1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2008
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 ///\ingroup graph_concepts
 
    21 ///\brief The concept of Undirected Graphs.
 
    23 #ifndef LEMON_CONCEPT_GRAPH_H
 
    24 #define LEMON_CONCEPT_GRAPH_H
 
    26 #include <lemon/concepts/graph_components.h>
 
    27 #include <lemon/concepts/graph.h>
 
    28 #include <lemon/bits/utility.h>
 
    33     /// \ingroup graph_concepts
 
    35     /// \brief Class describing the concept of Undirected Graphs.
 
    37     /// This class describes the common interface of all Undirected
 
    40     /// As all concept describing classes it provides only interface
 
    41     /// without any sensible implementation. So any algorithm for
 
    42     /// undirected graph should compile with this class, but it will not
 
    43     /// run properly, of course.
 
    45     /// The LEMON undirected graphs also fulfill the concept of
 
    46     /// directed graphs (\ref lemon::concepts::Digraph "Digraph
 
    47     /// Concept"). Each edges can be seen as two opposite
 
    48     /// directed arc and consequently the undirected graph can be
 
    49     /// seen as the direceted graph of these directed arcs. The
 
    50     /// Graph has the Edge inner class for the edges and
 
    51     /// the Arc type for the directed arcs. The Arc type is
 
    52     /// convertible to Edge or inherited from it so from a directed
 
    53     /// arc we can get the represented edge.
 
    55     /// In the sense of the LEMON each edge has a default
 
    56     /// direction (it should be in every computer implementation,
 
    57     /// because the order of edge's nodes defines an
 
    58     /// orientation). With the default orientation we can define that
 
    59     /// the directed arc is forward or backward directed. With the \c
 
    60     /// direction() and \c direct() function we can get the direction
 
    61     /// of the directed arc and we can direct an edge.
 
    63     /// The EdgeIt is an iterator for the edges. We can use
 
    64     /// the EdgeMap to map values for the edges. The InArcIt and
 
    65     /// OutArcIt iterates on the same edges but with opposite
 
    66     /// direction. The IncEdgeIt iterates also on the same edges
 
    67     /// as the OutArcIt and InArcIt but it is not convertible to Arc just
 
    71       /// \brief The undirected graph should be tagged by the
 
    74       /// The undirected graph should be tagged by the UndirectedTag. This
 
    75       /// tag helps the enable_if technics to make compile time
 
    76       /// specializations for undirected graphs.
 
    77       typedef True UndirectedTag;
 
    79       /// \brief The base type of node iterators,
 
    80       /// or in other words, the trivial node iterator.
 
    82       /// This is the base type of each node iterator,
 
    83       /// thus each kind of node iterator converts to this.
 
    84       /// More precisely each kind of node iterator should be inherited
 
    85       /// from the trivial node iterator.
 
    88         /// Default constructor
 
    90         /// @warning The default constructor sets the iterator
 
    91         /// to an undefined value.
 
    99         /// Invalid constructor \& conversion.
 
   101         /// This constructor initializes the iterator to be invalid.
 
   102         /// \sa Invalid for more details.
 
   104         /// Equality operator
 
   106         /// Two iterators are equal if and only if they point to the
 
   107         /// same object or both are invalid.
 
   108         bool operator==(Node) const { return true; }
 
   110         /// Inequality operator
 
   112         /// \sa operator==(Node n)
 
   114         bool operator!=(Node) const { return true; }
 
   116         /// Artificial ordering operator.
 
   118         /// To allow the use of graph descriptors as key type in std::map or
 
   119         /// similar associative container we require this.
 
   121         /// \note This operator only have to define some strict ordering of
 
   122         /// the items; this order has nothing to do with the iteration
 
   123         /// ordering of the items.
 
   124         bool operator<(Node) const { return false; }
 
   128       /// This iterator goes through each node.
 
   130       /// This iterator goes through each node.
 
   131       /// Its usage is quite simple, for example you can count the number
 
   132       /// of nodes in graph \c g of type \c Graph like this:
 
   135       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   137       class NodeIt : public Node {
 
   139         /// Default constructor
 
   141         /// @warning The default constructor sets the iterator
 
   142         /// to an undefined value.
 
   144         /// Copy constructor.
 
   146         /// Copy constructor.
 
   148         NodeIt(const NodeIt& n) : Node(n) { }
 
   149         /// Invalid constructor \& conversion.
 
   151         /// Initialize the iterator to be invalid.
 
   152         /// \sa Invalid for more details.
 
   154         /// Sets the iterator to the first node.
 
   156         /// Sets the iterator to the first node of \c g.
 
   158         NodeIt(const Graph&) { }
 
   159         /// Node -> NodeIt conversion.
 
   161         /// Sets the iterator to the node of \c the graph pointed by
 
   162         /// the trivial iterator.
 
   163         /// This feature necessitates that each time we
 
   164         /// iterate the arc-set, the iteration order is the same.
 
   165         NodeIt(const Graph&, const Node&) { }
 
   168         /// Assign the iterator to the next node.
 
   170         NodeIt& operator++() { return *this; }
 
   174       /// The base type of the edge iterators.
 
   176       /// The base type of the edge iterators.
 
   180         /// Default constructor
 
   182         /// @warning The default constructor sets the iterator
 
   183         /// to an undefined value.
 
   185         /// Copy constructor.
 
   187         /// Copy constructor.
 
   189         Edge(const Edge&) { }
 
   190         /// Initialize the iterator to be invalid.
 
   192         /// Initialize the iterator to be invalid.
 
   195         /// Equality operator
 
   197         /// Two iterators are equal if and only if they point to the
 
   198         /// same object or both are invalid.
 
   199         bool operator==(Edge) const { return true; }
 
   200         /// Inequality operator
 
   202         /// \sa operator==(Edge n)
 
   204         bool operator!=(Edge) const { return true; }
 
   206         /// Artificial ordering operator.
 
   208         /// To allow the use of graph descriptors as key type in std::map or
 
   209         /// similar associative container we require this.
 
   211         /// \note This operator only have to define some strict ordering of
 
   212         /// the items; this order has nothing to do with the iteration
 
   213         /// ordering of the items.
 
   214         bool operator<(Edge) const { return false; }
 
   217       /// This iterator goes through each edge.
 
   219       /// This iterator goes through each edge of a graph.
 
   220       /// Its usage is quite simple, for example you can count the number
 
   221       /// of edges in a graph \c g of type \c Graph as follows:
 
   224       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   226       class EdgeIt : public Edge {
 
   228         /// Default constructor
 
   230         /// @warning The default constructor sets the iterator
 
   231         /// to an undefined value.
 
   233         /// Copy constructor.
 
   235         /// Copy constructor.
 
   237         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   238         /// Initialize the iterator to be invalid.
 
   240         /// Initialize the iterator to be invalid.
 
   243         /// This constructor sets the iterator to the first edge.
 
   245         /// This constructor sets the iterator to the first edge.
 
   246         EdgeIt(const Graph&) { }
 
   247         /// Edge -> EdgeIt conversion
 
   249         /// Sets the iterator to the value of the trivial iterator.
 
   250         /// This feature necessitates that each time we
 
   251         /// iterate the edge-set, the iteration order is the
 
   253         EdgeIt(const Graph&, const Edge&) { }
 
   256         /// Assign the iterator to the next edge.
 
   257         EdgeIt& operator++() { return *this; }
 
   260       /// \brief This iterator goes trough the incident undirected
 
   263       /// This iterator goes trough the incident edges
 
   264       /// of a certain node of a graph. You should assume that the
 
   265       /// loop arcs will be iterated twice.
 
   267       /// Its usage is quite simple, for example you can compute the
 
   268       /// degree (i.e. count the number of incident arcs of a node \c n
 
   269       /// in graph \c g of type \c Graph as follows.
 
   273       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   275       class IncEdgeIt : public Edge {
 
   277         /// Default constructor
 
   279         /// @warning The default constructor sets the iterator
 
   280         /// to an undefined value.
 
   282         /// Copy constructor.
 
   284         /// Copy constructor.
 
   286         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
 
   287         /// Initialize the iterator to be invalid.
 
   289         /// Initialize the iterator to be invalid.
 
   291         IncEdgeIt(Invalid) { }
 
   292         /// This constructor sets the iterator to first incident arc.
 
   294         /// This constructor set the iterator to the first incident arc of
 
   296         IncEdgeIt(const Graph&, const Node&) { }
 
   297         /// Edge -> IncEdgeIt conversion
 
   299         /// Sets the iterator to the value of the trivial iterator \c e.
 
   300         /// This feature necessitates that each time we
 
   301         /// iterate the arc-set, the iteration order is the same.
 
   302         IncEdgeIt(const Graph&, const Edge&) { }
 
   303         /// Next incident arc
 
   305         /// Assign the iterator to the next incident arc
 
   306         /// of the corresponding node.
 
   307         IncEdgeIt& operator++() { return *this; }
 
   310       /// The directed arc type.
 
   312       /// The directed arc type. It can be converted to the
 
   313       /// edge or it should be inherited from the undirected
 
   315       class Arc : public Edge {
 
   317         /// Default constructor
 
   319         /// @warning The default constructor sets the iterator
 
   320         /// to an undefined value.
 
   322         /// Copy constructor.
 
   324         /// Copy constructor.
 
   326         Arc(const Arc& e) : Edge(e) { }
 
   327         /// Initialize the iterator to be invalid.
 
   329         /// Initialize the iterator to be invalid.
 
   332         /// Equality operator
 
   334         /// Two iterators are equal if and only if they point to the
 
   335         /// same object or both are invalid.
 
   336         bool operator==(Arc) const { return true; }
 
   337         /// Inequality operator
 
   339         /// \sa operator==(Arc n)
 
   341         bool operator!=(Arc) const { return true; }
 
   343         /// Artificial ordering operator.
 
   345         /// To allow the use of graph descriptors as key type in std::map or
 
   346         /// similar associative container we require this.
 
   348         /// \note This operator only have to define some strict ordering of
 
   349         /// the items; this order has nothing to do with the iteration
 
   350         /// ordering of the items.
 
   351         bool operator<(Arc) const { return false; }
 
   354       /// This iterator goes through each directed arc.
 
   356       /// This iterator goes through each arc of a graph.
 
   357       /// Its usage is quite simple, for example you can count the number
 
   358       /// of arcs in a graph \c g of type \c Graph as follows:
 
   361       /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
 
   363       class ArcIt : public Arc {
 
   365         /// Default constructor
 
   367         /// @warning The default constructor sets the iterator
 
   368         /// to an undefined value.
 
   370         /// Copy constructor.
 
   372         /// Copy constructor.
 
   374         ArcIt(const ArcIt& e) : Arc(e) { }
 
   375         /// Initialize the iterator to be invalid.
 
   377         /// Initialize the iterator to be invalid.
 
   380         /// This constructor sets the iterator to the first arc.
 
   382         /// This constructor sets the iterator to the first arc of \c g.
 
   383         ///@param g the graph
 
   384         ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
 
   385         /// Arc -> ArcIt conversion
 
   387         /// Sets the iterator to the value of the trivial iterator \c e.
 
   388         /// This feature necessitates that each time we
 
   389         /// iterate the arc-set, the iteration order is the same.
 
   390         ArcIt(const Graph&, const Arc&) { }
 
   393         /// Assign the iterator to the next arc.
 
   394         ArcIt& operator++() { return *this; }
 
   397       /// This iterator goes trough the outgoing directed arcs of a node.
 
   399       /// This iterator goes trough the \e outgoing arcs of a certain node
 
   401       /// Its usage is quite simple, for example you can count the number
 
   402       /// of outgoing arcs of a node \c n
 
   403       /// in graph \c g of type \c Graph as follows.
 
   406       /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   409       class OutArcIt : public Arc {
 
   411         /// Default constructor
 
   413         /// @warning The default constructor sets the iterator
 
   414         /// to an undefined value.
 
   416         /// Copy constructor.
 
   418         /// Copy constructor.
 
   420         OutArcIt(const OutArcIt& e) : Arc(e) { }
 
   421         /// Initialize the iterator to be invalid.
 
   423         /// Initialize the iterator to be invalid.
 
   425         OutArcIt(Invalid) { }
 
   426         /// This constructor sets the iterator to the first outgoing arc.
 
   428         /// This constructor sets the iterator to the first outgoing arc of
 
   431         ///@param g the graph
 
   432         OutArcIt(const Graph& n, const Node& g) {
 
   433           ignore_unused_variable_warning(n);
 
   434           ignore_unused_variable_warning(g);
 
   436         /// Arc -> OutArcIt conversion
 
   438         /// Sets the iterator to the value of the trivial iterator.
 
   439         /// This feature necessitates that each time we
 
   440         /// iterate the arc-set, the iteration order is the same.
 
   441         OutArcIt(const Graph&, const Arc&) { }
 
   444         /// Assign the iterator to the next
 
   445         /// outgoing arc of the corresponding node.
 
   446         OutArcIt& operator++() { return *this; }
 
   449       /// This iterator goes trough the incoming directed arcs of a node.
 
   451       /// This iterator goes trough the \e incoming arcs of a certain node
 
   453       /// Its usage is quite simple, for example you can count the number
 
   454       /// of outgoing arcs of a node \c n
 
   455       /// in graph \c g of type \c Graph as follows.
 
   458       /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   461       class InArcIt : public Arc {
 
   463         /// Default constructor
 
   465         /// @warning The default constructor sets the iterator
 
   466         /// to an undefined value.
 
   468         /// Copy constructor.
 
   470         /// Copy constructor.
 
   472         InArcIt(const InArcIt& e) : Arc(e) { }
 
   473         /// Initialize the iterator to be invalid.
 
   475         /// Initialize the iterator to be invalid.
 
   478         /// This constructor sets the iterator to first incoming arc.
 
   480         /// This constructor set the iterator to the first incoming arc of
 
   483         ///@param g the graph
 
   484         InArcIt(const Graph& g, const Node& n) {
 
   485           ignore_unused_variable_warning(n);
 
   486           ignore_unused_variable_warning(g);
 
   488         /// Arc -> InArcIt conversion
 
   490         /// Sets the iterator to the value of the trivial iterator \c e.
 
   491         /// This feature necessitates that each time we
 
   492         /// iterate the arc-set, the iteration order is the same.
 
   493         InArcIt(const Graph&, const Arc&) { }
 
   494         /// Next incoming arc
 
   496         /// Assign the iterator to the next inarc of the corresponding node.
 
   498         InArcIt& operator++() { return *this; }
 
   501       /// \brief Read write map of the nodes to type \c T.
 
   503       /// ReadWrite map of the nodes to type \c T.
 
   506       class NodeMap : public ReadWriteMap< Node, T >
 
   511         NodeMap(const Graph&) { }
 
   513         NodeMap(const Graph&, T) { }
 
   516         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   517         ///Assignment operator
 
   518         template <typename CMap>
 
   519         NodeMap& operator=(const CMap&) {
 
   520           checkConcept<ReadMap<Node, T>, CMap>();
 
   525       /// \brief Read write map of the directed arcs to type \c T.
 
   527       /// Reference map of the directed arcs to type \c T.
 
   530       class ArcMap : public ReadWriteMap<Arc,T>
 
   535         ArcMap(const Graph&) { }
 
   537         ArcMap(const Graph&, T) { }
 
   539         ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
 
   540         ///Assignment operator
 
   541         template <typename CMap>
 
   542         ArcMap& operator=(const CMap&) {
 
   543           checkConcept<ReadMap<Arc, T>, CMap>();
 
   548       /// Read write map of the edges to type \c T.
 
   550       /// Reference map of the arcs to type \c T.
 
   553       class EdgeMap : public ReadWriteMap<Edge,T>
 
   558         EdgeMap(const Graph&) { }
 
   560         EdgeMap(const Graph&, T) { }
 
   562         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
 
   563         ///Assignment operator
 
   564         template <typename CMap>
 
   565         EdgeMap& operator=(const CMap&) {
 
   566           checkConcept<ReadMap<Edge, T>, CMap>();
 
   571       /// \brief Direct the given edge.
 
   573       /// Direct the given edge. The returned arc source
 
   574       /// will be the given node.
 
   575       Arc direct(const Edge&, const Node&) const {
 
   579       /// \brief Direct the given edge.
 
   581       /// Direct the given edge. The returned arc
 
   582       /// represents the given edge and the direction comes
 
   583       /// from the bool parameter. The source of the edge and
 
   584       /// the directed arc is the same when the given bool is true.
 
   585       Arc direct(const Edge&, bool) const {
 
   589       /// \brief Returns true if the arc has default orientation.
 
   591       /// Returns whether the given directed arc is same orientation as
 
   592       /// the corresponding edge's default orientation.
 
   593       bool direction(Arc) const { return true; }
 
   595       /// \brief Returns the opposite directed arc.
 
   597       /// Returns the opposite directed arc.
 
   598       Arc oppositeArc(Arc) const { return INVALID; }
 
   600       /// \brief Opposite node on an arc
 
   602       /// \return the opposite of the given Node on the given Edge
 
   603       Node oppositeNode(Node, Edge) const { return INVALID; }
 
   605       /// \brief First node of the edge.
 
   607       /// \return the first node of the given Edge.
 
   609       /// Naturally edges don't have direction and thus
 
   610       /// don't have source and target node. But we use these two methods
 
   611       /// to query the two nodes of the arc. The direction of the arc
 
   612       /// which arises this way is called the inherent direction of the
 
   613       /// edge, and is used to define the "default" direction
 
   614       /// of the directed versions of the arcs.
 
   616       Node u(Edge) const { return INVALID; }
 
   618       /// \brief Second node of the edge.
 
   619       Node v(Edge) const { return INVALID; }
 
   621       /// \brief Source node of the directed arc.
 
   622       Node source(Arc) const { return INVALID; }
 
   624       /// \brief Target node of the directed arc.
 
   625       Node target(Arc) const { return INVALID; }
 
   627       /// \brief Returns the id of the node.
 
   628       int id(Node) const { return -1; }
 
   630       /// \brief Returns the id of the edge.
 
   631       int id(Edge) const { return -1; }
 
   633       /// \brief Returns the id of the arc.
 
   634       int id(Arc) const { return -1; }
 
   636       /// \brief Returns the node with the given id.
 
   638       /// \pre The argument should be a valid node id in the graph.
 
   639       Node nodeFromId(int) const { return INVALID; }
 
   641       /// \brief Returns the edge with the given id.
 
   643       /// \pre The argument should be a valid edge id in the graph.
 
   644       Edge edgeFromId(int) const { return INVALID; }
 
   646       /// \brief Returns the arc with the given id.
 
   648       /// \pre The argument should be a valid arc id in the graph.
 
   649       Arc arcFromId(int) const { return INVALID; }
 
   651       /// \brief Returns an upper bound on the node IDs.
 
   652       int maxNodeId() const { return -1; }
 
   654       /// \brief Returns an upper bound on the edge IDs.
 
   655       int maxEdgeId() const { return -1; }
 
   657       /// \brief Returns an upper bound on the arc IDs.
 
   658       int maxArcId() const { return -1; }
 
   660       void first(Node&) const {}
 
   661       void next(Node&) const {}
 
   663       void first(Edge&) const {}
 
   664       void next(Edge&) const {}
 
   666       void first(Arc&) const {}
 
   667       void next(Arc&) const {}
 
   669       void firstOut(Arc&, Node) const {}
 
   670       void nextOut(Arc&) const {}
 
   672       void firstIn(Arc&, Node) const {}
 
   673       void nextIn(Arc&) const {}
 
   675       void firstInc(Edge &, bool &, const Node &) const {}
 
   676       void nextInc(Edge &, bool &) const {}
 
   678       // The second parameter is dummy.
 
   679       Node fromId(int, Node) const { return INVALID; }
 
   680       // The second parameter is dummy.
 
   681       Edge fromId(int, Edge) const { return INVALID; }
 
   682       // The second parameter is dummy.
 
   683       Arc fromId(int, Arc) const { return INVALID; }
 
   686       int maxId(Node) const { return -1; }
 
   688       int maxId(Edge) const { return -1; }
 
   690       int maxId(Arc) const { return -1; }
 
   692       /// \brief Base node of the iterator
 
   694       /// Returns the base node (the source in this case) of the iterator
 
   695       Node baseNode(OutArcIt e) const {
 
   698       /// \brief Running node of the iterator
 
   700       /// Returns the running node (the target in this case) of the
 
   702       Node runningNode(OutArcIt e) const {
 
   706       /// \brief Base node of the iterator
 
   708       /// Returns the base node (the target in this case) of the iterator
 
   709       Node baseNode(InArcIt e) const {
 
   712       /// \brief Running node of the iterator
 
   714       /// Returns the running node (the source in this case) of the
 
   716       Node runningNode(InArcIt e) const {
 
   720       /// \brief Base node of the iterator
 
   722       /// Returns the base node of the iterator
 
   723       Node baseNode(IncEdgeIt) const {
 
   727       /// \brief Running node of the iterator
 
   729       /// Returns the running node of the iterator
 
   730       Node runningNode(IncEdgeIt) const {
 
   734       template <typename _Graph>
 
   737           checkConcept<IterableGraphComponent<>, _Graph>();
 
   738           checkConcept<IDableGraphComponent<>, _Graph>();
 
   739           checkConcept<MappableGraphComponent<>, _Graph>();