Fix compilation with Visual Studio 2005.
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_DIJKSTRA_H
20 #define LEMON_DIJKSTRA_H
22 ///\ingroup shortest_path
24 ///\brief Dijkstra algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/bits/path_dump.h>
30 #include <lemon/core.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
33 #include <lemon/path.h>
37 /// \brief Default operation traits for the Dijkstra algorithm class.
39 /// This operation traits class defines all computational operations and
40 /// constants which are used in the Dijkstra algorithm.
41 template <typename Value>
42 struct DijkstraDefaultOperationTraits {
43 /// \brief Gives back the zero value of the type.
45 return static_cast<Value>(0);
47 /// \brief Gives back the sum of the given two elements.
48 static Value plus(const Value& left, const Value& right) {
51 /// \brief Gives back true only if the first value is less than the second.
52 static bool less(const Value& left, const Value& right) {
57 /// \brief Widest path operation traits for the Dijkstra algorithm class.
59 /// This operation traits class defines all computational operations and
60 /// constants which are used in the Dijkstra algorithm for widest path
63 /// \see DijkstraDefaultOperationTraits
64 template <typename Value>
65 struct DijkstraWidestPathOperationTraits {
66 /// \brief Gives back the maximum value of the type.
68 return std::numeric_limits<Value>::max();
70 /// \brief Gives back the minimum of the given two elements.
71 static Value plus(const Value& left, const Value& right) {
72 return std::min(left, right);
74 /// \brief Gives back true only if the first value is less than the second.
75 static bool less(const Value& left, const Value& right) {
80 ///Default traits class of Dijkstra class.
82 ///Default traits class of Dijkstra class.
83 ///\tparam GR The type of the digraph.
84 ///\tparam LM The type of the length map.
85 template<class GR, class LM>
86 struct DijkstraDefaultTraits
88 ///The type of the digraph the algorithm runs on.
91 ///The type of the map that stores the arc lengths.
93 ///The type of the map that stores the arc lengths.
94 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
96 ///The type of the length of the arcs.
97 typedef typename LM::Value Value;
99 /// Operation traits for Dijkstra algorithm.
101 /// This class defines the operations that are used in the algorithm.
102 /// \see DijkstraDefaultOperationTraits
103 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
105 /// The cross reference type used by the heap.
107 /// The cross reference type used by the heap.
108 /// Usually it is \c Digraph::NodeMap<int>.
109 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
110 ///Instantiates a \ref HeapCrossRef.
112 ///This function instantiates a \ref HeapCrossRef.
113 /// \param g is the digraph, to which we would like to define the
114 /// \ref HeapCrossRef.
115 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
117 return new HeapCrossRef(g);
120 ///The heap type used by the Dijkstra algorithm.
122 ///The heap type used by the Dijkstra algorithm.
126 typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
127 ///Instantiates a \ref Heap.
129 ///This function instantiates a \ref Heap.
130 static Heap *createHeap(HeapCrossRef& r)
135 ///\brief The type of the map that stores the predecessor
136 ///arcs of the shortest paths.
138 ///The type of the map that stores the predecessor
139 ///arcs of the shortest paths.
140 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142 ///Instantiates a \ref PredMap.
144 ///This function instantiates a \ref PredMap.
145 ///\param g is the digraph, to which we would like to define the
147 static PredMap *createPredMap(const Digraph &g)
149 return new PredMap(g);
152 ///The type of the map that indicates which nodes are processed.
154 ///The type of the map that indicates which nodes are processed.
155 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156 ///By default it is a NullMap.
157 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
158 ///Instantiates a \ref ProcessedMap.
160 ///This function instantiates a \ref ProcessedMap.
161 ///\param g is the digraph, to which
162 ///we would like to define the \ref ProcessedMap
164 static ProcessedMap *createProcessedMap(const Digraph &g)
166 static ProcessedMap *createProcessedMap(const Digraph &)
169 return new ProcessedMap();
172 ///The type of the map that stores the distances of the nodes.
174 ///The type of the map that stores the distances of the nodes.
175 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
176 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
177 ///Instantiates a \ref DistMap.
179 ///This function instantiates a \ref DistMap.
180 ///\param g is the digraph, to which we would like to define
182 static DistMap *createDistMap(const Digraph &g)
184 return new DistMap(g);
188 ///%Dijkstra algorithm class.
190 /// \ingroup shortest_path
191 ///This class provides an efficient implementation of the %Dijkstra algorithm.
193 ///The arc lengths are passed to the algorithm using a
194 ///\ref concepts::ReadMap "ReadMap",
195 ///so it is easy to change it to any kind of length.
196 ///The type of the length is determined by the
197 ///\ref concepts::ReadMap::Value "Value" of the length map.
198 ///It is also possible to change the underlying priority heap.
200 ///There is also a \ref dijkstra() "function-type interface" for the
201 ///%Dijkstra algorithm, which is convenient in the simplier cases and
202 ///it can be used easier.
204 ///\tparam GR The type of the digraph the algorithm runs on.
205 ///The default value is \ref ListDigraph.
206 ///The value of GR is not used directly by \ref Dijkstra, it is only
207 ///passed to \ref DijkstraDefaultTraits.
208 ///\tparam LM A readable arc map that determines the lengths of the
209 ///arcs. It is read once for each arc, so the map may involve in
210 ///relatively time consuming process to compute the arc lengths if
211 ///it is necessary. The default map type is \ref
212 ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
213 ///The value of LM is not used directly by \ref Dijkstra, it is only
214 ///passed to \ref DijkstraDefaultTraits.
215 ///\tparam TR Traits class to set various data types used by the algorithm.
216 ///The default traits class is \ref DijkstraDefaultTraits
217 ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
218 ///for the documentation of a Dijkstra traits class.
220 template <typename GR, typename LM, typename TR>
222 template <typename GR=ListDigraph,
223 typename LM=typename GR::template ArcMap<int>,
224 typename TR=DijkstraDefaultTraits<GR,LM> >
229 ///The type of the digraph the algorithm runs on.
230 typedef typename TR::Digraph Digraph;
232 ///The type of the length of the arcs.
233 typedef typename TR::LengthMap::Value Value;
234 ///The type of the map that stores the arc lengths.
235 typedef typename TR::LengthMap LengthMap;
236 ///\brief The type of the map that stores the predecessor arcs of the
238 typedef typename TR::PredMap PredMap;
239 ///The type of the map that stores the distances of the nodes.
240 typedef typename TR::DistMap DistMap;
241 ///The type of the map that indicates which nodes are processed.
242 typedef typename TR::ProcessedMap ProcessedMap;
243 ///The type of the paths.
244 typedef PredMapPath<Digraph, PredMap> Path;
245 ///The cross reference type used for the current heap.
246 typedef typename TR::HeapCrossRef HeapCrossRef;
247 ///The heap type used by the algorithm.
248 typedef typename TR::Heap Heap;
249 ///The operation traits class.
250 typedef typename TR::OperationTraits OperationTraits;
257 typedef typename Digraph::Node Node;
258 typedef typename Digraph::NodeIt NodeIt;
259 typedef typename Digraph::Arc Arc;
260 typedef typename Digraph::OutArcIt OutArcIt;
262 //Pointer to the underlying digraph.
264 //Pointer to the length map.
265 const LengthMap *length;
266 //Pointer to the map of predecessors arcs.
268 //Indicates if _pred is locally allocated (true) or not.
270 //Pointer to the map of distances.
272 //Indicates if _dist is locally allocated (true) or not.
274 //Pointer to the map of processed status of the nodes.
275 ProcessedMap *_processed;
276 //Indicates if _processed is locally allocated (true) or not.
277 bool local_processed;
278 //Pointer to the heap cross references.
279 HeapCrossRef *_heap_cross_ref;
280 //Indicates if _heap_cross_ref is locally allocated (true) or not.
281 bool local_heap_cross_ref;
282 //Pointer to the heap.
284 //Indicates if _heap is locally allocated (true) or not.
287 //Creates the maps if necessary.
292 _pred = Traits::createPredMap(*G);
296 _dist = Traits::createDistMap(*G);
299 local_processed = true;
300 _processed = Traits::createProcessedMap(*G);
302 if (!_heap_cross_ref) {
303 local_heap_cross_ref = true;
304 _heap_cross_ref = Traits::createHeapCrossRef(*G);
308 _heap = Traits::createHeap(*_heap_cross_ref);
314 typedef Dijkstra Create;
316 ///\name Named template parameters
321 struct SetPredMapTraits : public Traits {
323 static PredMap *createPredMap(const Digraph &)
325 LEMON_ASSERT(false, "PredMap is not initialized");
326 return 0; // ignore warnings
329 ///\brief \ref named-templ-param "Named parameter" for setting
330 ///\ref PredMap type.
332 ///\ref named-templ-param "Named parameter" for setting
333 ///\ref PredMap type.
336 : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
337 typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
341 struct SetDistMapTraits : public Traits {
343 static DistMap *createDistMap(const Digraph &)
345 LEMON_ASSERT(false, "DistMap is not initialized");
346 return 0; // ignore warnings
349 ///\brief \ref named-templ-param "Named parameter" for setting
350 ///\ref DistMap type.
352 ///\ref named-templ-param "Named parameter" for setting
353 ///\ref DistMap type.
356 : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
357 typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
361 struct SetProcessedMapTraits : public Traits {
362 typedef T ProcessedMap;
363 static ProcessedMap *createProcessedMap(const Digraph &)
365 LEMON_ASSERT(false, "ProcessedMap is not initialized");
366 return 0; // ignore warnings
369 ///\brief \ref named-templ-param "Named parameter" for setting
370 ///\ref ProcessedMap type.
372 ///\ref named-templ-param "Named parameter" for setting
373 ///\ref ProcessedMap type.
375 struct SetProcessedMap
376 : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
377 typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
380 struct SetStandardProcessedMapTraits : public Traits {
381 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
382 static ProcessedMap *createProcessedMap(const Digraph &g)
384 return new ProcessedMap(g);
387 ///\brief \ref named-templ-param "Named parameter" for setting
388 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
390 ///\ref named-templ-param "Named parameter" for setting
391 ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
392 ///If you don't set it explicitly, it will be automatically allocated.
393 struct SetStandardProcessedMap
394 : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
395 typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
399 template <class H, class CR>
400 struct SetHeapTraits : public Traits {
401 typedef CR HeapCrossRef;
403 static HeapCrossRef *createHeapCrossRef(const Digraph &) {
404 LEMON_ASSERT(false, "HeapCrossRef is not initialized");
405 return 0; // ignore warnings
407 static Heap *createHeap(HeapCrossRef &)
409 LEMON_ASSERT(false, "Heap is not initialized");
410 return 0; // ignore warnings
413 ///\brief \ref named-templ-param "Named parameter" for setting
414 ///heap and cross reference type
416 ///\ref named-templ-param "Named parameter" for setting heap and cross
418 template <class H, class CR = typename Digraph::template NodeMap<int> >
420 : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
421 typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
424 template <class H, class CR>
425 struct SetStandardHeapTraits : public Traits {
426 typedef CR HeapCrossRef;
428 static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
429 return new HeapCrossRef(G);
431 static Heap *createHeap(HeapCrossRef &R)
436 ///\brief \ref named-templ-param "Named parameter" for setting
437 ///heap and cross reference type with automatic allocation
439 ///\ref named-templ-param "Named parameter" for setting heap and cross
440 ///reference type. It can allocate the heap and the cross reference
441 ///object if the cross reference's constructor waits for the digraph as
442 ///parameter and the heap's constructor waits for the cross reference.
443 template <class H, class CR = typename Digraph::template NodeMap<int> >
444 struct SetStandardHeap
445 : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
446 typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
451 struct SetOperationTraitsTraits : public Traits {
452 typedef T OperationTraits;
455 /// \brief \ref named-templ-param "Named parameter" for setting
456 ///\ref OperationTraits type
458 ///\ref named-templ-param "Named parameter" for setting
459 ///\ref OperationTraits type.
461 struct SetOperationTraits
462 : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
463 typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
478 ///\param _g The digraph the algorithm runs on.
479 ///\param _length The length map used by the algorithm.
480 Dijkstra(const Digraph& _g, const LengthMap& _length) :
481 G(&_g), length(&_length),
482 _pred(NULL), local_pred(false),
483 _dist(NULL), local_dist(false),
484 _processed(NULL), local_processed(false),
485 _heap_cross_ref(NULL), local_heap_cross_ref(false),
486 _heap(NULL), local_heap(false)
492 if(local_pred) delete _pred;
493 if(local_dist) delete _dist;
494 if(local_processed) delete _processed;
495 if(local_heap_cross_ref) delete _heap_cross_ref;
496 if(local_heap) delete _heap;
499 ///Sets the length map.
501 ///Sets the length map.
502 ///\return <tt> (*this) </tt>
503 Dijkstra &lengthMap(const LengthMap &m)
509 ///Sets the map that stores the predecessor arcs.
511 ///Sets the map that stores the predecessor arcs.
512 ///If you don't use this function before calling \ref run(),
513 ///it will allocate one. The destructor deallocates this
514 ///automatically allocated map, of course.
515 ///\return <tt> (*this) </tt>
516 Dijkstra &predMap(PredMap &m)
526 ///Sets the map that indicates which nodes are processed.
528 ///Sets the map that indicates which nodes are processed.
529 ///If you don't use this function before calling \ref run(),
530 ///it will allocate one. The destructor deallocates this
531 ///automatically allocated map, of course.
532 ///\return <tt> (*this) </tt>
533 Dijkstra &processedMap(ProcessedMap &m)
535 if(local_processed) {
537 local_processed=false;
543 ///Sets the map that stores the distances of the nodes.
545 ///Sets the map that stores the distances of the nodes calculated by the
547 ///If you don't use this function before calling \ref run(),
548 ///it will allocate one. The destructor deallocates this
549 ///automatically allocated map, of course.
550 ///\return <tt> (*this) </tt>
551 Dijkstra &distMap(DistMap &m)
561 ///Sets the heap and the cross reference used by algorithm.
563 ///Sets the heap and the cross reference used by algorithm.
564 ///If you don't use this function before calling \ref run(),
565 ///it will allocate one. The destructor deallocates this
566 ///automatically allocated heap and cross reference, of course.
567 ///\return <tt> (*this) </tt>
568 Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
570 if(local_heap_cross_ref) {
571 delete _heap_cross_ref;
572 local_heap_cross_ref=false;
574 _heap_cross_ref = &cr;
585 void finalizeNodeData(Node v,Value dst)
587 _processed->set(v,true);
593 ///\name Execution control
594 ///The simplest way to execute the algorithm is to use one of the
595 ///member functions called \ref lemon::Dijkstra::run() "run()".
597 ///If you need more control on the execution, first you must call
598 ///\ref lemon::Dijkstra::init() "init()", then you can add several
599 ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()".
600 ///Finally \ref lemon::Dijkstra::start() "start()" will perform the
601 ///actual path computation.
605 ///Initializes the internal data structures.
607 ///Initializes the internal data structures.
613 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
614 _pred->set(u,INVALID);
615 _processed->set(u,false);
616 _heap_cross_ref->set(u,Heap::PRE_HEAP);
620 ///Adds a new source node.
622 ///Adds a new source node to the priority heap.
623 ///The optional second parameter is the initial distance of the node.
625 ///The function checks if the node has already been added to the heap and
626 ///it is pushed to the heap only if either it was not in the heap
627 ///or the shortest path found till then is shorter than \c dst.
628 void addSource(Node s,Value dst=OperationTraits::zero())
630 if(_heap->state(s) != Heap::IN_HEAP) {
632 } else if(OperationTraits::less((*_heap)[s], dst)) {
634 _pred->set(s,INVALID);
638 ///Processes the next node in the priority heap
640 ///Processes the next node in the priority heap.
642 ///\return The processed node.
644 ///\warning The priority heap must not be empty.
645 Node processNextNode()
648 Value oldvalue=_heap->prio();
650 finalizeNodeData(v,oldvalue);
652 for(OutArcIt e(*G,v); e!=INVALID; ++e) {
654 switch(_heap->state(w)) {
656 _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
661 Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
662 if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
663 _heap->decrease(w, newvalue);
668 case Heap::POST_HEAP:
675 ///The next node to be processed.
677 ///Returns the next node to be processed or \c INVALID if the
678 ///priority heap is empty.
679 Node nextNode() const
681 return !_heap->empty()?_heap->top():INVALID;
684 ///\brief Returns \c false if there are nodes
687 ///Returns \c false if there are nodes
688 ///to be processed in the priority heap.
689 bool emptyQueue() const { return _heap->empty(); }
691 ///Returns the number of the nodes to be processed in the priority heap
693 ///Returns the number of the nodes to be processed in the priority heap.
695 int queueSize() const { return _heap->size(); }
697 ///Executes the algorithm.
699 ///Executes the algorithm.
701 ///This method runs the %Dijkstra algorithm from the root node(s)
702 ///in order to compute the shortest path to each node.
704 ///The algorithm computes
705 ///- the shortest path tree (forest),
706 ///- the distance of each node from the root(s).
708 ///\pre init() must be called and at least one root node should be
709 ///added with addSource() before using this function.
711 ///\note <tt>d.start()</tt> is just a shortcut of the following code.
713 /// while ( !d.emptyQueue() ) {
714 /// d.processNextNode();
719 while ( !emptyQueue() ) processNextNode();
722 ///Executes the algorithm until the given target node is processed.
724 ///Executes the algorithm until the given target node is processed.
726 ///This method runs the %Dijkstra algorithm from the root node(s)
727 ///in order to compute the shortest path to \c t.
729 ///The algorithm computes
730 ///- the shortest path to \c t,
731 ///- the distance of \c t from the root(s).
733 ///\pre init() must be called and at least one root node should be
734 ///added with addSource() before using this function.
737 while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
738 if ( !_heap->empty() ) {
739 finalizeNodeData(_heap->top(),_heap->prio());
744 ///Executes the algorithm until a condition is met.
746 ///Executes the algorithm until a condition is met.
748 ///This method runs the %Dijkstra algorithm from the root node(s) in
749 ///order to compute the shortest path to a node \c v with
750 /// <tt>nm[v]</tt> true, if such a node can be found.
752 ///\param nm A \c bool (or convertible) node map. The algorithm
753 ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
755 ///\return The reached node \c v with <tt>nm[v]</tt> true or
756 ///\c INVALID if no such node was found.
758 ///\pre init() must be called and at least one root node should be
759 ///added with addSource() before using this function.
760 template<class NodeBoolMap>
761 Node start(const NodeBoolMap &nm)
763 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
764 if ( _heap->empty() ) return INVALID;
765 finalizeNodeData(_heap->top(),_heap->prio());
769 ///Runs the algorithm from the given source node.
771 ///This method runs the %Dijkstra algorithm from node \c s
772 ///in order to compute the shortest path to each node.
774 ///The algorithm computes
775 ///- the shortest path tree,
776 ///- the distance of each node from the root.
778 ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
790 ///Finds the shortest path between \c s and \c t.
792 ///This method runs the %Dijkstra algorithm from node \c s
793 ///in order to compute the shortest path to node \c t
794 ///(it stops searching when \c t is processed).
796 ///\return \c true if \c t is reachable form \c s.
798 ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
799 ///shortcut of the following code.
805 bool run(Node s,Node t) {
809 return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
814 ///\name Query Functions
815 ///The result of the %Dijkstra algorithm can be obtained using these
817 ///Either \ref lemon::Dijkstra::run() "run()" or
818 ///\ref lemon::Dijkstra::start() "start()" must be called before
823 ///The shortest path to a node.
825 ///Returns the shortest path to a node.
827 ///\warning \c t should be reachable from the root(s).
829 ///\pre Either \ref run() or \ref start() must be called before
830 ///using this function.
831 Path path(Node t) const { return Path(*G, *_pred, t); }
833 ///The distance of a node from the root(s).
835 ///Returns the distance of a node from the root(s).
837 ///\warning If node \c v is not reachable from the root(s), then
838 ///the return value of this function is undefined.
840 ///\pre Either \ref run() or \ref start() must be called before
841 ///using this function.
842 Value dist(Node v) const { return (*_dist)[v]; }
844 ///Returns the 'previous arc' of the shortest path tree for a node.
846 ///This function returns the 'previous arc' of the shortest path
847 ///tree for the node \c v, i.e. it returns the last arc of a
848 ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
849 ///is not reachable from the root(s) or if \c v is a root.
851 ///The shortest path tree used here is equal to the shortest path
852 ///tree used in \ref predNode().
854 ///\pre Either \ref run() or \ref start() must be called before
855 ///using this function.
856 Arc predArc(Node v) const { return (*_pred)[v]; }
858 ///Returns the 'previous node' of the shortest path tree for a node.
860 ///This function returns the 'previous node' of the shortest path
861 ///tree for the node \c v, i.e. it returns the last but one node
862 ///from a shortest path from the root(s) to \c v. It is \c INVALID
863 ///if \c v is not reachable from the root(s) or if \c v is a root.
865 ///The shortest path tree used here is equal to the shortest path
866 ///tree used in \ref predArc().
868 ///\pre Either \ref run() or \ref start() must be called before
869 ///using this function.
870 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
871 G->source((*_pred)[v]); }
873 ///\brief Returns a const reference to the node map that stores the
874 ///distances of the nodes.
876 ///Returns a const reference to the node map that stores the distances
877 ///of the nodes calculated by the algorithm.
879 ///\pre Either \ref run() or \ref init()
880 ///must be called before using this function.
881 const DistMap &distMap() const { return *_dist;}
883 ///\brief Returns a const reference to the node map that stores the
886 ///Returns a const reference to the node map that stores the predecessor
887 ///arcs, which form the shortest path tree.
889 ///\pre Either \ref run() or \ref init()
890 ///must be called before using this function.
891 const PredMap &predMap() const { return *_pred;}
893 ///Checks if a node is reachable from the root(s).
895 ///Returns \c true if \c v is reachable from the root(s).
896 ///\pre Either \ref run() or \ref start()
897 ///must be called before using this function.
898 bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
901 ///Checks if a node is processed.
903 ///Returns \c true if \c v is processed, i.e. the shortest
904 ///path to \c v has already found.
905 ///\pre Either \ref run() or \ref init()
906 ///must be called before using this function.
907 bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
910 ///The current distance of a node from the root(s).
912 ///Returns the current distance of a node from the root(s).
913 ///It may be decreased in the following processes.
914 ///\pre Either \ref run() or \ref init()
915 ///must be called before using this function and
916 ///node \c v must be reached but not necessarily processed.
917 Value currentDist(Node v) const {
918 return processed(v) ? (*_dist)[v] : (*_heap)[v];
925 ///Default traits class of dijkstra() function.
927 ///Default traits class of dijkstra() function.
928 ///\tparam GR The type of the digraph.
929 ///\tparam LM The type of the length map.
930 template<class GR, class LM>
931 struct DijkstraWizardDefaultTraits
933 ///The type of the digraph the algorithm runs on.
935 ///The type of the map that stores the arc lengths.
937 ///The type of the map that stores the arc lengths.
938 ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
939 typedef LM LengthMap;
940 ///The type of the length of the arcs.
941 typedef typename LM::Value Value;
943 /// Operation traits for Dijkstra algorithm.
945 /// This class defines the operations that are used in the algorithm.
946 /// \see DijkstraDefaultOperationTraits
947 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
949 /// The cross reference type used by the heap.
951 /// The cross reference type used by the heap.
952 /// Usually it is \c Digraph::NodeMap<int>.
953 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
954 ///Instantiates a \ref HeapCrossRef.
956 ///This function instantiates a \ref HeapCrossRef.
957 /// \param g is the digraph, to which we would like to define the
959 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
961 return new HeapCrossRef(g);
964 ///The heap type used by the Dijkstra algorithm.
966 ///The heap type used by the Dijkstra algorithm.
970 typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
971 std::less<Value> > Heap;
973 ///Instantiates a \ref Heap.
975 ///This function instantiates a \ref Heap.
976 /// \param r is the HeapCrossRef which is used.
977 static Heap *createHeap(HeapCrossRef& r)
982 ///\brief The type of the map that stores the predecessor
983 ///arcs of the shortest paths.
985 ///The type of the map that stores the predecessor
986 ///arcs of the shortest paths.
987 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
988 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
989 ///Instantiates a \ref PredMap.
991 ///This function instantiates a \ref PredMap.
992 ///\param g is the digraph, to which we would like to define the
994 static PredMap *createPredMap(const Digraph &g)
996 return new PredMap(g);
999 ///The type of the map that indicates which nodes are processed.
1001 ///The type of the map that indicates which nodes are processed.
1002 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1003 ///By default it is a NullMap.
1004 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1005 ///Instantiates a \ref ProcessedMap.
1007 ///This function instantiates a \ref ProcessedMap.
1008 ///\param g is the digraph, to which
1009 ///we would like to define the \ref ProcessedMap.
1011 static ProcessedMap *createProcessedMap(const Digraph &g)
1013 static ProcessedMap *createProcessedMap(const Digraph &)
1016 return new ProcessedMap();
1019 ///The type of the map that stores the distances of the nodes.
1021 ///The type of the map that stores the distances of the nodes.
1022 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1023 typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
1024 ///Instantiates a \ref DistMap.
1026 ///This function instantiates a \ref DistMap.
1027 ///\param g is the digraph, to which we would like to define
1029 static DistMap *createDistMap(const Digraph &g)
1031 return new DistMap(g);
1034 ///The type of the shortest paths.
1036 ///The type of the shortest paths.
1037 ///It must meet the \ref concepts::Path "Path" concept.
1038 typedef lemon::Path<Digraph> Path;
1041 /// Default traits class used by \ref DijkstraWizard
1043 /// To make it easier to use Dijkstra algorithm
1044 /// we have created a wizard class.
1045 /// This \ref DijkstraWizard class needs default traits,
1046 /// as well as the \ref Dijkstra class.
1047 /// The \ref DijkstraWizardBase is a class to be the default traits of the
1048 /// \ref DijkstraWizard class.
1049 template<class GR,class LM>
1050 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1052 typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1054 //The type of the nodes in the digraph.
1055 typedef typename Base::Digraph::Node Node;
1057 //Pointer to the digraph the algorithm runs on.
1059 //Pointer to the length map.
1061 //Pointer to the map of processed nodes.
1063 //Pointer to the map of predecessors arcs.
1065 //Pointer to the map of distances.
1067 //Pointer to the shortest path to the target node.
1069 //Pointer to the distance of the target node.
1075 /// This constructor does not require parameters, therefore it initiates
1076 /// all of the attributes to \c 0.
1077 DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1078 _dist(0), _path(0), _di(0) {}
1082 /// This constructor requires two parameters,
1083 /// others are initiated to \c 0.
1084 /// \param g The digraph the algorithm runs on.
1085 /// \param l The length map.
1086 DijkstraWizardBase(const GR &g,const LM &l) :
1087 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1088 _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
1089 _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1093 /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1095 /// This auxiliary class is created to implement the
1096 /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1097 /// It does not have own \ref run() method, it uses the functions
1098 /// and features of the plain \ref Dijkstra.
1100 /// This class should only be used through the \ref dijkstra() function,
1101 /// which makes it easier to use the algorithm.
1103 class DijkstraWizard : public TR
1107 ///The type of the digraph the algorithm runs on.
1108 typedef typename TR::Digraph Digraph;
1110 typedef typename Digraph::Node Node;
1111 typedef typename Digraph::NodeIt NodeIt;
1112 typedef typename Digraph::Arc Arc;
1113 typedef typename Digraph::OutArcIt OutArcIt;
1115 ///The type of the map that stores the arc lengths.
1116 typedef typename TR::LengthMap LengthMap;
1117 ///The type of the length of the arcs.
1118 typedef typename LengthMap::Value Value;
1119 ///\brief The type of the map that stores the predecessor
1120 ///arcs of the shortest paths.
1121 typedef typename TR::PredMap PredMap;
1122 ///The type of the map that stores the distances of the nodes.
1123 typedef typename TR::DistMap DistMap;
1124 ///The type of the map that indicates which nodes are processed.
1125 typedef typename TR::ProcessedMap ProcessedMap;
1126 ///The type of the shortest paths
1127 typedef typename TR::Path Path;
1128 ///The heap type used by the dijkstra algorithm.
1129 typedef typename TR::Heap Heap;
1134 DijkstraWizard() : TR() {}
1136 /// Constructor that requires parameters.
1138 /// Constructor that requires parameters.
1139 /// These parameters will be the default values for the traits class.
1140 /// \param g The digraph the algorithm runs on.
1141 /// \param l The length map.
1142 DijkstraWizard(const Digraph &g, const LengthMap &l) :
1146 DijkstraWizard(const TR &b) : TR(b) {}
1148 ~DijkstraWizard() {}
1150 ///Runs Dijkstra algorithm from the given source node.
1152 ///This method runs %Dijkstra algorithm from the given source node
1153 ///in order to compute the shortest path to each node.
1156 Dijkstra<Digraph,LengthMap,TR>
1157 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1158 *reinterpret_cast<const LengthMap*>(Base::_length));
1160 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1162 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1163 if (Base::_processed)
1164 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1168 ///Finds the shortest path between \c s and \c t.
1170 ///This method runs the %Dijkstra algorithm from node \c s
1171 ///in order to compute the shortest path to node \c t
1172 ///(it stops searching when \c t is processed).
1174 ///\return \c true if \c t is reachable form \c s.
1175 bool run(Node s, Node t)
1177 Dijkstra<Digraph,LengthMap,TR>
1178 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1179 *reinterpret_cast<const LengthMap*>(Base::_length));
1181 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1183 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1184 if (Base::_processed)
1185 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1188 *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1190 *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1191 return dijk.reached(t);
1195 struct SetPredMapBase : public Base {
1197 static PredMap *createPredMap(const Digraph &) { return 0; };
1198 SetPredMapBase(const TR &b) : TR(b) {}
1200 ///\brief \ref named-func-param "Named parameter"
1201 ///for setting \ref PredMap object.
1203 ///\ref named-func-param "Named parameter"
1204 ///for setting \ref PredMap object.
1206 DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1208 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1209 return DijkstraWizard<SetPredMapBase<T> >(*this);
1213 struct SetDistMapBase : public Base {
1215 static DistMap *createDistMap(const Digraph &) { return 0; };
1216 SetDistMapBase(const TR &b) : TR(b) {}
1218 ///\brief \ref named-func-param "Named parameter"
1219 ///for setting \ref DistMap object.
1221 ///\ref named-func-param "Named parameter"
1222 ///for setting \ref DistMap object.
1224 DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1226 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1227 return DijkstraWizard<SetDistMapBase<T> >(*this);
1231 struct SetProcessedMapBase : public Base {
1232 typedef T ProcessedMap;
1233 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1234 SetProcessedMapBase(const TR &b) : TR(b) {}
1236 ///\brief \ref named-func-param "Named parameter"
1237 ///for setting \ref ProcessedMap object.
1239 /// \ref named-func-param "Named parameter"
1240 ///for setting \ref ProcessedMap object.
1242 DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1244 Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1245 return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1249 struct SetPathBase : public Base {
1251 SetPathBase(const TR &b) : TR(b) {}
1253 ///\brief \ref named-func-param "Named parameter"
1254 ///for getting the shortest path to the target node.
1256 ///\ref named-func-param "Named parameter"
1257 ///for getting the shortest path to the target node.
1259 DijkstraWizard<SetPathBase<T> > path(const T &t)
1261 Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1262 return DijkstraWizard<SetPathBase<T> >(*this);
1265 ///\brief \ref named-func-param "Named parameter"
1266 ///for getting the distance of the target node.
1268 ///\ref named-func-param "Named parameter"
1269 ///for getting the distance of the target node.
1270 DijkstraWizard dist(const Value &d)
1272 Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1278 ///Function-type interface for Dijkstra algorithm.
1280 /// \ingroup shortest_path
1281 ///Function-type interface for Dijkstra algorithm.
1283 ///This function also has several \ref named-func-param "named parameters",
1284 ///they are declared as the members of class \ref DijkstraWizard.
1285 ///The following examples show how to use these parameters.
1287 /// // Compute shortest path from node s to each node
1288 /// dijkstra(g,length).predMap(preds).distMap(dists).run(s);
1290 /// // Compute shortest path from s to t
1291 /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
1293 ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1294 ///to the end of the parameter list.
1295 ///\sa DijkstraWizard
1297 template<class GR, class LM>
1298 DijkstraWizard<DijkstraWizardBase<GR,LM> >
1299 dijkstra(const GR &digraph, const LM &length)
1301 return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length);
1304 } //END OF NAMESPACE LEMON