lemon/maps.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 15 Mar 2008 21:07:24 +0100
changeset 80 15968e25ca08
parent 54 ff9bac2351bf
child 81 7ff1c348ae0c
permissions -rw-r--r--
Overall clean-up in maps.h

- Rename some map types:
* IntegerMap -> RangeMap
* StdMap -> SparseMap
* FunctorMap -> FunctorToMap
* MapFunctor -> MapToFunctor
* ForkWriteMap -> ForkMap
* SimpleMap -> WrapMap
* SimpleWriteMap -> WrapWriteMap
- Remove the read-only ForkMap version.
- Rename map-creator functions for the read-write arithmetic and
logical maps.
- Small fixes and improvements in the code.
- Fix the typedefs of RangeMap to work correctly with bool type, too.
- Rename template parameters, function parameters, and private members
in many classes to be uniform and to avoid parameter names starting
with underscore.
- Use Key and Value types instead of K and V template parameters in
public functions.
- Extend the documentation with examples (e.g. for basic arithmetic and
logical maps).
- Many doc improvements.
- Reorder the classes.
- StoreBoolMap, BackInserterBoolMap, FrontInserterBoolMap,
InserterBoolMap, FillBoolMap, SettingOrderBoolMap are almost unchanged,
since they will be removed.
- Also improve maps_test.cc to correctly check every map class, every
constructor, and every creator function.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 #include <vector>
    25 
    26 #include <lemon/bits/utility.h>
    27 #include <lemon/bits/traits.h>
    28 
    29 ///\file
    30 ///\ingroup maps
    31 ///\brief Miscellaneous property maps
    32 
    33 #include <map>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup maps
    38   /// @{
    39 
    40   /// Base class of maps.
    41 
    42   /// Base class of maps. It provides the necessary type definitions
    43   /// required by the map %concepts.
    44   template<typename K, typename V>
    45   class MapBase {
    46   public:
    47     /// \biref The key type of the map.
    48     typedef K Key;
    49     /// \brief The value type of the map.
    50     /// (The type of objects associated with the keys).
    51     typedef V Value;
    52   };
    53 
    54 
    55   /// Null map. (a.k.a. DoNothingMap)
    56 
    57   /// This map can be used if you have to provide a map only for
    58   /// its type definitions, or if you have to provide a writable map,
    59   /// but data written to it is not required (i.e. it will be sent to
    60   /// <tt>/dev/null</tt>).
    61   /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    62   ///
    63   /// \sa ConstMap
    64   template<typename K, typename V>
    65   class NullMap : public MapBase<K, V> {
    66   public:
    67     typedef MapBase<K, V> Parent;
    68     typedef typename Parent::Key Key;
    69     typedef typename Parent::Value Value;
    70 
    71     /// Gives back a default constructed element.
    72     Value operator[](const Key&) const { return Value(); }
    73     /// Absorbs the value.
    74     void set(const Key&, const Value&) {}
    75   };
    76 
    77   /// Returns a \ref NullMap class
    78 
    79   /// This function just returns a \ref NullMap class.
    80   /// \relates NullMap
    81   template <typename K, typename V>
    82   NullMap<K, V> nullMap() {
    83     return NullMap<K, V>();
    84   }
    85 
    86 
    87   /// Constant map.
    88 
    89   /// This is a \ref concepts::ReadMap "readable" map which assigns a
    90   /// specified value to each key.
    91   ///
    92   /// In other aspects it is equivalent to \ref NullMap.
    93   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
    94   /// concept, but it absorbs the data written to it.
    95   ///
    96   /// The simplest way of using this map is through the constMap()
    97   /// function.
    98   ///
    99   /// \sa NullMap
   100   /// \sa IdentityMap
   101   template<typename K, typename V>
   102   class ConstMap : public MapBase<K, V> {
   103   private:
   104     V _value;
   105   public:
   106     typedef MapBase<K, V> Parent;
   107     typedef typename Parent::Key Key;
   108     typedef typename Parent::Value Value;
   109 
   110     /// Default constructor
   111 
   112     /// Default constructor.
   113     /// The value of the map will be default constructed.
   114     ConstMap() {}
   115 
   116     /// Constructor with specified initial value
   117 
   118     /// Constructor with specified initial value.
   119     /// \param v is the initial value of the map.
   120     ConstMap(const Value &v) : _value(v) {}
   121 
   122     /// Gives back the specified value.
   123     Value operator[](const Key&) const { return _value; }
   124 
   125     /// Absorbs the value.
   126     void set(const Key&, const Value&) {}
   127 
   128     /// Sets the value that is assigned to each key.
   129     void setAll(const Value &v) {
   130       _value = v;
   131     }
   132 
   133     template<typename V1>
   134     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
   135   };
   136 
   137   /// Returns a \ref ConstMap class
   138 
   139   /// This function just returns a \ref ConstMap class.
   140   /// \relates ConstMap
   141   template<typename K, typename V>
   142   inline ConstMap<K, V> constMap(const V &v) {
   143     return ConstMap<K, V>(v);
   144   }
   145 
   146 
   147   template<typename T, T v>
   148   struct Const {};
   149 
   150   /// Constant map with inlined constant value.
   151 
   152   /// This is a \ref concepts::ReadMap "readable" map which assigns a
   153   /// specified value to each key.
   154   ///
   155   /// In other aspects it is equivalent to \ref NullMap.
   156   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
   157   /// concept, but it absorbs the data written to it.
   158   ///
   159   /// The simplest way of using this map is through the constMap()
   160   /// function.
   161   ///
   162   /// \sa NullMap
   163   /// \sa IdentityMap
   164   template<typename K, typename V, V v>
   165   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   166   public:
   167     typedef MapBase<K, V> Parent;
   168     typedef typename Parent::Key Key;
   169     typedef typename Parent::Value Value;
   170 
   171     /// Constructor.
   172     ConstMap() {}
   173 
   174     /// Gives back the specified value.
   175     Value operator[](const Key&) const { return v; }
   176 
   177     /// Absorbs the value.
   178     void set(const Key&, const Value&) {}
   179   };
   180 
   181   /// Returns a \ref ConstMap class with inlined constant value
   182 
   183   /// This function just returns a \ref ConstMap class with inlined
   184   /// constant value.
   185   /// \relates ConstMap
   186   template<typename K, typename V, V v>
   187   inline ConstMap<K, Const<V, v> > constMap() {
   188     return ConstMap<K, Const<V, v> >();
   189   }
   190 
   191 
   192   /// \brief Identity map.
   193   ///
   194   /// This map gives back the given key as value without any
   195   /// modification.
   196   ///
   197   /// \sa ConstMap
   198   template <typename T>
   199   class IdentityMap : public MapBase<T, T> {
   200   public:
   201     typedef MapBase<T, T> Parent;
   202     typedef typename Parent::Key Key;
   203     typedef typename Parent::Value Value;
   204 
   205     /// Gives back the given value without any modification.
   206     const T& operator[](const T& t) const {
   207       return t;
   208     }
   209   };
   210 
   211   /// Returns an \ref IdentityMap class
   212 
   213   /// This function just returns an \ref IdentityMap class.
   214   /// \relates IdentityMap
   215   template<typename T>
   216   inline IdentityMap<T> identityMap() {
   217     return IdentityMap<T>();
   218   }
   219 
   220 
   221   /// \brief Map for storing values for integer keys from the range
   222   /// <tt>[0..size-1]</tt>.
   223   ///
   224   /// This map is essentially a wrapper for \c std::vector. It assigns
   225   /// values to integer keys from the range <tt>[0..size-1]</tt>.
   226   /// It can be used with some data structures, for example
   227   /// \ref UnionFind, \ref BinHeap, when the used items are small
   228   /// integers. This map conforms the \ref concepts::ReferenceMap
   229   /// "ReferenceMap" concept.
   230   ///
   231   /// The simplest way of using this map is through the rangeMap()
   232   /// function.
   233   template <typename V>
   234   class RangeMap : public MapBase<int, V> {
   235     template <typename V1>
   236     friend class RangeMap;
   237   private:
   238 
   239     typedef std::vector<V> Vector;
   240     Vector _vector;
   241 
   242   public:
   243 
   244     typedef MapBase<int, V> Parent;
   245     /// Key type
   246     typedef typename Parent::Key Key;
   247     /// Value type
   248     typedef typename Parent::Value Value;
   249     /// Reference type
   250     typedef typename Vector::reference Reference;
   251     /// Const reference type
   252     typedef typename Vector::const_reference ConstReference;
   253 
   254     typedef True ReferenceMapTag;
   255 
   256   public:
   257 
   258     /// Constructor with specified default value.
   259     RangeMap(int size = 0, const Value &value = Value())
   260       : _vector(size, value) {}
   261 
   262     /// Constructs the map from an appropriate \c std::vector.
   263     template <typename V1>
   264     RangeMap(const std::vector<V1>& vector)
   265       : _vector(vector.begin(), vector.end()) {}
   266 
   267     /// Constructs the map from another \ref RangeMap.
   268     template <typename V1>
   269     RangeMap(const RangeMap<V1> &c)
   270       : _vector(c._vector.begin(), c._vector.end()) {}
   271 
   272     /// Returns the size of the map.
   273     int size() {
   274       return _vector.size();
   275     }
   276 
   277     /// Resizes the map.
   278 
   279     /// Resizes the underlying \c std::vector container, so changes the
   280     /// keyset of the map.
   281     /// \param size The new size of the map. The new keyset will be the
   282     /// range <tt>[0..size-1]</tt>.
   283     /// \param value The default value to assign to the new keys.
   284     void resize(int size, const Value &value = Value()) {
   285       _vector.resize(size, value);
   286     }
   287 
   288   private:
   289 
   290     RangeMap& operator=(const RangeMap&);
   291 
   292   public:
   293 
   294     ///\e
   295     Reference operator[](const Key &k) {
   296       return _vector[k];
   297     }
   298 
   299     ///\e
   300     ConstReference operator[](const Key &k) const {
   301       return _vector[k];
   302     }
   303 
   304     ///\e
   305     void set(const Key &k, const Value &v) {
   306       _vector[k] = v;
   307     }
   308   };
   309 
   310   /// Returns a \ref RangeMap class
   311 
   312   /// This function just returns a \ref RangeMap class.
   313   /// \relates RangeMap
   314   template<typename V>
   315   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
   316     return RangeMap<V>(size, value);
   317   }
   318 
   319   /// \brief Returns a \ref RangeMap class created from an appropriate
   320   /// \c std::vector
   321 
   322   /// This function just returns a \ref RangeMap class created from an
   323   /// appropriate \c std::vector.
   324   /// \relates RangeMap
   325   template<typename V>
   326   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
   327     return RangeMap<V>(vector);
   328   }
   329 
   330 
   331   /// Map type based on \c std::map
   332 
   333   /// This map is essentially a wrapper for \c std::map with addition
   334   /// that you can specify a default value for the keys that are not
   335   /// stored actually. This value can be different from the default
   336   /// contructed value (i.e. \c %Value()).
   337   /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
   338   /// concept.
   339   ///
   340   /// This map is useful if a default value should be assigned to most of
   341   /// the keys and different values should be assigned only to a few
   342   /// keys (i.e. the map is "sparse").
   343   /// The name of this type also refers to this important usage.
   344   ///
   345   /// Apart form that this map can be used in many other cases since it
   346   /// is based on \c std::map, which is a general associative container.
   347   /// However keep in mind that it is usually not as efficient as other
   348   /// maps.
   349   ///
   350   /// The simplest way of using this map is through the sparseMap()
   351   /// function.
   352   template <typename K, typename V, typename Compare = std::less<K> >
   353   class SparseMap : public MapBase<K, V> {
   354     template <typename K1, typename V1, typename C1>
   355     friend class SparseMap;
   356   public:
   357 
   358     typedef MapBase<K, V> Parent;
   359     /// Key type
   360     typedef typename Parent::Key Key;
   361     /// Value type
   362     typedef typename Parent::Value Value;
   363     /// Reference type
   364     typedef Value& Reference;
   365     /// Const reference type
   366     typedef const Value& ConstReference;
   367 
   368     typedef True ReferenceMapTag;
   369 
   370   private:
   371 
   372     typedef std::map<K, V, Compare> Map;
   373     Map _map;
   374     Value _value;
   375 
   376   public:
   377 
   378     /// \brief Constructor with specified default value.
   379     SparseMap(const Value &value = Value()) : _value(value) {}
   380     /// \brief Constructs the map from an appropriate \c std::map, and
   381     /// explicitly specifies a default value.
   382     template <typename V1, typename Comp1>
   383     SparseMap(const std::map<Key, V1, Comp1> &map,
   384               const Value &value = Value())
   385       : _map(map.begin(), map.end()), _value(value) {}
   386 
   387     /// \brief Constructs the map from another \ref SparseMap.
   388     template<typename V1, typename Comp1>
   389     SparseMap(const SparseMap<Key, V1, Comp1> &c)
   390       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   391 
   392   private:
   393 
   394     SparseMap& operator=(const SparseMap&);
   395 
   396   public:
   397 
   398     ///\e
   399     Reference operator[](const Key &k) {
   400       typename Map::iterator it = _map.lower_bound(k);
   401       if (it != _map.end() && !_map.key_comp()(k, it->first))
   402 	return it->second;
   403       else
   404 	return _map.insert(it, std::make_pair(k, _value))->second;
   405     }
   406 
   407     ///\e
   408     ConstReference operator[](const Key &k) const {
   409       typename Map::const_iterator it = _map.find(k);
   410       if (it != _map.end())
   411 	return it->second;
   412       else
   413 	return _value;
   414     }
   415 
   416     ///\e
   417     void set(const Key &k, const Value &v) {
   418       typename Map::iterator it = _map.lower_bound(k);
   419       if (it != _map.end() && !_map.key_comp()(k, it->first))
   420 	it->second = v;
   421       else
   422 	_map.insert(it, std::make_pair(k, v));
   423     }
   424 
   425     ///\e
   426     void setAll(const Value &v) {
   427       _value = v;
   428       _map.clear();
   429     }
   430   };
   431 
   432   /// Returns a \ref SparseMap class
   433 
   434   /// This function just returns a \ref SparseMap class with specified
   435   /// default value.
   436   /// \relates SparseMap
   437   template<typename K, typename V, typename Compare>
   438   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
   439     return SparseMap<K, V, Compare>(value);
   440   }
   441 
   442   template<typename K, typename V>
   443   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
   444     return SparseMap<K, V, std::less<K> >(value);
   445   }
   446 
   447   /// \brief Returns a \ref SparseMap class created from an appropriate
   448   /// \c std::map
   449 
   450   /// This function just returns a \ref SparseMap class created from an
   451   /// appropriate \c std::map.
   452   /// \relates SparseMap
   453   template<typename K, typename V, typename Compare>
   454   inline SparseMap<K, V, Compare>
   455     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
   456   {
   457     return SparseMap<K, V, Compare>(map, value);
   458   }
   459 
   460   /// @}
   461 
   462   /// \addtogroup map_adaptors
   463   /// @{
   464 
   465   /// Composition of two maps
   466 
   467   /// This \ref concepts::ReadMap "read only map" returns the
   468   /// composition of two given maps. That is to say, if \c m1 is of
   469   /// type \c M1 and \c m2 is of \c M2, then for
   470   /// \code
   471   ///   ComposeMap<M1, M2> cm(m1,m2);
   472   /// \endcode
   473   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
   474   ///
   475   /// The \c Key type of the map is inherited from \c M2 and the
   476   /// \c Value type is from \c M1.
   477   /// \c M2::Value must be convertible to \c M1::Key.
   478   ///
   479   /// The simplest way of using this map is through the composeMap()
   480   /// function.
   481   ///
   482   /// \sa CombineMap
   483   ///
   484   /// \todo Check the requirements.
   485   template <typename M1, typename M2>
   486   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   487     const M1 &_m1;
   488     const M2 &_m2;
   489   public:
   490     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   491     typedef typename Parent::Key Key;
   492     typedef typename Parent::Value Value;
   493 
   494     /// Constructor
   495     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   496 
   497     /// \e
   498     typename MapTraits<M1>::ConstReturnValue
   499     operator[](const Key &k) const { return _m1[_m2[k]]; }
   500   };
   501 
   502   /// Returns a \ref ComposeMap class
   503 
   504   /// This function just returns a \ref ComposeMap class.
   505   ///
   506   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
   507   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
   508   /// will be equal to <tt>m1[m2[x]]</tt>.
   509   ///
   510   /// \relates ComposeMap
   511   template <typename M1, typename M2>
   512   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
   513     return ComposeMap<M1, M2>(m1, m2);
   514   }
   515 
   516 
   517   /// Combination of two maps using an STL (binary) functor.
   518 
   519   /// This \ref concepts::ReadMap "read only map" takes two maps and a
   520   /// binary functor and returns the combination of the two given maps
   521   /// using the functor.
   522   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
   523   /// and \c f is of \c F, then for
   524   /// \code
   525   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
   526   /// \endcode
   527   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
   528   ///
   529   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
   530   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
   531   /// \c M2::Value and \c M1::Value must be convertible to the
   532   /// corresponding input parameter of \c F and the return type of \c F
   533   /// must be convertible to \c V.
   534   ///
   535   /// The simplest way of using this map is through the combineMap()
   536   /// function.
   537   ///
   538   /// \sa ComposeMap
   539   ///
   540   /// \todo Check the requirements.
   541   template<typename M1, typename M2, typename F,
   542 	   typename V = typename F::result_type>
   543   class CombineMap : public MapBase<typename M1::Key, V> {
   544     const M1 &_m1;
   545     const M2 &_m2;
   546     F _f;
   547   public:
   548     typedef MapBase<typename M1::Key, V> Parent;
   549     typedef typename Parent::Key Key;
   550     typedef typename Parent::Value Value;
   551 
   552     /// Constructor
   553     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
   554       : _m1(m1), _m2(m2), _f(f) {}
   555     /// \e
   556     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
   557   };
   558 
   559   /// Returns a \ref CombineMap class
   560 
   561   /// This function just returns a \ref CombineMap class.
   562   ///
   563   /// For example, if \c m1 and \c m2 are both maps with \c double
   564   /// values, then
   565   /// \code
   566   ///   combineMap(m1,m2,std::plus<double>())
   567   /// \endcode
   568   /// is equivalent to
   569   /// \code
   570   ///   addMap(m1,m2)
   571   /// \endcode
   572   ///
   573   /// This function is specialized for adaptable binary function
   574   /// classes and C++ functions.
   575   ///
   576   /// \relates CombineMap
   577   template<typename M1, typename M2, typename F, typename V>
   578   inline CombineMap<M1, M2, F, V>
   579   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   580     return CombineMap<M1, M2, F, V>(m1,m2,f);
   581   }
   582 
   583   template<typename M1, typename M2, typename F>
   584   inline CombineMap<M1, M2, F, typename F::result_type>
   585   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   586     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   587   }
   588 
   589   template<typename M1, typename M2, typename K1, typename K2, typename V>
   590   inline CombineMap<M1, M2, V (*)(K1, K2), V>
   591   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   592     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   593   }
   594 
   595 
   596   /// Converts an STL style (unary) functor to a map
   597 
   598   /// This \ref concepts::ReadMap "read only map" returns the value
   599   /// of a given functor. Actually, it just wraps the functor and
   600   /// provides the \c Key and \c Value typedefs.
   601   ///
   602   /// Template parameters \c K and \c V will become its \c Key and
   603   /// \c Value. In most cases they have to be given explicitly because
   604   /// a functor typically does not provide \c argument_type and
   605   /// \c result_type typedefs.
   606   /// Parameter \c F is the type of the used functor.
   607   ///
   608   /// The simplest way of using this map is through the functorToMap()
   609   /// function.
   610   ///
   611   /// \sa MapToFunctor
   612   template<typename F,
   613 	   typename K = typename F::argument_type,
   614 	   typename V = typename F::result_type>
   615   class FunctorToMap : public MapBase<K, V> {
   616     const F &_f;
   617   public:
   618     typedef MapBase<K, V> Parent;
   619     typedef typename Parent::Key Key;
   620     typedef typename Parent::Value Value;
   621 
   622     /// Constructor
   623     FunctorToMap(const F &f = F()) : _f(f) {}
   624     /// \e
   625     Value operator[](const Key &k) const { return _f(k); }
   626   };
   627 
   628   /// Returns a \ref FunctorToMap class
   629 
   630   /// This function just returns a \ref FunctorToMap class.
   631   ///
   632   /// This function is specialized for adaptable binary function
   633   /// classes and C++ functions.
   634   ///
   635   /// \relates FunctorToMap
   636   template<typename K, typename V, typename F>
   637   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
   638     return FunctorToMap<F, K, V>(f);
   639   }
   640 
   641   template <typename F>
   642   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
   643     functorToMap(const F &f)
   644   {
   645     return FunctorToMap<F, typename F::argument_type,
   646       typename F::result_type>(f);
   647   }
   648 
   649   template <typename K, typename V>
   650   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
   651     return FunctorToMap<V (*)(K), K, V>(f);
   652   }
   653 
   654 
   655   /// Converts a map to an STL style (unary) functor
   656 
   657   /// This class converts a map to an STL style (unary) functor.
   658   /// That is it provides an <tt>operator()</tt> to read its values.
   659   ///
   660   /// For the sake of convenience it also works as a usual
   661   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
   662   /// and the \c Key and \c Value typedefs also exist.
   663   ///
   664   /// The simplest way of using this map is through the mapToFunctor()
   665   /// function.
   666   ///
   667   ///\sa FunctorToMap
   668   template <typename M>
   669   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
   670     const M &_m;
   671   public:
   672     typedef MapBase<typename M::Key, typename M::Value> Parent;
   673     typedef typename Parent::Key Key;
   674     typedef typename Parent::Value Value;
   675 
   676     typedef typename Parent::Key argument_type;
   677     typedef typename Parent::Value result_type;
   678 
   679     /// Constructor
   680     MapToFunctor(const M &m) : _m(m) {}
   681     /// \e
   682     Value operator()(const Key &k) const { return _m[k]; }
   683     /// \e
   684     Value operator[](const Key &k) const { return _m[k]; }
   685   };
   686 
   687   /// Returns a \ref MapToFunctor class
   688 
   689   /// This function just returns a \ref MapToFunctor class.
   690   /// \relates MapToFunctor
   691   template<typename M>
   692   inline MapToFunctor<M> mapToFunctor(const M &m) {
   693     return MapToFunctor<M>(m);
   694   }
   695 
   696 
   697   /// \brief Map adaptor to convert the \c Value type of a map to
   698   /// another type using the default conversion.
   699 
   700   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
   701   /// "readable map" to another type using the default conversion.
   702   /// The \c Key type of it is inherited from \c M and the \c Value
   703   /// type is \c V.
   704   /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
   705   ///
   706   /// The simplest way of using this map is through the convertMap()
   707   /// function.
   708   template <typename M, typename V>
   709   class ConvertMap : public MapBase<typename M::Key, V> {
   710     const M &_m;
   711   public:
   712     typedef MapBase<typename M::Key, V> Parent;
   713     typedef typename Parent::Key Key;
   714     typedef typename Parent::Value Value;
   715 
   716     /// Constructor
   717 
   718     /// Constructor.
   719     /// \param m The underlying map.
   720     ConvertMap(const M &m) : _m(m) {}
   721 
   722     /// \e
   723     Value operator[](const Key &k) const { return _m[k]; }
   724   };
   725 
   726   /// Returns a \ref ConvertMap class
   727 
   728   /// This function just returns a \ref ConvertMap class.
   729   /// \relates ConvertMap
   730   template<typename V, typename M>
   731   inline ConvertMap<M, V> convertMap(const M &map) {
   732     return ConvertMap<M, V>(map);
   733   }
   734 
   735 
   736   /// Applies all map setting operations to two maps
   737 
   738   /// This map has two \ref concepts::WriteMap "writable map" parameters
   739   /// and each write request will be passed to both of them.
   740   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
   741   /// operations will return the corresponding values of \c M1.
   742   ///
   743   /// The \c Key and \c Value types are inherited from \c M1.
   744   /// The \c Key and \c Value of \c M2 must be convertible from those
   745   /// of \c M1.
   746   ///
   747   /// The simplest way of using this map is through the forkMap()
   748   /// function.
   749   template<typename  M1, typename M2>
   750   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   751     M1 &_m1;
   752     M2 &_m2;
   753   public:
   754     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   755     typedef typename Parent::Key Key;
   756     typedef typename Parent::Value Value;
   757 
   758     /// Constructor
   759     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
   760     /// Returns the value associated with the given key in the first map.
   761     Value operator[](const Key &k) const { return _m1[k]; }
   762     /// Sets the value associated with the given key in both maps.
   763     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
   764   };
   765 
   766   /// Returns a \ref ForkMap class
   767 
   768   /// This function just returns a \ref ForkMap class.
   769   /// \relates ForkMap
   770   template <typename M1, typename M2>
   771   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
   772     return ForkMap<M1,M2>(m1,m2);
   773   }
   774 
   775 
   776   /// Simple wrapping of a map
   777 
   778   /// This \ref concepts::ReadMap "read only map" returns the simple
   779   /// wrapping of the given map. Sometimes the reference maps cannot be
   780   /// combined with simple read maps. This map adaptor wraps the given
   781   /// map to simple read map.
   782   ///
   783   /// The simplest way of using this map is through the wrapMap()
   784   /// function.
   785   ///
   786   /// \sa WrapWriteMap
   787   template<typename M>
   788   class WrapMap : public MapBase<typename M::Key, typename M::Value> {
   789     const M &_m;
   790   public:
   791     typedef MapBase<typename M::Key, typename M::Value> Parent;
   792     typedef typename Parent::Key Key;
   793     typedef typename Parent::Value Value;
   794 
   795     /// Constructor
   796     WrapMap(const M &m) : _m(m) {}
   797     /// \e
   798     Value operator[](const Key &k) const { return _m[k]; }
   799   };
   800 
   801   /// Returns a \ref WrapMap class
   802 
   803   /// This function just returns a \ref WrapMap class.
   804   /// \relates WrapMap
   805   template<typename M>
   806   inline WrapMap<M> wrapMap(const M &map) {
   807     return WrapMap<M>(map);
   808   }
   809 
   810 
   811   /// Simple writable wrapping of a map
   812 
   813   /// This \ref concepts::ReadWriteMap "read-write map" returns the simple
   814   /// wrapping of the given map. Sometimes the reference maps cannot be
   815   /// combined with simple read-write maps. This map adaptor wraps the
   816   /// given map to simple read-write map.
   817   ///
   818   /// The simplest way of using this map is through the wrapWriteMap()
   819   /// function.
   820   ///
   821   /// \sa WrapMap
   822   template<typename M>
   823   class WrapWriteMap : public MapBase<typename M::Key, typename M::Value> {
   824     M &_m;
   825   public:
   826     typedef MapBase<typename M::Key, typename M::Value> Parent;
   827     typedef typename Parent::Key Key;
   828     typedef typename Parent::Value Value;
   829 
   830     /// Constructor
   831     WrapWriteMap(M &m) : _m(m) {}
   832     /// \e
   833     Value operator[](const Key &k) const { return _m[k]; }
   834     /// \e
   835     void set(const Key &k, const Value &c) { _m.set(k, c); }
   836   };
   837 
   838   ///Returns a \ref WrapWriteMap class
   839 
   840   ///This function just returns a \ref WrapWriteMap class.
   841   ///\relates WrapWriteMap
   842   template<typename M>
   843   inline WrapWriteMap<M> wrapWriteMap(M &map) {
   844     return WrapWriteMap<M>(map);
   845   }
   846 
   847 
   848   /// Sum of two maps
   849 
   850   /// This \ref concepts::ReadMap "read only map" returns the sum
   851   /// of the values of the two given maps.
   852   /// Its \c Key and \c Value types are inherited from \c M1.
   853   /// The \c Key and \c Value of \c M2 must be convertible to those of
   854   /// \c M1.
   855   ///
   856   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   857   /// \code
   858   ///   AddMap<M1,M2> am(m1,m2);
   859   /// \endcode
   860   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
   861   ///
   862   /// The simplest way of using this map is through the addMap()
   863   /// function.
   864   ///
   865   /// \sa SubMap, MulMap, DivMap
   866   /// \sa ShiftMap, ShiftWriteMap
   867   template<typename M1, typename M2>
   868   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   869     const M1 &_m1;
   870     const M2 &_m2;
   871   public:
   872     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   873     typedef typename Parent::Key Key;
   874     typedef typename Parent::Value Value;
   875 
   876     /// Constructor
   877     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   878     /// \e
   879     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
   880   };
   881 
   882   /// Returns an \ref AddMap class
   883 
   884   /// This function just returns an \ref AddMap class.
   885   ///
   886   /// For example, if \c m1 and \c m2 are both maps with \c double
   887   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
   888   /// <tt>m1[x]+m2[x]</tt>.
   889   ///
   890   /// \relates AddMap
   891   template<typename M1, typename M2>
   892   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
   893     return AddMap<M1, M2>(m1,m2);
   894   }
   895 
   896 
   897   /// Difference of two maps
   898 
   899   /// This \ref concepts::ReadMap "read only map" returns the difference
   900   /// of the values of the two given maps.
   901   /// Its \c Key and \c Value types are inherited from \c M1.
   902   /// The \c Key and \c Value of \c M2 must be convertible to those of
   903   /// \c M1.
   904   ///
   905   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   906   /// \code
   907   ///   SubMap<M1,M2> sm(m1,m2);
   908   /// \endcode
   909   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
   910   ///
   911   /// The simplest way of using this map is through the subMap()
   912   /// function.
   913   ///
   914   /// \sa AddMap, MulMap, DivMap
   915   template<typename M1, typename M2>
   916   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   917     const M1 &_m1;
   918     const M2 &_m2;
   919   public:
   920     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   921     typedef typename Parent::Key Key;
   922     typedef typename Parent::Value Value;
   923 
   924     /// Constructor
   925     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   926     /// \e
   927     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
   928   };
   929 
   930   /// Returns a \ref SubMap class
   931 
   932   /// This function just returns a \ref SubMap class.
   933   ///
   934   /// For example, if \c m1 and \c m2 are both maps with \c double
   935   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
   936   /// <tt>m1[x]-m2[x]</tt>.
   937   ///
   938   /// \relates SubMap
   939   template<typename M1, typename M2>
   940   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   941     return SubMap<M1, M2>(m1,m2);
   942   }
   943 
   944 
   945   /// Product of two maps
   946 
   947   /// This \ref concepts::ReadMap "read only map" returns the product
   948   /// of the values of the two given maps.
   949   /// Its \c Key and \c Value types are inherited from \c M1.
   950   /// The \c Key and \c Value of \c M2 must be convertible to those of
   951   /// \c M1.
   952   ///
   953   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   954   /// \code
   955   ///   MulMap<M1,M2> mm(m1,m2);
   956   /// \endcode
   957   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
   958   ///
   959   /// The simplest way of using this map is through the mulMap()
   960   /// function.
   961   ///
   962   /// \sa AddMap, SubMap, DivMap
   963   /// \sa ScaleMap, ScaleWriteMap
   964   template<typename M1, typename M2>
   965   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   966     const M1 &_m1;
   967     const M2 &_m2;
   968   public:
   969     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   970     typedef typename Parent::Key Key;
   971     typedef typename Parent::Value Value;
   972 
   973     /// Constructor
   974     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   975     /// \e
   976     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
   977   };
   978 
   979   /// Returns a \ref MulMap class
   980 
   981   /// This function just returns a \ref MulMap class.
   982   ///
   983   /// For example, if \c m1 and \c m2 are both maps with \c double
   984   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
   985   /// <tt>m1[x]*m2[x]</tt>.
   986   ///
   987   /// \relates MulMap
   988   template<typename M1, typename M2>
   989   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   990     return MulMap<M1, M2>(m1,m2);
   991   }
   992 
   993 
   994   /// Quotient of two maps
   995 
   996   /// This \ref concepts::ReadMap "read only map" returns the quotient
   997   /// of the values of the two given maps.
   998   /// Its \c Key and \c Value types are inherited from \c M1.
   999   /// The \c Key and \c Value of \c M2 must be convertible to those of
  1000   /// \c M1.
  1001   ///
  1002   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1003   /// \code
  1004   ///   DivMap<M1,M2> dm(m1,m2);
  1005   /// \endcode
  1006   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
  1007   ///
  1008   /// The simplest way of using this map is through the divMap()
  1009   /// function.
  1010   ///
  1011   /// \sa AddMap, SubMap, MulMap
  1012   template<typename M1, typename M2>
  1013   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
  1014     const M1 &_m1;
  1015     const M2 &_m2;
  1016   public:
  1017     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
  1018     typedef typename Parent::Key Key;
  1019     typedef typename Parent::Value Value;
  1020 
  1021     /// Constructor
  1022     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
  1023     /// \e
  1024     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
  1025   };
  1026 
  1027   /// Returns a \ref DivMap class
  1028 
  1029   /// This function just returns a \ref DivMap class.
  1030   ///
  1031   /// For example, if \c m1 and \c m2 are both maps with \c double
  1032   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
  1033   /// <tt>m1[x]/m2[x]</tt>.
  1034   ///
  1035   /// \relates DivMap
  1036   template<typename M1, typename M2>
  1037   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
  1038     return DivMap<M1, M2>(m1,m2);
  1039   }
  1040 
  1041 
  1042   /// Shifts a map with a constant.
  1043 
  1044   /// This \ref concepts::ReadMap "read only map" returns the sum of
  1045   /// the given map and a constant value (i.e. it shifts the map with
  1046   /// the constant). Its \c Key and \c Value are inherited from \c M.
  1047   ///
  1048   /// Actually,
  1049   /// \code
  1050   ///   ShiftMap<M> sh(m,v);
  1051   /// \endcode
  1052   /// is equivalent to
  1053   /// \code
  1054   ///   ConstMap<M::Key, M::Value> cm(v);
  1055   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
  1056   /// \endcode
  1057   ///
  1058   /// The simplest way of using this map is through the shiftMap()
  1059   /// function.
  1060   ///
  1061   /// \sa ShiftWriteMap
  1062   template<typename M, typename C = typename M::Value>
  1063   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
  1064     const M &_m;
  1065     C _v;
  1066   public:
  1067     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1068     typedef typename Parent::Key Key;
  1069     typedef typename Parent::Value Value;
  1070 
  1071     /// Constructor
  1072 
  1073     /// Constructor.
  1074     /// \param m The undelying map.
  1075     /// \param v The constant value.
  1076     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
  1077     /// \e
  1078     Value operator[](const Key &k) const { return _m[k]+_v; }
  1079   };
  1080 
  1081   /// Shifts a map with a constant (read-write version).
  1082 
  1083   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
  1084   /// of the given map and a constant value (i.e. it shifts the map with
  1085   /// the constant). Its \c Key and \c Value are inherited from \c M.
  1086   /// It makes also possible to write the map.
  1087   ///
  1088   /// The simplest way of using this map is through the shiftWriteMap()
  1089   /// function.
  1090   ///
  1091   /// \sa ShiftMap
  1092   template<typename M, typename C = typename M::Value>
  1093   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1094     M &_m;
  1095     C _v;
  1096   public:
  1097     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1098     typedef typename Parent::Key Key;
  1099     typedef typename Parent::Value Value;
  1100 
  1101     /// Constructor
  1102 
  1103     /// Constructor.
  1104     /// \param m The undelying map.
  1105     /// \param v The constant value.
  1106     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1107     /// \e
  1108     Value operator[](const Key &k) const { return _m[k]+_v; }
  1109     /// \e
  1110     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
  1111   };
  1112 
  1113   /// Returns a \ref ShiftMap class
  1114 
  1115   /// This function just returns a \ref ShiftMap class.
  1116   ///
  1117   /// For example, if \c m is a map with \c double values and \c v is
  1118   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
  1119   /// <tt>m[x]+v</tt>.
  1120   ///
  1121   /// \relates ShiftMap
  1122   template<typename M, typename C>
  1123   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
  1124     return ShiftMap<M, C>(m,v);
  1125   }
  1126 
  1127   /// Returns a \ref ShiftWriteMap class
  1128 
  1129   /// This function just returns a \ref ShiftWriteMap class.
  1130   ///
  1131   /// For example, if \c m is a map with \c double values and \c v is
  1132   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
  1133   /// <tt>m[x]+v</tt>.
  1134   /// Moreover it makes also possible to write the map.
  1135   ///
  1136   /// \relates ShiftWriteMap
  1137   template<typename M, typename C>
  1138   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
  1139     return ShiftWriteMap<M, C>(m,v);
  1140   }
  1141 
  1142 
  1143   /// Scales a map with a constant.
  1144 
  1145   /// This \ref concepts::ReadMap "read only map" returns the value of
  1146   /// the given map multiplied from the left side with a constant value.
  1147   /// Its \c Key and \c Value are inherited from \c M.
  1148   ///
  1149   /// Actually,
  1150   /// \code
  1151   ///   ScaleMap<M> sc(m,v);
  1152   /// \endcode
  1153   /// is equivalent to
  1154   /// \code
  1155   ///   ConstMap<M::Key, M::Value> cm(v);
  1156   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
  1157   /// \endcode
  1158   ///
  1159   /// The simplest way of using this map is through the scaleMap()
  1160   /// function.
  1161   ///
  1162   /// \sa ScaleWriteMap
  1163   template<typename M, typename C = typename M::Value>
  1164   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
  1165     const M &_m;
  1166     C _v;
  1167   public:
  1168     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1169     typedef typename Parent::Key Key;
  1170     typedef typename Parent::Value Value;
  1171 
  1172     /// Constructor
  1173 
  1174     /// Constructor.
  1175     /// \param m The undelying map.
  1176     /// \param v The constant value.
  1177     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
  1178     /// \e
  1179     Value operator[](const Key &k) const { return _v*_m[k]; }
  1180   };
  1181 
  1182   /// Scales a map with a constant (read-write version).
  1183 
  1184   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
  1185   /// the given map multiplied from the left side with a constant value.
  1186   /// Its \c Key and \c Value are inherited from \c M.
  1187   /// It can also be used as write map if the \c / operator is defined
  1188   /// between \c Value and \c C and the given multiplier is not zero.
  1189   ///
  1190   /// The simplest way of using this map is through the scaleWriteMap()
  1191   /// function.
  1192   ///
  1193   /// \sa ScaleMap
  1194   template<typename M, typename C = typename M::Value>
  1195   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1196     M &_m;
  1197     C _v;
  1198   public:
  1199     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1200     typedef typename Parent::Key Key;
  1201     typedef typename Parent::Value Value;
  1202 
  1203     /// Constructor
  1204 
  1205     /// Constructor.
  1206     /// \param m The undelying map.
  1207     /// \param v The constant value.
  1208     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1209     /// \e
  1210     Value operator[](const Key &k) const { return _v*_m[k]; }
  1211     /// \e
  1212     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
  1213   };
  1214 
  1215   /// Returns a \ref ScaleMap class
  1216 
  1217   /// This function just returns a \ref ScaleMap class.
  1218   ///
  1219   /// For example, if \c m is a map with \c double values and \c v is
  1220   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
  1221   /// <tt>v*m[x]</tt>.
  1222   ///
  1223   /// \relates ScaleMap
  1224   template<typename M, typename C>
  1225   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
  1226     return ScaleMap<M, C>(m,v);
  1227   }
  1228 
  1229   /// Returns a \ref ScaleWriteMap class
  1230 
  1231   /// This function just returns a \ref ScaleWriteMap class.
  1232   ///
  1233   /// For example, if \c m is a map with \c double values and \c v is
  1234   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
  1235   /// <tt>v*m[x]</tt>.
  1236   /// Moreover it makes also possible to write the map.
  1237   ///
  1238   /// \relates ScaleWriteMap
  1239   template<typename M, typename C>
  1240   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
  1241     return ScaleWriteMap<M, C>(m,v);
  1242   }
  1243 
  1244 
  1245   /// Negative of a map
  1246 
  1247   /// This \ref concepts::ReadMap "read only map" returns the negative
  1248   /// of the values of the given map (using the unary \c - operator).
  1249   /// Its \c Key and \c Value are inherited from \c M.
  1250   ///
  1251   /// If M::Value is \c int, \c double etc., then
  1252   /// \code
  1253   ///   NegMap<M> neg(m);
  1254   /// \endcode
  1255   /// is equivalent to
  1256   /// \code
  1257   ///   ScaleMap<M> neg(m,-1);
  1258   /// \endcode
  1259   ///
  1260   /// The simplest way of using this map is through the negMap()
  1261   /// function.
  1262   ///
  1263   /// \sa NegWriteMap
  1264   template<typename M>
  1265   class NegMap : public MapBase<typename M::Key, typename M::Value> {
  1266     const M& _m;
  1267   public:
  1268     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1269     typedef typename Parent::Key Key;
  1270     typedef typename Parent::Value Value;
  1271 
  1272     /// Constructor
  1273     NegMap(const M &m) : _m(m) {}
  1274     /// \e
  1275     Value operator[](const Key &k) const { return -_m[k]; }
  1276   };
  1277 
  1278   /// Negative of a map (read-write version)
  1279 
  1280   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1281   /// negative of the values of the given map (using the unary \c -
  1282   /// operator).
  1283   /// Its \c Key and \c Value are inherited from \c M.
  1284   /// It makes also possible to write the map.
  1285   ///
  1286   /// If M::Value is \c int, \c double etc., then
  1287   /// \code
  1288   ///   NegWriteMap<M> neg(m);
  1289   /// \endcode
  1290   /// is equivalent to
  1291   /// \code
  1292   ///   ScaleWriteMap<M> neg(m,-1);
  1293   /// \endcode
  1294   ///
  1295   /// The simplest way of using this map is through the negWriteMap()
  1296   /// function.
  1297   ///
  1298   /// \sa NegMap
  1299   template<typename M>
  1300   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1301     M &_m;
  1302   public:
  1303     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1304     typedef typename Parent::Key Key;
  1305     typedef typename Parent::Value Value;
  1306 
  1307     /// Constructor
  1308     NegWriteMap(M &m) : _m(m) {}
  1309     /// \e
  1310     Value operator[](const Key &k) const { return -_m[k]; }
  1311     /// \e
  1312     void set(const Key &k, const Value &v) { _m.set(k, -v); }
  1313   };
  1314 
  1315   /// Returns a \ref NegMap class
  1316 
  1317   /// This function just returns a \ref NegMap class.
  1318   ///
  1319   /// For example, if \c m is a map with \c double values, then
  1320   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1321   ///
  1322   /// \relates NegMap
  1323   template <typename M>
  1324   inline NegMap<M> negMap(const M &m) {
  1325     return NegMap<M>(m);
  1326   }
  1327 
  1328   /// Returns a \ref NegWriteMap class
  1329 
  1330   /// This function just returns a \ref NegWriteMap class.
  1331   ///
  1332   /// For example, if \c m is a map with \c double values, then
  1333   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1334   /// Moreover it makes also possible to write the map.
  1335   ///
  1336   /// \relates NegWriteMap
  1337   template <typename M>
  1338   inline NegWriteMap<M> negWriteMap(M &m) {
  1339     return NegWriteMap<M>(m);
  1340   }
  1341 
  1342 
  1343   /// Absolute value of a map
  1344 
  1345   /// This \ref concepts::ReadMap "read only map" returns the absolute
  1346   /// value of the values of the given map.
  1347   /// Its \c Key and \c Value are inherited from \c M.
  1348   /// \c Value must be comparable to \c 0 and the unary \c -
  1349   /// operator must be defined for it, of course.
  1350   ///
  1351   /// The simplest way of using this map is through the absMap()
  1352   /// function.
  1353   template<typename M>
  1354   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
  1355     const M &_m;
  1356   public:
  1357     typedef MapBase<typename M::Key, typename M::Value> Parent;
  1358     typedef typename Parent::Key Key;
  1359     typedef typename Parent::Value Value;
  1360 
  1361     /// Constructor
  1362     AbsMap(const M &m) : _m(m) {}
  1363     /// \e
  1364     Value operator[](const Key &k) const {
  1365       Value tmp = _m[k];
  1366       return tmp >= 0 ? tmp : -tmp;
  1367     }
  1368 
  1369   };
  1370 
  1371   /// Returns an \ref AbsMap class
  1372 
  1373   /// This function just returns an \ref AbsMap class.
  1374   ///
  1375   /// For example, if \c m is a map with \c double values, then
  1376   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
  1377   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
  1378   /// negative.
  1379   ///
  1380   /// \relates AbsMap
  1381   template<typename M>
  1382   inline AbsMap<M> absMap(const M &m) {
  1383     return AbsMap<M>(m);
  1384   }
  1385 
  1386 
  1387   /// Logical 'not' of a map
  1388 
  1389   /// This \ref concepts::ReadMap "read only map" returns the logical
  1390   /// negation of the values of the given map.
  1391   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1392   ///
  1393   /// The simplest way of using this map is through the notMap()
  1394   /// function.
  1395   ///
  1396   /// \sa NotWriteMap
  1397   template <typename M>
  1398   class NotMap : public MapBase<typename M::Key, bool> {
  1399     const M &_m;
  1400   public:
  1401     typedef MapBase<typename M::Key, bool> Parent;
  1402     typedef typename Parent::Key Key;
  1403     typedef typename Parent::Value Value;
  1404 
  1405     /// Constructor
  1406     NotMap(const M &m) : _m(m) {}
  1407     /// \e
  1408     Value operator[](const Key &k) const { return !_m[k]; }
  1409   };
  1410 
  1411   /// Logical 'not' of a map (read-write version)
  1412 
  1413   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1414   /// logical negation of the values of the given map.
  1415   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1416   /// It makes also possible to write the map. When a value is set,
  1417   /// the opposite value is set to the original map.
  1418   ///
  1419   /// The simplest way of using this map is through the notWriteMap()
  1420   /// function.
  1421   ///
  1422   /// \sa NotMap
  1423   template <typename M>
  1424   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1425     M &_m;
  1426   public:
  1427     typedef MapBase<typename M::Key, bool> Parent;
  1428     typedef typename Parent::Key Key;
  1429     typedef typename Parent::Value Value;
  1430 
  1431     /// Constructor
  1432     NotWriteMap(M &m) : _m(m) {}
  1433     /// \e
  1434     Value operator[](const Key &k) const { return !_m[k]; }
  1435     /// \e
  1436     void set(const Key &k, bool v) { _m.set(k, !v); }
  1437   };
  1438 
  1439   /// Returns a \ref NotMap class
  1440 
  1441   /// This function just returns a \ref NotMap class.
  1442   ///
  1443   /// For example, if \c m is a map with \c bool values, then
  1444   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1445   ///
  1446   /// \relates NotMap
  1447   template <typename M>
  1448   inline NotMap<M> notMap(const M &m) {
  1449     return NotMap<M>(m);
  1450   }
  1451 
  1452   /// Returns a \ref NotWriteMap class
  1453 
  1454   /// This function just returns a \ref NotWriteMap class.
  1455   ///
  1456   /// For example, if \c m is a map with \c bool values, then
  1457   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1458   /// Moreover it makes also possible to write the map.
  1459   ///
  1460   /// \relates NotWriteMap
  1461   template <typename M>
  1462   inline NotWriteMap<M> notWriteMap(M &m) {
  1463     return NotWriteMap<M>(m);
  1464   }
  1465 
  1466 
  1467   namespace _maps_bits {
  1468 
  1469     template <typename Value>
  1470     struct Identity {
  1471       typedef Value argument_type;
  1472       typedef Value result_type;
  1473       Value operator()(const Value& val) const {
  1474 	return val;
  1475       }
  1476     };
  1477 
  1478     template <typename _Iterator, typename Enable = void>
  1479     struct IteratorTraits {
  1480       typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1481     };
  1482 
  1483     template <typename _Iterator>
  1484     struct IteratorTraits<_Iterator,
  1485       typename exists<typename _Iterator::container_type>::type>
  1486     {
  1487       typedef typename _Iterator::container_type::value_type Value;
  1488     };
  1489 
  1490   }
  1491 
  1492 
  1493   /// \brief Writable bool map for logging each \c true assigned element
  1494   ///
  1495   /// A \ref concepts::ReadWriteMap "read-write" bool map for logging
  1496   /// each \c true assigned element, i.e it copies all the keys set
  1497   /// to \c true to the given iterator.
  1498   ///
  1499   /// \note The container of the iterator should contain space
  1500   /// for each element.
  1501   ///
  1502   /// The following example shows how you can write the edges found by
  1503   /// the \ref Prim algorithm directly to the standard output.
  1504   /// \code
  1505   ///   typedef IdMap<Graph, Edge> EdgeIdMap;
  1506   ///   EdgeIdMap edgeId(graph);
  1507   ///
  1508   ///   typedef MapToFunctor<EdgeIdMap> EdgeIdFunctor;
  1509   ///   EdgeIdFunctor edgeIdFunctor(edgeId);
  1510   ///
  1511   ///   StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor>
  1512   ///     writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
  1513   ///
  1514   ///   prim(graph, cost, writerMap);
  1515   /// \endcode
  1516   ///
  1517   /// \sa BackInserterBoolMap
  1518   /// \sa FrontInserterBoolMap
  1519   /// \sa InserterBoolMap
  1520   ///
  1521   /// \todo Revise the name of this class and the related ones.
  1522   template <typename _Iterator,
  1523             typename _Functor =
  1524             _maps_bits::Identity<typename _maps_bits::
  1525                                  IteratorTraits<_Iterator>::Value> >
  1526   class StoreBoolMap {
  1527   public:
  1528     typedef _Iterator Iterator;
  1529 
  1530     typedef typename _Functor::argument_type Key;
  1531     typedef bool Value;
  1532 
  1533     typedef _Functor Functor;
  1534 
  1535     /// Constructor
  1536     StoreBoolMap(Iterator it, const Functor& functor = Functor())
  1537       : _begin(it), _end(it), _functor(functor) {}
  1538 
  1539     /// Gives back the given iterator set for the first key
  1540     Iterator begin() const {
  1541       return _begin;
  1542     }
  1543 
  1544     /// Gives back the the 'after the last' iterator
  1545     Iterator end() const {
  1546       return _end;
  1547     }
  1548 
  1549     /// The set function of the map
  1550     void set(const Key& key, Value value) const {
  1551       if (value) {
  1552 	*_end++ = _functor(key);
  1553       }
  1554     }
  1555 
  1556   private:
  1557     Iterator _begin;
  1558     mutable Iterator _end;
  1559     Functor _functor;
  1560   };
  1561 
  1562   /// \brief Writable bool map for logging each \c true assigned element in
  1563   /// a back insertable container.
  1564   ///
  1565   /// Writable bool map for logging each \c true assigned element by pushing
  1566   /// them into a back insertable container.
  1567   /// It can be used to retrieve the items into a standard
  1568   /// container. The next example shows how you can store the
  1569   /// edges found by the Prim algorithm in a vector.
  1570   ///
  1571   /// \code
  1572   ///   vector<Edge> span_tree_edges;
  1573   ///   BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
  1574   ///   prim(graph, cost, inserter_map);
  1575   /// \endcode
  1576   ///
  1577   /// \sa StoreBoolMap
  1578   /// \sa FrontInserterBoolMap
  1579   /// \sa InserterBoolMap
  1580   template <typename Container,
  1581             typename Functor =
  1582             _maps_bits::Identity<typename Container::value_type> >
  1583   class BackInserterBoolMap {
  1584   public:
  1585     typedef typename Functor::argument_type Key;
  1586     typedef bool Value;
  1587 
  1588     /// Constructor
  1589     BackInserterBoolMap(Container& _container,
  1590                         const Functor& _functor = Functor())
  1591       : container(_container), functor(_functor) {}
  1592 
  1593     /// The set function of the map
  1594     void set(const Key& key, Value value) {
  1595       if (value) {
  1596 	container.push_back(functor(key));
  1597       }
  1598     }
  1599 
  1600   private:
  1601     Container& container;
  1602     Functor functor;
  1603   };
  1604 
  1605   /// \brief Writable bool map for logging each \c true assigned element in
  1606   /// a front insertable container.
  1607   ///
  1608   /// Writable bool map for logging each \c true assigned element by pushing
  1609   /// them into a front insertable container.
  1610   /// It can be used to retrieve the items into a standard
  1611   /// container. For example see \ref BackInserterBoolMap.
  1612   ///
  1613   /// \sa BackInserterBoolMap
  1614   /// \sa InserterBoolMap
  1615   template <typename Container,
  1616             typename Functor =
  1617             _maps_bits::Identity<typename Container::value_type> >
  1618   class FrontInserterBoolMap {
  1619   public:
  1620     typedef typename Functor::argument_type Key;
  1621     typedef bool Value;
  1622 
  1623     /// Constructor
  1624     FrontInserterBoolMap(Container& _container,
  1625                          const Functor& _functor = Functor())
  1626       : container(_container), functor(_functor) {}
  1627 
  1628     /// The set function of the map
  1629     void set(const Key& key, Value value) {
  1630       if (value) {
  1631 	container.push_front(functor(key));
  1632       }
  1633     }
  1634 
  1635   private:
  1636     Container& container;
  1637     Functor functor;
  1638   };
  1639 
  1640   /// \brief Writable bool map for storing each \c true assigned element in
  1641   /// an insertable container.
  1642   ///
  1643   /// Writable bool map for storing each \c true assigned element in an
  1644   /// insertable container. It will insert all the keys set to \c true into
  1645   /// the container.
  1646   ///
  1647   /// For example, if you want to store the cut arcs of the strongly
  1648   /// connected components in a set you can use the next code:
  1649   ///
  1650   /// \code
  1651   ///   set<Arc> cut_arcs;
  1652   ///   InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
  1653   ///   stronglyConnectedCutArcs(digraph, cost, inserter_map);
  1654   /// \endcode
  1655   ///
  1656   /// \sa BackInserterBoolMap
  1657   /// \sa FrontInserterBoolMap
  1658   template <typename Container,
  1659             typename Functor =
  1660             _maps_bits::Identity<typename Container::value_type> >
  1661   class InserterBoolMap {
  1662   public:
  1663     typedef typename Container::value_type Key;
  1664     typedef bool Value;
  1665 
  1666     /// Constructor with specified iterator
  1667 
  1668     /// Constructor with specified iterator.
  1669     /// \param _container The container for storing the elements.
  1670     /// \param _it The elements will be inserted before this iterator.
  1671     /// \param _functor The functor that is used when an element is stored.
  1672     InserterBoolMap(Container& _container, typename Container::iterator _it,
  1673                     const Functor& _functor = Functor())
  1674       : container(_container), it(_it), functor(_functor) {}
  1675 
  1676     /// Constructor
  1677 
  1678     /// Constructor without specified iterator.
  1679     /// The elements will be inserted before <tt>_container.end()</tt>.
  1680     /// \param _container The container for storing the elements.
  1681     /// \param _functor The functor that is used when an element is stored.
  1682     InserterBoolMap(Container& _container, const Functor& _functor = Functor())
  1683       : container(_container), it(_container.end()), functor(_functor) {}
  1684 
  1685     /// The set function of the map
  1686     void set(const Key& key, Value value) {
  1687       if (value) {
  1688 	it = container.insert(it, functor(key));
  1689         ++it;
  1690       }
  1691     }
  1692 
  1693   private:
  1694     Container& container;
  1695     typename Container::iterator it;
  1696     Functor functor;
  1697   };
  1698 
  1699   /// \brief Writable bool map for filling each \c true assigned element with a
  1700   /// given value.
  1701   ///
  1702   /// Writable bool map for filling each \c true assigned element with a
  1703   /// given value. The value can set the container.
  1704   ///
  1705   /// The following code finds the connected components of a graph
  1706   /// and stores it in the \c comp map:
  1707   /// \code
  1708   ///   typedef Graph::NodeMap<int> ComponentMap;
  1709   ///   ComponentMap comp(graph);
  1710   ///   typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
  1711   ///   ComponentFillerMap filler(comp, 0);
  1712   ///
  1713   ///   Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
  1714   ///   dfs.processedMap(filler);
  1715   ///   dfs.init();
  1716   ///   for (NodeIt it(graph); it != INVALID; ++it) {
  1717   ///     if (!dfs.reached(it)) {
  1718   ///       dfs.addSource(it);
  1719   ///       dfs.start();
  1720   ///       ++filler.fillValue();
  1721   ///     }
  1722   ///   }
  1723   /// \endcode
  1724   template <typename Map>
  1725   class FillBoolMap {
  1726   public:
  1727     typedef typename Map::Key Key;
  1728     typedef bool Value;
  1729 
  1730     /// Constructor
  1731     FillBoolMap(Map& _map, const typename Map::Value& _fill)
  1732       : map(_map), fill(_fill) {}
  1733 
  1734     /// Constructor
  1735     FillBoolMap(Map& _map)
  1736       : map(_map), fill() {}
  1737 
  1738     /// Gives back the current fill value
  1739     const typename Map::Value& fillValue() const {
  1740       return fill;
  1741     }
  1742 
  1743     /// Gives back the current fill value
  1744     typename Map::Value& fillValue() {
  1745       return fill;
  1746     }
  1747 
  1748     /// Sets the current fill value
  1749     void fillValue(const typename Map::Value& _fill) {
  1750       fill = _fill;
  1751     }
  1752 
  1753     /// The set function of the map
  1754     void set(const Key& key, Value value) {
  1755       if (value) {
  1756 	map.set(key, fill);
  1757       }
  1758     }
  1759 
  1760   private:
  1761     Map& map;
  1762     typename Map::Value fill;
  1763   };
  1764 
  1765 
  1766   /// \brief Writable bool map for storing the sequence number of
  1767   /// \c true assignments.
  1768   ///
  1769   /// Writable bool map that stores for each \c true assigned elements
  1770   /// the sequence number of this setting.
  1771   /// It makes it easy to calculate the leaving
  1772   /// order of the nodes in the \ref Dfs algorithm.
  1773   ///
  1774   /// \code
  1775   ///   typedef Digraph::NodeMap<int> OrderMap;
  1776   ///   OrderMap order(digraph);
  1777   ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1778   ///   OrderSetterMap setter(order);
  1779   ///   Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
  1780   ///   dfs.processedMap(setter);
  1781   ///   dfs.init();
  1782   ///   for (NodeIt it(digraph); it != INVALID; ++it) {
  1783   ///     if (!dfs.reached(it)) {
  1784   ///       dfs.addSource(it);
  1785   ///       dfs.start();
  1786   ///     }
  1787   ///   }
  1788   /// \endcode
  1789   ///
  1790   /// The storing of the discovering order is more difficult because the
  1791   /// ReachedMap should be readable in the dfs algorithm but the setting
  1792   /// order map is not readable. Thus we must use the fork map:
  1793   ///
  1794   /// \code
  1795   ///   typedef Digraph::NodeMap<int> OrderMap;
  1796   ///   OrderMap order(digraph);
  1797   ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1798   ///   OrderSetterMap setter(order);
  1799   ///   typedef Digraph::NodeMap<bool> StoreMap;
  1800   ///   StoreMap store(digraph);
  1801   ///
  1802   ///   typedef ForkMap<StoreMap, OrderSetterMap> ReachedMap;
  1803   ///   ReachedMap reached(store, setter);
  1804   ///
  1805   ///   Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
  1806   ///   dfs.reachedMap(reached);
  1807   ///   dfs.init();
  1808   ///   for (NodeIt it(digraph); it != INVALID; ++it) {
  1809   ///     if (!dfs.reached(it)) {
  1810   ///       dfs.addSource(it);
  1811   ///       dfs.start();
  1812   ///     }
  1813   ///   }
  1814   /// \endcode
  1815   template <typename Map>
  1816   class SettingOrderBoolMap {
  1817   public:
  1818     typedef typename Map::Key Key;
  1819     typedef bool Value;
  1820 
  1821     /// Constructor
  1822     SettingOrderBoolMap(Map& _map)
  1823       : map(_map), counter(0) {}
  1824 
  1825     /// Number of set operations.
  1826     int num() const {
  1827       return counter;
  1828     }
  1829 
  1830     /// The set function of the map
  1831     void set(const Key& key, Value value) {
  1832       if (value) {
  1833 	map.set(key, counter++);
  1834       }
  1835     }
  1836 
  1837   private:
  1838     Map& map;
  1839     int counter;
  1840   };
  1841 
  1842   /// @}
  1843 }
  1844 
  1845 #endif // LEMON_MAPS_H