032 +      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
  1.1033 +      DefProcessedMapBase(const TR &b) : TR(b) {}
  1.1034 +    };
  1.1035 +    
  1.1036 +    ///\brief \ref named-templ-param "Named parameter"
  1.1037 +    ///function for setting ProcessedMap
  1.1038 +    ///
  1.1039 +    /// \ref named-templ-param "Named parameter"
  1.1040 +    ///function for setting ProcessedMap
  1.1041 +    ///
  1.1042 +    template<class T>
  1.1043 +    BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
  1.1044 +    {
  1.1045 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1046 +      return BfsWizard<DefProcessedMapBase<T> >(*this);
  1.1047 +    }
  1.1048 +    
  1.1049 +   
  1.1050 +    template<class T>
  1.1051 +    struct DefDistMapBase : public Base {
  1.1052 +      typedef T DistMap;
  1.1053 +      static DistMap *createDistMap(const Digraph &) { return 0; };
  1.1054 +      DefDistMapBase(const TR &b) : TR(b) {}
  1.1055 +    };
  1.1056 +    
  1.1057 +    ///\brief \ref named-templ-param "Named parameter"
  1.1058 +    ///function for setting DistMap type
  1.1059 +    ///
  1.1060 +    /// \ref named-templ-param "Named parameter"
  1.1061 +    ///function for setting DistMap type
  1.1062 +    ///
  1.1063 +    template<class T>
  1.1064 +    BfsWizard<DefDistMapBase<T> > distMap(const T &t) 
  1.1065 +    {
  1.1066 +      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1.1067 +      return BfsWizard<DefDistMapBase<T> >(*this);
  1.1068 +    }
  1.1069 +    
  1.1070 +    /// Sets the source node, from which the Bfs algorithm runs.
  1.1071 +
  1.1072 +    /// Sets the source node, from which the Bfs algorithm runs.
  1.1073 +    /// \param s is the source node.
  1.1074 +    BfsWizard<TR> &source(Node s) 
  1.1075 +    {
  1.1076 +      Base::_source=s;
  1.1077 +      return *this;
  1.1078 +    }
  1.1079 +    
  1.1080 +  };
  1.1081 +  
  1.1082 +  ///Function type interface for Bfs algorithm.
  1.1083 +
  1.1084 +  /// \ingroup search
  1.1085 +  ///Function type interface for Bfs algorithm.
  1.1086 +  ///
  1.1087 +  ///This function also has several
  1.1088 +  ///\ref named-templ-func-param "named parameters",
  1.1089 +  ///they are declared as the members of class \ref BfsWizard.
  1.1090 +  ///The following
  1.1091 +  ///example shows how to use these parameters.
  1.1092 +  ///\code
  1.1093 +  ///  bfs(g,source).predMap(preds).run();
  1.1094 +  ///\endcode
  1.1095 +  ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
  1.1096 +  ///to the end of the parameter list.
  1.1097 +  ///\sa BfsWizard
  1.1098 +  ///\sa Bfs
  1.1099 +  template<class GR>
  1.1100 +  BfsWizard<BfsWizardBase<GR> >
  1.1101 +  bfs(const GR &g,typename GR::Node s=INVALID)
  1.1102 +  {
  1.1103 +    return BfsWizard<BfsWizardBase<GR> >(g,s);
  1.1104 +  }
  1.1105 +
  1.1106 +#ifdef DOXYGEN
  1.1107 +  /// \brief Visitor class for bfs.
  1.1108 +  ///  
  1.1109 +  /// This class defines the interface of the BfsVisit events, and
  1.1110 +  /// it could be the base of a real Visitor class.
  1.1111 +  template <typename _Digraph>
  1.1112 +  struct BfsVisitor {
  1.1113 +    typedef _Digraph Digraph;
  1.1114 +    typedef typename Digraph::Arc Arc;
  1.1115 +    typedef typename Digraph::Node Node;
  1.1116 +    /// \brief Called when the arc reach a node.
  1.1117 +    /// 
  1.1118 +    /// It is called when the bfs find an arc which target is not
  1.1119 +    /// reached yet.
  1.1120 +    void discover(const Arc& arc) {}
  1.1121 +    /// \brief Called when the node reached first time.
  1.1122 +    /// 
  1.1123 +    /// It is Called when the node reached first time.
  1.1124 +    void reach(const Node& node) {}
  1.1125 +    /// \brief Called when the arc examined but target of the arc 
  1.1126 +    /// already discovered.
  1.1127 +    /// 
  1.1128 +    /// It called when the arc examined but the target of the arc 
  1.1129 +    /// already discovered.
  1.1130 +    void examine(const Arc& arc) {}
  1.1131 +    /// \brief Called for the source node of the bfs.
  1.1132 +    /// 
  1.1133 +    /// It is called for the source node of the bfs.
  1.1134 +    void start(const Node& node) {}
  1.1135 +    /// \brief Called when the node processed.
  1.1136 +    /// 
  1.1137 +    /// It is Called when the node processed.
  1.1138 +    void process(const Node& node) {}
  1.1139 +  };
  1.1140 +#else
  1.1141 +  template <typename _Digraph>
  1.1142 +  struct BfsVisitor {
  1.1143 +    typedef _Digraph Digraph;
  1.1144 +    typedef typename Digraph::Arc Arc;
  1.1145 +    typedef typename Digraph::Node Node;
  1.1146 +    void discover(const Arc&) {}
  1.1147 +    void reach(const Node&) {}
  1.1148 +    void examine(const Arc&) {}
  1.1149 +    void start(const Node&) {}
  1.1150 +    void process(const Node&) {}
  1.1151 +
  1.1152 +    template <typename _Visitor>
  1.1153 +    struct Constraints {
  1.1154 +      void constraints() {
  1.1155 +	Arc arc;
  1.1156 +	Node node;
  1.1157 +	visitor.discover(arc);
  1.1158 +	visitor.reach(node);
  1.1159 +	visitor.examine(arc);
  1.1160 +	visitor.start(node);
  1.1161 +        visitor.process(node);
  1.1162 +      }
  1.1163 +      _Visitor& visitor;
  1.1164 +    };
  1.1165 +  };
  1.1166 +#endif
  1.1167 +
  1.1168 +  /// \brief Default traits class of BfsVisit class.
  1.1169 +  ///
  1.1170 +  /// Default traits class of BfsVisit class.
  1.1171 +  /// \param _Digraph Digraph type.
  1.1172 +  template<class _Digraph>
  1.1173 +  struct BfsVisitDefaultTraits {
  1.1174 +
  1.1175 +    /// \brief The digraph type the algorithm runs on. 
  1.1176 +    typedef _Digraph Digraph;
  1.1177 +
  1.1178 +    /// \brief The type of the map that indicates which nodes are reached.
  1.1179 +    /// 
  1.1180 +    /// The type of the map that indicates which nodes are reached.
  1.1181 +    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1.1182 +    /// \todo named parameter to set this type, function to read and write.
  1.1183 +    typedef typename Digraph::template NodeMap<bool> ReachedMap;
  1.1184 +
  1.1185 +    /// \brief Instantiates a ReachedMap.
  1.1186 +    ///
  1.1187 +    /// This function instantiates a \ref ReachedMap. 
  1.1188 +    /// \param digraph is the digraph, to which
  1.1189 +    /// we would like to define the \ref ReachedMap.
  1.1190 +    static ReachedMap *createReachedMap(const Digraph &digraph) {
  1.1191 +      return new ReachedMap(digraph);
  1.1192 +    }
  1.1193 +
  1.1194 +  };
  1.1195 +
  1.1196 +  /// \ingroup search
  1.1197 +  ///  
  1.1198 +  /// \brief %BFS Visit algorithm class.
  1.1199 +  ///  
  1.1200 +  /// This class provides an efficient implementation of the %BFS algorithm
  1.1201 +  /// with visitor interface.
  1.1202 +  ///
  1.1203 +  /// The %BfsVisit class provides an alternative interface to the Bfs
  1.1204 +  /// class. It works with callback mechanism, the BfsVisit object calls
  1.1205 +  /// on every bfs event the \c Visitor class member functions. 
  1.1206 +  ///
  1.1207 +  /// \param _Digraph The digraph type the algorithm runs on. The default value is
  1.1208 +  /// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it
  1.1209 +  /// is only passed to \ref BfsDefaultTraits.
  1.1210 +  /// \param _Visitor The Visitor object for the algorithm. The 
  1.1211 +  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which
  1.1212 +  /// does not observe the Bfs events. If you want to observe the bfs
  1.1213 +  /// events you should implement your own Visitor class.
  1.1214 +  /// \param _Traits Traits class to set various data types used by the 
  1.1215 +  /// algorithm. The default traits class is
  1.1216 +  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
  1.1217 +  /// See \ref BfsVisitDefaultTraits for the documentation of
  1.1218 +  /// a Bfs visit traits class.
  1.1219 +  ///
  1.1220 +  /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
  1.1221 +#ifdef DOXYGEN
  1.1222 +  template <typename _Digraph, typename _Visitor, typename _Traits>
  1.1223 +#else
  1.1224 +  template <typename _Digraph = ListDigraph,
  1.1225 +	    typename _Visitor = BfsVisitor<_Digraph>,
  1.1226 +	    typename _Traits = BfsDefaultTraits<_Digraph> >
  1.1227 +#endif
  1.1228 +  class BfsVisit {
  1.1229 +  public:
  1.1230 +    
  1.1231 +    /// \brief \ref Exception for uninitialized parameters.
  1.1232 +    ///
  1.1233 +    /// This error represents problems in the initialization
  1.1234 +    /// of the parameters of the algorithms.
  1.1235 +    class UninitializedParameter : public lemon::UninitializedParameter {
  1.1236 +    public:
  1.1237 +      virtual const char* what() const throw() 
  1.1238 +      {
  1.1239 +	return "lemon::BfsVisit::UninitializedParameter";
  1.1240 +      }
  1.1241 +    };
  1.1242 +
  1.1243 +    typedef _Traits Traits;
  1.1244 +
  1.1245 +    typedef typename Traits::Digraph Digraph;
  1.1246 +
  1.1247 +    typedef _Visitor Visitor;
  1.1248 +
  1.1249 +    ///The type of the map indicating which nodes are reached.
  1.1250 +    typedef typename Traits::ReachedMap ReachedMap;
  1.1251 +
  1.1252 +  private:
  1.1253 +
  1.1254 +    typedef typename Digraph::Node Node;
  1.1255 +    typedef typename Digraph::NodeIt NodeIt;
  1.1256 +    typedef typename Digraph::Arc Arc;
  1.1257 +    typedef typename Digraph::OutArcIt OutArcIt;
  1.1258 +
  1.1259 +    /// Pointer to the underlying digraph.
  1.1260 +    const Digraph *_digraph;
  1.1261 +    /// Pointer to the visitor object.
  1.1262 +    Visitor *_visitor;
  1.1263 +    ///Pointer to the map of reached status of the nodes.
  1.1264 +    ReachedMap *_reached;
  1.1265 +    ///Indicates if \ref _reached is locally allocated (\c true) or not.
  1.1266 +    bool local_reached;
  1.1267 +
  1.1268 +    std::vector<typename Digraph::Node> _list;
  1.1269 +    int _list_front, _list_back;
  1.1270 +
  1.1271 +    /// \brief Creates the maps if necessary.
  1.1272 +    ///
  1.1273 +    /// Creates the maps if necessary.
  1.1274 +    void create_maps() {
  1.1275 +      if(!_reached) {
  1.1276 +	local_reached = true;
  1.1277 +	_reached = Traits::createReachedMap(*_digraph);
  1.1278 +      }
  1.1279 +    }
  1.1280 +
  1.1281 +  protected:
  1.1282 +
  1.1283 +    BfsVisit() {}
  1.1284 +    
  1.1285 +  public:
  1.1286 +
  1.1287 +    typedef BfsVisit Create;
  1.1288 +
  1.1289 +    /// \name Named template parameters
  1.1290 +
  1.1291 +    ///@{
  1.1292 +    template <class T>
  1.1293 +    struct DefReachedMapTraits : public Traits {
  1.1294 +      typedef T ReachedMap;
  1.1295 +      static ReachedMap *createReachedMap(const Digraph &digraph) {
  1.1296 +	throw UninitializedParameter();
  1.1297 +      }
  1.1298 +    };
  1.1299 +    /// \brief \ref named-templ-param "Named parameter" for setting 
  1.1300 +    /// ReachedMap type
  1.1301 +    ///
  1.1302 +    /// \ref named-templ-param "Named parameter" for setting ReachedMap type
  1.1303 +    template <class T>
  1.1304 +    struct DefReachedMap : public BfsVisit< Digraph, Visitor,
  1.1305 +					    DefReachedMapTraits<T> > {
  1.1306 +      typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create;
  1.1307 +    };
  1.1308 +    ///@}
  1.1309 +
  1.1310 +  public:      
  1.1311 +    
  1.1312 +    /// \brief Constructor.
  1.1313 +    ///
  1.1314 +    /// Constructor.
  1.1315 +    ///
  1.1316 +    /// \param digraph the digraph the algorithm will run on.
  1.1317 +    /// \param visitor The visitor of the algorithm.
  1.1318 +    ///
  1.1319 +    BfsVisit(const Digraph& digraph, Visitor& visitor) 
  1.1320 +      : _digraph(&digraph), _visitor(&visitor),
  1.1321 +	_reached(0), local_reached(false) {}
  1.1322 +    
  1.1323 +    /// \brief Destructor.
  1.1324 +    ///
  1.1325 +    /// Destructor.
  1.1326 +    ~BfsVisit() {
  1.1327 +      if(local_reached) delete _reached;
  1.1328 +    }
  1.1329 +
  1.1330 +    /// \brief Sets the map indicating if a node is reached.
  1.1331 +    ///
  1.1332 +    /// Sets the map indicating if a node is reached.
  1.1333 +    /// If you don't use this function before calling \ref run(),
  1.1334 +    /// it will allocate one. The destuctor deallocates this
  1.1335 +    /// automatically allocated map, of course.
  1.1336 +    /// \return <tt> (*this) </tt>
  1.1337 +    BfsVisit &reachedMap(ReachedMap &m) {
  1.1338 +      if(local_reached) {
  1.1339 +	delete _reached;
  1.1340 +	local_reached = false;
  1.1341 +      }
  1.1342 +      _reached = &m;
  1.1343 +      return *this;
  1.1344 +    }
  1.1345 +
  1.1346 +  public:
  1.1347 +    /// \name Execution control
  1.1348 +    /// The simplest way to execute the algorithm is to use
  1.1349 +    /// one of the member functions called \c run(...).
  1.1350 +    /// \n
  1.1351 +    /// If you need more control on the execution,
  1.1352 +    /// first you must call \ref init(), then you can adda source node
  1.1353 +    /// with \ref addSource().
  1.1354 +    /// Finally \ref start() will perform the actual path
  1.1355 +    /// computation.
  1.1356 +
  1.1357 +    /// @{
  1.1358 +    /// \brief Initializes the internal data structures.
  1.1359 +    ///
  1.1360 +    /// Initializes the internal data structures.
  1.1361 +    ///
  1.1362 +    void init() {
  1.1363 +      create_maps();
  1.1364 +      _list.resize(countNodes(*_digraph));
  1.1365 +      _list_front = _list_back = -1;
  1.1366 +      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
  1.1367 +	_reached->set(u, false);
  1.1368 +      }
  1.1369 +    }
  1.1370 +    
  1.1371 +    /// \brief Adds a new source node.
  1.1372 +    ///
  1.1373 +    /// Adds a new source node to the set of nodes to be processed.
  1.1374 +    void addSource(Node s) {
  1.1375 +      if(!(*_reached)[s]) {
  1.1376 +	  _reached->set(s,true);
  1.1377 +	  _visitor->start(s);
  1.1378 +	  _visitor->reach(s);
  1.1379 +          _list[++_list_back] = s;
  1.1380 +	}
  1.1381 +    }
  1.1382 +    
  1.1383 +    /// \brief Processes the next node.
  1.1384 +    ///
  1.1385 +    /// Processes the next node.
  1.1386 +    ///
  1.1387 +    /// \return The processed node.
  1.1388 +    ///
  1.1389 +    /// \pre The queue must not be empty!
  1.1390 +    Node processNextNode() { 
  1.1391 +      Node n = _list[++_list_front];
  1.1392 +      _visitor->process(n);
  1.1393 +      Arc e;
  1.1394 +      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
  1.1395 +        Node m = _digraph->target(e);
  1.1396 +        if (!(*_reached)[m]) {
  1.1397 +          _visitor->discover(e);
  1.1398 +          _visitor->reach(m);
  1.1399 +          _reached->set(m, true);
  1.1400 +          _list[++_list_back] = m;
  1.1401 +        } else {
  1.1402 +          _visitor->examine(e);
  1.1403 +        }
  1.1404 +      }
  1.1405 +      return n;
  1.1406 +    }
  1.1407 +
  1.1408 +    /// \brief Processes the next node.
  1.1409 +    ///
  1.1410 +    /// Processes the next node. And checks that the given target node
  1.1411 +    /// is reached. If the target node is reachable from the processed
  1.1412 +    /// node then the reached parameter will be set true. The reached
  1.1413 +    /// parameter should be initially false.
  1.1414 +    ///
  1.1415 +    /// \param target The target node.
  1.1416 +    /// \retval reach Indicates that the target node is reached.
  1.1417 +    /// \return The processed node.
  1.1418 +    ///
  1.1419 +    /// \warning The queue must not be empty!
  1.1420 +    Node processNextNode(Node target, bool& reach) {
  1.1421 +      Node n = _list[++_list_front];
  1.1422 +      _visitor->process(n);
  1.1423 +      Arc e;
  1.1424 +      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
  1.1425 +        Node m = _digraph->target(e);
  1.1426 +        if (!(*_reached)[m]) {
  1.1427 +          _visitor->discover(e);
  1.1428 +          _visitor->reach(m);
  1.1429 +          _reached->set(m, true);
  1.1430 +          _list[++_list_back] = m;
  1.1431 +          reach = reach || (target == m);
  1.1432 +        } else {
  1.1433 +          _visitor->examine(e);
  1.1434 +        }
  1.1435 +      }
  1.1436 +      return n;
  1.1437 +    }
  1.1438 +
  1.1439 +    /// \brief Processes the next node.
  1.1440 +    ///
  1.1441 +    /// Processes the next node. And checks that at least one of
  1.1442 +    /// reached node has true value in the \c nm node map. If one node
  1.1443 +    /// with true value is reachable from the processed node then the
  1.1444 +    /// rnode parameter will be set to the first of such nodes.
  1.1445 +    ///
  1.1446 +    /// \param nm The node map of possible targets.
  1.1447 +    /// \retval rnode The reached target node.
  1.1448 +    /// \return The processed node.
  1.1449 +    ///
  1.1450 +    /// \warning The queue must not be empty!
  1.1451 +    template <typename NM>
  1.1452 +    Node processNextNode(const NM& nm, Node& rnode) {
  1.1453 +      Node n = _list[++_list_front];
  1.1454 +      _visitor->process(n);
  1.1455 +      Arc e;
  1.1456 +      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
  1.1457 +        Node m = _digraph->target(e);
  1.1458 +        if (!(*_reached)[m]) {
  1.1459 +          _visitor->discover(e);
  1.1460 +          _visitor->reach(m);
  1.1461 +          _reached->set(m, true);
  1.1462 +          _list[++_list_back] = m;
  1.1463 +          if (nm[m] && rnode == INVALID) rnode = m;
  1.1464 +        } else {
  1.1465 +          _visitor->examine(e);
  1.1466 +        }
  1.1467 +      }
  1.1468 +      return n;
  1.1469 +    }
  1.1470 +
  1.1471 +    /// \brief Next node to be processed.
  1.1472 +    ///
  1.1473 +    /// Next node to be processed.
  1.1474 +    ///
  1.1475 +    /// \return The next node to be processed or INVALID if the stack is
  1.1476 +    /// empty.
  1.1477 +    Node nextNode() { 
  1.1478 +      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
  1.1479 +    }
  1.1480 +
  1.1481 +    /// \brief Returns \c false if there are nodes
  1.1482 +    /// to be processed in the queue
  1.1483 +    ///
  1.1484 +    /// Returns \c false if there are nodes
  1.1485 +    /// to be processed in the queue
  1.1486 +    bool emptyQueue() { return _list_front == _list_back; }
  1.1487 +
  1.1488 +    /// \brief Returns the number of the nodes to be processed.
  1.1489 +    ///
  1.1490 +    /// Returns the number of the nodes to be processed in the queue.
  1.1491 +    int queueSize() { return _list_back - _list_front; }
  1.1492 +    
  1.1493 +    /// \brief Executes the algorithm.
  1.1494 +    ///
  1.1495 +    /// Executes the algorithm.
  1.1496 +    ///
  1.1497 +    /// \pre init() must be called and at least one node should be added
  1.1498 +    /// with addSource() before using this function.
  1.1499 +    void start() {
  1.1500 +      while ( !emptyQueue() ) processNextNode();
  1.1501 +    }
  1.1502 +    
  1.1503 +    /// \brief Executes the algorithm until \c dest is reached.
  1.1504 +    ///
  1.1505 +    /// Executes the algorithm until \c dest is reached.
  1.1506 +    ///
  1.1507 +    /// \pre init() must be called and at least one node should be added
  1.1508 +    /// with addSource() before using this function.
  1.1509 +    void start(Node dest) {
  1.1510 +      bool reach = false;
  1.1511 +      while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
  1.1512 +    }
  1.1513 +    
  1.1514 +    /// \brief Executes the algorithm until a condition is met.
  1.1515 +    ///
  1.1516 +    /// Executes the algorithm until a condition is met.
  1.1517 +    ///
  1.1518 +    /// \pre init() must be called and at least one node should be added
  1.1519 +    /// with addSource() before using this function.
  1.1520 +    ///
  1.1521 +    ///\param nm must be a bool (or convertible) node map. The
  1.1522 +    ///algorithm will stop when it reaches a node \c v with
  1.1523 +    /// <tt>nm[v]</tt> true.
  1.1524 +    ///
  1.1525 +    ///\return The reached node \c v with <tt>nm[v]</tt> true or
  1.1526 +    ///\c INVALID if no such node was found.
  1.1527 +    template <typename NM>
  1.1528 +    Node start(const NM &nm) {
  1.1529 +      Node rnode = INVALID;
  1.1530 +      while ( !emptyQueue() && rnode == INVALID ) {
  1.1531 +	processNextNode(nm, rnode);
  1.1532 +      }
  1.1533 +      return rnode;
  1.1534 +    }
  1.1535 +
  1.1536 +    /// \brief Runs %BFSVisit algorithm from node \c s.
  1.1537 +    ///
  1.1538 +    /// This method runs the %BFS algorithm from a root node \c s.
  1.1539 +    /// \note b.run(s) is just a shortcut of the following code.
  1.1540 +    ///\code
  1.1541 +    ///   b.init();
  1.1542 +    ///   b.addSource(s);
  1.1543 +    ///   b.start();
  1.1544 +    ///\endcode
  1.1545 +    void run(Node s) {
  1.1546 +      init();
  1.1547 +      addSource(s);
  1.1548 +      start();
  1.1549 +    }
  1.1550 +
  1.1551 +    /// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph.
  1.1552 +    ///    
  1.1553 +    /// This method runs the %BFS algorithm in order to
  1.1554 +    /// compute the %BFS path to each node. The algorithm computes
  1.1555 +    /// - The %BFS tree.
  1.1556 +    /// - The distance of each node from the root in the %BFS tree.
  1.1557 +    ///
  1.1558 +    ///\note b.run() is just a shortcut of the following code.
  1.1559 +    ///\code
  1.1560 +    ///  b.init();
  1.1561 +    ///  for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1562 +    ///    if (!b.reached(it)) {
  1.1563 +    ///      b.addSource(it);
  1.1564 +    ///      b.start();
  1.1565 +    ///    }
  1.1566 +    ///  }
  1.1567 +    ///\endcode
  1.1568 +    void run() {
  1.1569 +      init();
  1.1570 +      for (NodeIt it(*_digraph); it != INVALID; ++it) {
  1.1571 +        if (!reached(it)) {
  1.1572 +          addSource(it);
  1.1573 +          start();
  1.1574 +        }
  1.1575 +      }
  1.1576 +    }
  1.1577 +    ///@}
  1.1578 +
  1.1579 +    /// \name Query Functions
  1.1580 +    /// The result of the %BFS algorithm can be obtained using these
  1.1581 +    /// functions.\n
  1.1582 +    /// Before the use of these functions,
  1.1583 +    /// either run() or start() must be called.
  1.1584 +    ///@{
  1.1585 +
  1.1586 +    /// \brief Checks if a node is reachable from the root.
  1.1587 +    ///
  1.1588 +    /// Returns \c true if \c v is reachable from the root(s).
  1.1589 +    /// \warning The source nodes are inditated as unreachable.
  1.1590 +    /// \pre Either \ref run() or \ref start()
  1.1591 +    /// must be called before using this function.
  1.1592 +    ///
  1.1593 +    bool reached(Node v) { return (*_reached)[v]; }
  1.1594 +    ///@}
  1.1595 +  };
  1.1596 +
  1.1597 +} //END OF NAMESPACE LEMON
  1.1598 +
  1.1599 +#endif
  1.1600 +