lemon/dijkstra.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 26 Sep 2008 12:40:11 +0200
changeset 286 da414906fe21
parent 278 931190050520
child 287 bb40b6db0a58
permissions -rw-r--r--
Improvements related to BFS/DFS/Dijkstra (ticket #96)
- Add run(s,t) function to BfsVisit.
- Modify run(s,t) functions in the class interfaces to return bool value.
- Bug fix in Dijkstra::start(t) function.
- Improve Dijkstra::currentDist().
- Extend test files to check named class template parameters.
- Doc improvements.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DIJKSTRA_H
    20 #define LEMON_DIJKSTRA_H
    21 
    22 ///\ingroup shortest_path
    23 ///\file
    24 ///\brief Dijkstra algorithm.
    25 
    26 #include <limits>
    27 #include <lemon/list_graph.h>
    28 #include <lemon/bin_heap.h>
    29 #include <lemon/bits/path_dump.h>
    30 #include <lemon/core.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/path.h>
    34 
    35 namespace lemon {
    36 
    37   /// \brief Default operation traits for the Dijkstra algorithm class.
    38   ///
    39   /// This operation traits class defines all computational operations and
    40   /// constants which are used in the Dijkstra algorithm.
    41   template <typename Value>
    42   struct DijkstraDefaultOperationTraits {
    43     /// \brief Gives back the zero value of the type.
    44     static Value zero() {
    45       return static_cast<Value>(0);
    46     }
    47     /// \brief Gives back the sum of the given two elements.
    48     static Value plus(const Value& left, const Value& right) {
    49       return left + right;
    50     }
    51     /// \brief Gives back true only if the first value is less than the second.
    52     static bool less(const Value& left, const Value& right) {
    53       return left < right;
    54     }
    55   };
    56 
    57   /// \brief Widest path operation traits for the Dijkstra algorithm class.
    58   ///
    59   /// This operation traits class defines all computational operations and
    60   /// constants which are used in the Dijkstra algorithm for widest path
    61   /// computation.
    62   ///
    63   /// \see DijkstraDefaultOperationTraits
    64   template <typename Value>
    65   struct DijkstraWidestPathOperationTraits {
    66     /// \brief Gives back the maximum value of the type.
    67     static Value zero() {
    68       return std::numeric_limits<Value>::max();
    69     }
    70     /// \brief Gives back the minimum of the given two elements.
    71     static Value plus(const Value& left, const Value& right) {
    72       return std::min(left, right);
    73     }
    74     /// \brief Gives back true only if the first value is less than the second.
    75     static bool less(const Value& left, const Value& right) {
    76       return left < right;
    77     }
    78   };
    79 
    80   ///Default traits class of Dijkstra class.
    81 
    82   ///Default traits class of Dijkstra class.
    83   ///\tparam GR The type of the digraph.
    84   ///\tparam LM The type of the length map.
    85   template<class GR, class LM>
    86   struct DijkstraDefaultTraits
    87   {
    88     ///The type of the digraph the algorithm runs on.
    89     typedef GR Digraph;
    90 
    91     ///The type of the map that stores the arc lengths.
    92 
    93     ///The type of the map that stores the arc lengths.
    94     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
    95     typedef LM LengthMap;
    96     ///The type of the length of the arcs.
    97     typedef typename LM::Value Value;
    98 
    99     /// Operation traits for Dijkstra algorithm.
   100 
   101     /// This class defines the operations that are used in the algorithm.
   102     /// \see DijkstraDefaultOperationTraits
   103     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
   104 
   105     /// The cross reference type used by the heap.
   106 
   107     /// The cross reference type used by the heap.
   108     /// Usually it is \c Digraph::NodeMap<int>.
   109     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
   110     ///Instantiates a \ref HeapCrossRef.
   111 
   112     ///This function instantiates a \ref HeapCrossRef.
   113     /// \param g is the digraph, to which we would like to define the
   114     /// \ref HeapCrossRef.
   115     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
   116     {
   117       return new HeapCrossRef(g);
   118     }
   119 
   120     ///The heap type used by the Dijkstra algorithm.
   121 
   122     ///The heap type used by the Dijkstra algorithm.
   123     ///
   124     ///\sa BinHeap
   125     ///\sa Dijkstra
   126     typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
   127     ///Instantiates a \ref Heap.
   128 
   129     ///This function instantiates a \ref Heap.
   130     static Heap *createHeap(HeapCrossRef& r)
   131     {
   132       return new Heap(r);
   133     }
   134 
   135     ///\brief The type of the map that stores the predecessor
   136     ///arcs of the shortest paths.
   137     ///
   138     ///The type of the map that stores the predecessor
   139     ///arcs of the shortest paths.
   140     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   141     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
   142     ///Instantiates a \ref PredMap.
   143 
   144     ///This function instantiates a \ref PredMap.
   145     ///\param g is the digraph, to which we would like to define the
   146     ///\ref PredMap.
   147     ///\todo The digraph alone may be insufficient for the initialization
   148     static PredMap *createPredMap(const Digraph &g)
   149     {
   150       return new PredMap(g);
   151     }
   152 
   153     ///The type of the map that indicates which nodes are processed.
   154 
   155     ///The type of the map that indicates which nodes are processed.
   156     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   157     ///By default it is a NullMap.
   158     ///\todo If it is set to a real map,
   159     ///Dijkstra::processed() should read this.
   160     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
   161     ///Instantiates a \ref ProcessedMap.
   162 
   163     ///This function instantiates a \ref ProcessedMap.
   164     ///\param g is the digraph, to which
   165     ///we would like to define the \ref ProcessedMap
   166 #ifdef DOXYGEN
   167     static ProcessedMap *createProcessedMap(const Digraph &g)
   168 #else
   169     static ProcessedMap *createProcessedMap(const Digraph &)
   170 #endif
   171     {
   172       return new ProcessedMap();
   173     }
   174 
   175     ///The type of the map that stores the distances of the nodes.
   176 
   177     ///The type of the map that stores the distances of the nodes.
   178     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   179     typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
   180     ///Instantiates a \ref DistMap.
   181 
   182     ///This function instantiates a \ref DistMap.
   183     ///\param g is the digraph, to which we would like to define
   184     ///the \ref DistMap
   185     static DistMap *createDistMap(const Digraph &g)
   186     {
   187       return new DistMap(g);
   188     }
   189   };
   190 
   191   ///%Dijkstra algorithm class.
   192 
   193   /// \ingroup shortest_path
   194   ///This class provides an efficient implementation of the %Dijkstra algorithm.
   195   ///
   196   ///The arc lengths are passed to the algorithm using a
   197   ///\ref concepts::ReadMap "ReadMap",
   198   ///so it is easy to change it to any kind of length.
   199   ///The type of the length is determined by the
   200   ///\ref concepts::ReadMap::Value "Value" of the length map.
   201   ///It is also possible to change the underlying priority heap.
   202   ///
   203   ///There is also a \ref dijkstra() "function-type interface" for the
   204   ///%Dijkstra algorithm, which is convenient in the simplier cases and
   205   ///it can be used easier.
   206   ///
   207   ///\tparam GR The type of the digraph the algorithm runs on.
   208   ///The default value is \ref ListDigraph.
   209   ///The value of GR is not used directly by \ref Dijkstra, it is only
   210   ///passed to \ref DijkstraDefaultTraits.
   211   ///\tparam LM A readable arc map that determines the lengths of the
   212   ///arcs. It is read once for each arc, so the map may involve in
   213   ///relatively time consuming process to compute the arc lengths if
   214   ///it is necessary. The default map type is \ref
   215   ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
   216   ///The value of LM is not used directly by \ref Dijkstra, it is only
   217   ///passed to \ref DijkstraDefaultTraits.
   218   ///\tparam TR Traits class to set various data types used by the algorithm.
   219   ///The default traits class is \ref DijkstraDefaultTraits
   220   ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
   221   ///for the documentation of a Dijkstra traits class.
   222 #ifdef DOXYGEN
   223   template <typename GR, typename LM, typename TR>
   224 #else
   225   template <typename GR=ListDigraph,
   226             typename LM=typename GR::template ArcMap<int>,
   227             typename TR=DijkstraDefaultTraits<GR,LM> >
   228 #endif
   229   class Dijkstra {
   230   public:
   231     ///\ref Exception for uninitialized parameters.
   232 
   233     ///This error represents problems in the initialization of the
   234     ///parameters of the algorithm.
   235     class UninitializedParameter : public lemon::UninitializedParameter {
   236     public:
   237       virtual const char* what() const throw() {
   238         return "lemon::Dijkstra::UninitializedParameter";
   239       }
   240     };
   241 
   242     ///The type of the digraph the algorithm runs on.
   243     typedef typename TR::Digraph Digraph;
   244 
   245     ///The type of the length of the arcs.
   246     typedef typename TR::LengthMap::Value Value;
   247     ///The type of the map that stores the arc lengths.
   248     typedef typename TR::LengthMap LengthMap;
   249     ///\brief The type of the map that stores the predecessor arcs of the
   250     ///shortest paths.
   251     typedef typename TR::PredMap PredMap;
   252     ///The type of the map that stores the distances of the nodes.
   253     typedef typename TR::DistMap DistMap;
   254     ///The type of the map that indicates which nodes are processed.
   255     typedef typename TR::ProcessedMap ProcessedMap;
   256     ///The type of the paths.
   257     typedef PredMapPath<Digraph, PredMap> Path;
   258     ///The cross reference type used for the current heap.
   259     typedef typename TR::HeapCrossRef HeapCrossRef;
   260     ///The heap type used by the algorithm.
   261     typedef typename TR::Heap Heap;
   262     ///The operation traits class.
   263     typedef typename TR::OperationTraits OperationTraits;
   264 
   265     ///The traits class.
   266     typedef TR Traits;
   267 
   268   private:
   269 
   270     typedef typename Digraph::Node Node;
   271     typedef typename Digraph::NodeIt NodeIt;
   272     typedef typename Digraph::Arc Arc;
   273     typedef typename Digraph::OutArcIt OutArcIt;
   274 
   275     //Pointer to the underlying digraph.
   276     const Digraph *G;
   277     //Pointer to the length map.
   278     const LengthMap *length;
   279     //Pointer to the map of predecessors arcs.
   280     PredMap *_pred;
   281     //Indicates if _pred is locally allocated (true) or not.
   282     bool local_pred;
   283     //Pointer to the map of distances.
   284     DistMap *_dist;
   285     //Indicates if _dist is locally allocated (true) or not.
   286     bool local_dist;
   287     //Pointer to the map of processed status of the nodes.
   288     ProcessedMap *_processed;
   289     //Indicates if _processed is locally allocated (true) or not.
   290     bool local_processed;
   291     //Pointer to the heap cross references.
   292     HeapCrossRef *_heap_cross_ref;
   293     //Indicates if _heap_cross_ref is locally allocated (true) or not.
   294     bool local_heap_cross_ref;
   295     //Pointer to the heap.
   296     Heap *_heap;
   297     //Indicates if _heap is locally allocated (true) or not.
   298     bool local_heap;
   299 
   300     ///Creates the maps if necessary.
   301     ///\todo Better memory allocation (instead of new).
   302     void create_maps()
   303     {
   304       if(!_pred) {
   305         local_pred = true;
   306         _pred = Traits::createPredMap(*G);
   307       }
   308       if(!_dist) {
   309         local_dist = true;
   310         _dist = Traits::createDistMap(*G);
   311       }
   312       if(!_processed) {
   313         local_processed = true;
   314         _processed = Traits::createProcessedMap(*G);
   315       }
   316       if (!_heap_cross_ref) {
   317         local_heap_cross_ref = true;
   318         _heap_cross_ref = Traits::createHeapCrossRef(*G);
   319       }
   320       if (!_heap) {
   321         local_heap = true;
   322         _heap = Traits::createHeap(*_heap_cross_ref);
   323       }
   324     }
   325 
   326   public:
   327 
   328     typedef Dijkstra Create;
   329 
   330     ///\name Named template parameters
   331 
   332     ///@{
   333 
   334     template <class T>
   335     struct SetPredMapTraits : public Traits {
   336       typedef T PredMap;
   337       static PredMap *createPredMap(const Digraph &)
   338       {
   339         throw UninitializedParameter();
   340       }
   341     };
   342     ///\brief \ref named-templ-param "Named parameter" for setting
   343     ///\ref PredMap type.
   344     ///
   345     ///\ref named-templ-param "Named parameter" for setting
   346     ///\ref PredMap type.
   347     template <class T>
   348     struct SetPredMap
   349       : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
   350       typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
   351     };
   352 
   353     template <class T>
   354     struct SetDistMapTraits : public Traits {
   355       typedef T DistMap;
   356       static DistMap *createDistMap(const Digraph &)
   357       {
   358         throw UninitializedParameter();
   359       }
   360     };
   361     ///\brief \ref named-templ-param "Named parameter" for setting
   362     ///\ref DistMap type.
   363     ///
   364     ///\ref named-templ-param "Named parameter" for setting
   365     ///\ref DistMap type.
   366     template <class T>
   367     struct SetDistMap
   368       : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
   369       typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
   370     };
   371 
   372     template <class T>
   373     struct SetProcessedMapTraits : public Traits {
   374       typedef T ProcessedMap;
   375       static ProcessedMap *createProcessedMap(const Digraph &)
   376       {
   377         throw UninitializedParameter();
   378       }
   379     };
   380     ///\brief \ref named-templ-param "Named parameter" for setting
   381     ///\ref ProcessedMap type.
   382     ///
   383     ///\ref named-templ-param "Named parameter" for setting
   384     ///\ref ProcessedMap type.
   385     template <class T>
   386     struct SetProcessedMap
   387       : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
   388       typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
   389     };
   390 
   391     struct SetStandardProcessedMapTraits : public Traits {
   392       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
   393       static ProcessedMap *createProcessedMap(const Digraph &g)
   394       {
   395         return new ProcessedMap(g);
   396       }
   397     };
   398     ///\brief \ref named-templ-param "Named parameter" for setting
   399     ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   400     ///
   401     ///\ref named-templ-param "Named parameter" for setting
   402     ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   403     ///If you don't set it explicitly, it will be automatically allocated.
   404     struct SetStandardProcessedMap
   405       : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
   406       typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
   407       Create;
   408     };
   409 
   410     template <class H, class CR>
   411     struct SetHeapTraits : public Traits {
   412       typedef CR HeapCrossRef;
   413       typedef H Heap;
   414       static HeapCrossRef *createHeapCrossRef(const Digraph &) {
   415         throw UninitializedParameter();
   416       }
   417       static Heap *createHeap(HeapCrossRef &)
   418       {
   419         throw UninitializedParameter();
   420       }
   421     };
   422     ///\brief \ref named-templ-param "Named parameter" for setting
   423     ///heap and cross reference type
   424     ///
   425     ///\ref named-templ-param "Named parameter" for setting heap and cross
   426     ///reference type.
   427     template <class H, class CR = typename Digraph::template NodeMap<int> >
   428     struct SetHeap
   429       : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
   430       typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
   431     };
   432 
   433     template <class H, class CR>
   434     struct SetStandardHeapTraits : public Traits {
   435       typedef CR HeapCrossRef;
   436       typedef H Heap;
   437       static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
   438         return new HeapCrossRef(G);
   439       }
   440       static Heap *createHeap(HeapCrossRef &R)
   441       {
   442         return new Heap(R);
   443       }
   444     };
   445     ///\brief \ref named-templ-param "Named parameter" for setting
   446     ///heap and cross reference type with automatic allocation
   447     ///
   448     ///\ref named-templ-param "Named parameter" for setting heap and cross
   449     ///reference type. It can allocate the heap and the cross reference
   450     ///object if the cross reference's constructor waits for the digraph as
   451     ///parameter and the heap's constructor waits for the cross reference.
   452     template <class H, class CR = typename Digraph::template NodeMap<int> >
   453     struct SetStandardHeap
   454       : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
   455       typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
   456       Create;
   457     };
   458 
   459     template <class T>
   460     struct SetOperationTraitsTraits : public Traits {
   461       typedef T OperationTraits;
   462     };
   463 
   464     /// \brief \ref named-templ-param "Named parameter" for setting
   465     ///\ref OperationTraits type
   466     ///
   467     ///\ref named-templ-param "Named parameter" for setting
   468     ///\ref OperationTraits type.
   469     template <class T>
   470     struct SetOperationTraits
   471       : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
   472       typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
   473       Create;
   474     };
   475 
   476     ///@}
   477 
   478   protected:
   479 
   480     Dijkstra() {}
   481 
   482   public:
   483 
   484     ///Constructor.
   485 
   486     ///Constructor.
   487     ///\param _g The digraph the algorithm runs on.
   488     ///\param _length The length map used by the algorithm.
   489     Dijkstra(const Digraph& _g, const LengthMap& _length) :
   490       G(&_g), length(&_length),
   491       _pred(NULL), local_pred(false),
   492       _dist(NULL), local_dist(false),
   493       _processed(NULL), local_processed(false),
   494       _heap_cross_ref(NULL), local_heap_cross_ref(false),
   495       _heap(NULL), local_heap(false)
   496     { }
   497 
   498     ///Destructor.
   499     ~Dijkstra()
   500     {
   501       if(local_pred) delete _pred;
   502       if(local_dist) delete _dist;
   503       if(local_processed) delete _processed;
   504       if(local_heap_cross_ref) delete _heap_cross_ref;
   505       if(local_heap) delete _heap;
   506     }
   507 
   508     ///Sets the length map.
   509 
   510     ///Sets the length map.
   511     ///\return <tt> (*this) </tt>
   512     Dijkstra &lengthMap(const LengthMap &m)
   513     {
   514       length = &m;
   515       return *this;
   516     }
   517 
   518     ///Sets the map that stores the predecessor arcs.
   519 
   520     ///Sets the map that stores the predecessor arcs.
   521     ///If you don't use this function before calling \ref run(),
   522     ///it will allocate one. The destructor deallocates this
   523     ///automatically allocated map, of course.
   524     ///\return <tt> (*this) </tt>
   525     Dijkstra &predMap(PredMap &m)
   526     {
   527       if(local_pred) {
   528         delete _pred;
   529         local_pred=false;
   530       }
   531       _pred = &m;
   532       return *this;
   533     }
   534 
   535     ///Sets the map that indicates which nodes are processed.
   536 
   537     ///Sets the map that indicates which nodes are processed.
   538     ///If you don't use this function before calling \ref run(),
   539     ///it will allocate one. The destructor deallocates this
   540     ///automatically allocated map, of course.
   541     ///\return <tt> (*this) </tt>
   542     Dijkstra &processedMap(ProcessedMap &m)
   543     {
   544       if(local_processed) {
   545         delete _processed;
   546         local_processed=false;
   547       }
   548       _processed = &m;
   549       return *this;
   550     }
   551 
   552     ///Sets the map that stores the distances of the nodes.
   553 
   554     ///Sets the map that stores the distances of the nodes calculated by the
   555     ///algorithm.
   556     ///If you don't use this function before calling \ref run(),
   557     ///it will allocate one. The destructor deallocates this
   558     ///automatically allocated map, of course.
   559     ///\return <tt> (*this) </tt>
   560     Dijkstra &distMap(DistMap &m)
   561     {
   562       if(local_dist) {
   563         delete _dist;
   564         local_dist=false;
   565       }
   566       _dist = &m;
   567       return *this;
   568     }
   569 
   570     ///Sets the heap and the cross reference used by algorithm.
   571 
   572     ///Sets the heap and the cross reference used by algorithm.
   573     ///If you don't use this function before calling \ref run(),
   574     ///it will allocate one. The destructor deallocates this
   575     ///automatically allocated heap and cross reference, of course.
   576     ///\return <tt> (*this) </tt>
   577     Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
   578     {
   579       if(local_heap_cross_ref) {
   580         delete _heap_cross_ref;
   581         local_heap_cross_ref=false;
   582       }
   583       _heap_cross_ref = &cr;
   584       if(local_heap) {
   585         delete _heap;
   586         local_heap=false;
   587       }
   588       _heap = &hp;
   589       return *this;
   590     }
   591 
   592   private:
   593 
   594     void finalizeNodeData(Node v,Value dst)
   595     {
   596       _processed->set(v,true);
   597       _dist->set(v, dst);
   598     }
   599 
   600   public:
   601 
   602     ///\name Execution control
   603     ///The simplest way to execute the algorithm is to use one of the
   604     ///member functions called \ref lemon::Dijkstra::run() "run()".
   605     ///\n
   606     ///If you need more control on the execution, first you must call
   607     ///\ref lemon::Dijkstra::init() "init()", then you can add several
   608     ///source nodes with \ref lemon::Dijkstra::addSource() "addSource()".
   609     ///Finally \ref lemon::Dijkstra::start() "start()" will perform the
   610     ///actual path computation.
   611 
   612     ///@{
   613 
   614     ///Initializes the internal data structures.
   615 
   616     ///Initializes the internal data structures.
   617     ///
   618     void init()
   619     {
   620       create_maps();
   621       _heap->clear();
   622       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   623         _pred->set(u,INVALID);
   624         _processed->set(u,false);
   625         _heap_cross_ref->set(u,Heap::PRE_HEAP);
   626       }
   627     }
   628 
   629     ///Adds a new source node.
   630 
   631     ///Adds a new source node to the priority heap.
   632     ///The optional second parameter is the initial distance of the node.
   633     ///
   634     ///The function checks if the node has already been added to the heap and
   635     ///it is pushed to the heap only if either it was not in the heap
   636     ///or the shortest path found till then is shorter than \c dst.
   637     void addSource(Node s,Value dst=OperationTraits::zero())
   638     {
   639       if(_heap->state(s) != Heap::IN_HEAP) {
   640         _heap->push(s,dst);
   641       } else if(OperationTraits::less((*_heap)[s], dst)) {
   642         _heap->set(s,dst);
   643         _pred->set(s,INVALID);
   644       }
   645     }
   646 
   647     ///Processes the next node in the priority heap
   648 
   649     ///Processes the next node in the priority heap.
   650     ///
   651     ///\return The processed node.
   652     ///
   653     ///\warning The priority heap must not be empty.
   654     Node processNextNode()
   655     {
   656       Node v=_heap->top();
   657       Value oldvalue=_heap->prio();
   658       _heap->pop();
   659       finalizeNodeData(v,oldvalue);
   660 
   661       for(OutArcIt e(*G,v); e!=INVALID; ++e) {
   662         Node w=G->target(e);
   663         switch(_heap->state(w)) {
   664         case Heap::PRE_HEAP:
   665           _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e]));
   666           _pred->set(w,e);
   667           break;
   668         case Heap::IN_HEAP:
   669           {
   670             Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]);
   671             if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
   672               _heap->decrease(w, newvalue);
   673               _pred->set(w,e);
   674             }
   675           }
   676           break;
   677         case Heap::POST_HEAP:
   678           break;
   679         }
   680       }
   681       return v;
   682     }
   683 
   684     ///The next node to be processed.
   685 
   686     ///Returns the next node to be processed or \c INVALID if the
   687     ///priority heap is empty.
   688     Node nextNode() const
   689     {
   690       return !_heap->empty()?_heap->top():INVALID;
   691     }
   692 
   693     ///\brief Returns \c false if there are nodes
   694     ///to be processed.
   695     ///
   696     ///Returns \c false if there are nodes
   697     ///to be processed in the priority heap.
   698     bool emptyQueue() const { return _heap->empty(); }
   699 
   700     ///Returns the number of the nodes to be processed in the priority heap
   701 
   702     ///Returns the number of the nodes to be processed in the priority heap.
   703     ///
   704     int queueSize() const { return _heap->size(); }
   705 
   706     ///Executes the algorithm.
   707 
   708     ///Executes the algorithm.
   709     ///
   710     ///This method runs the %Dijkstra algorithm from the root node(s)
   711     ///in order to compute the shortest path to each node.
   712     ///
   713     ///The algorithm computes
   714     ///- the shortest path tree (forest),
   715     ///- the distance of each node from the root(s).
   716     ///
   717     ///\pre init() must be called and at least one root node should be
   718     ///added with addSource() before using this function.
   719     ///
   720     ///\note <tt>d.start()</tt> is just a shortcut of the following code.
   721     ///\code
   722     ///  while ( !d.emptyQueue() ) {
   723     ///    d.processNextNode();
   724     ///  }
   725     ///\endcode
   726     void start()
   727     {
   728       while ( !emptyQueue() ) processNextNode();
   729     }
   730 
   731     ///Executes the algorithm until the given target node is processed.
   732 
   733     ///Executes the algorithm until the given target node is processed.
   734     ///
   735     ///This method runs the %Dijkstra algorithm from the root node(s)
   736     ///in order to compute the shortest path to \c t.
   737     ///
   738     ///The algorithm computes
   739     ///- the shortest path to \c t,
   740     ///- the distance of \c t from the root(s).
   741     ///
   742     ///\pre init() must be called and at least one root node should be
   743     ///added with addSource() before using this function.
   744     void start(Node t)
   745     {
   746       while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
   747       if ( !_heap->empty() ) {
   748         finalizeNodeData(_heap->top(),_heap->prio());
   749         _heap->pop();
   750       }
   751     }
   752 
   753     ///Executes the algorithm until a condition is met.
   754 
   755     ///Executes the algorithm until a condition is met.
   756     ///
   757     ///This method runs the %Dijkstra algorithm from the root node(s) in
   758     ///order to compute the shortest path to a node \c v with
   759     /// <tt>nm[v]</tt> true, if such a node can be found.
   760     ///
   761     ///\param nm A \c bool (or convertible) node map. The algorithm
   762     ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
   763     ///
   764     ///\return The reached node \c v with <tt>nm[v]</tt> true or
   765     ///\c INVALID if no such node was found.
   766     ///
   767     ///\pre init() must be called and at least one root node should be
   768     ///added with addSource() before using this function.
   769     template<class NodeBoolMap>
   770     Node start(const NodeBoolMap &nm)
   771     {
   772       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   773       if ( _heap->empty() ) return INVALID;
   774       finalizeNodeData(_heap->top(),_heap->prio());
   775       return _heap->top();
   776     }
   777 
   778     ///Runs the algorithm from the given source node.
   779 
   780     ///This method runs the %Dijkstra algorithm from node \c s
   781     ///in order to compute the shortest path to each node.
   782     ///
   783     ///The algorithm computes
   784     ///- the shortest path tree,
   785     ///- the distance of each node from the root.
   786     ///
   787     ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
   788     ///\code
   789     ///  d.init();
   790     ///  d.addSource(s);
   791     ///  d.start();
   792     ///\endcode
   793     void run(Node s) {
   794       init();
   795       addSource(s);
   796       start();
   797     }
   798 
   799     ///Finds the shortest path between \c s and \c t.
   800 
   801     ///This method runs the %Dijkstra algorithm from node \c s
   802     ///in order to compute the shortest path to node \c t
   803     ///(it stops searching when \c t is processed).
   804     ///
   805     ///\return \c true if \c t is reachable form \c s.
   806     ///
   807     ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
   808     ///shortcut of the following code.
   809     ///\code
   810     ///  d.init();
   811     ///  d.addSource(s);
   812     ///  d.start(t);
   813     ///\endcode
   814     bool run(Node s,Node t) {
   815       init();
   816       addSource(s);
   817       start(t);
   818       return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
   819     }
   820 
   821     ///@}
   822 
   823     ///\name Query Functions
   824     ///The result of the %Dijkstra algorithm can be obtained using these
   825     ///functions.\n
   826     ///Either \ref lemon::Dijkstra::run() "run()" or
   827     ///\ref lemon::Dijkstra::start() "start()" must be called before
   828     ///using them.
   829 
   830     ///@{
   831 
   832     ///The shortest path to a node.
   833 
   834     ///Returns the shortest path to a node.
   835     ///
   836     ///\warning \c t should be reachable from the root(s).
   837     ///
   838     ///\pre Either \ref run() or \ref start() must be called before
   839     ///using this function.
   840     Path path(Node t) const { return Path(*G, *_pred, t); }
   841 
   842     ///The distance of a node from the root(s).
   843 
   844     ///Returns the distance of a node from the root(s).
   845     ///
   846     ///\warning If node \c v is not reachable from the root(s), then
   847     ///the return value of this function is undefined.
   848     ///
   849     ///\pre Either \ref run() or \ref start() must be called before
   850     ///using this function.
   851     Value dist(Node v) const { return (*_dist)[v]; }
   852 
   853     ///Returns the 'previous arc' of the shortest path tree for a node.
   854 
   855     ///This function returns the 'previous arc' of the shortest path
   856     ///tree for the node \c v, i.e. it returns the last arc of a
   857     ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
   858     ///is not reachable from the root(s) or if \c v is a root.
   859     ///
   860     ///The shortest path tree used here is equal to the shortest path
   861     ///tree used in \ref predNode().
   862     ///
   863     ///\pre Either \ref run() or \ref start() must be called before
   864     ///using this function.
   865     Arc predArc(Node v) const { return (*_pred)[v]; }
   866 
   867     ///Returns the 'previous node' of the shortest path tree for a node.
   868 
   869     ///This function returns the 'previous node' of the shortest path
   870     ///tree for the node \c v, i.e. it returns the last but one node
   871     ///from a shortest path from the root(s) to \c v. It is \c INVALID
   872     ///if \c v is not reachable from the root(s) or if \c v is a root.
   873     ///
   874     ///The shortest path tree used here is equal to the shortest path
   875     ///tree used in \ref predArc().
   876     ///
   877     ///\pre Either \ref run() or \ref start() must be called before
   878     ///using this function.
   879     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   880                                   G->source((*_pred)[v]); }
   881 
   882     ///\brief Returns a const reference to the node map that stores the
   883     ///distances of the nodes.
   884     ///
   885     ///Returns a const reference to the node map that stores the distances
   886     ///of the nodes calculated by the algorithm.
   887     ///
   888     ///\pre Either \ref run() or \ref init()
   889     ///must be called before using this function.
   890     const DistMap &distMap() const { return *_dist;}
   891 
   892     ///\brief Returns a const reference to the node map that stores the
   893     ///predecessor arcs.
   894     ///
   895     ///Returns a const reference to the node map that stores the predecessor
   896     ///arcs, which form the shortest path tree.
   897     ///
   898     ///\pre Either \ref run() or \ref init()
   899     ///must be called before using this function.
   900     const PredMap &predMap() const { return *_pred;}
   901 
   902     ///Checks if a node is reachable from the root(s).
   903 
   904     ///Returns \c true if \c v is reachable from the root(s).
   905     ///\pre Either \ref run() or \ref start()
   906     ///must be called before using this function.
   907     bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
   908                                         Heap::PRE_HEAP; }
   909 
   910     ///Checks if a node is processed.
   911 
   912     ///Returns \c true if \c v is processed, i.e. the shortest
   913     ///path to \c v has already found.
   914     ///\pre Either \ref run() or \ref init()
   915     ///must be called before using this function.
   916     bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
   917                                           Heap::POST_HEAP; }
   918 
   919     ///The current distance of a node from the root(s).
   920 
   921     ///Returns the current distance of a node from the root(s).
   922     ///It may be decreased in the following processes.
   923     ///\pre Either \ref run() or \ref init()
   924     ///must be called before using this function and
   925     ///node \c v must be reached but not necessarily processed.
   926     Value currentDist(Node v) const {
   927       return processed(v) ? (*_dist)[v] : (*_heap)[v];
   928     }
   929 
   930     ///@}
   931   };
   932 
   933 
   934   ///Default traits class of dijkstra() function.
   935 
   936   ///Default traits class of dijkstra() function.
   937   ///\tparam GR The type of the digraph.
   938   ///\tparam LM The type of the length map.
   939   template<class GR, class LM>
   940   struct DijkstraWizardDefaultTraits
   941   {
   942     ///The type of the digraph the algorithm runs on.
   943     typedef GR Digraph;
   944     ///The type of the map that stores the arc lengths.
   945 
   946     ///The type of the map that stores the arc lengths.
   947     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
   948     typedef LM LengthMap;
   949     ///The type of the length of the arcs.
   950     typedef typename LM::Value Value;
   951 
   952     /// Operation traits for Dijkstra algorithm.
   953 
   954     /// This class defines the operations that are used in the algorithm.
   955     /// \see DijkstraDefaultOperationTraits
   956     typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
   957 
   958     /// The cross reference type used by the heap.
   959 
   960     /// The cross reference type used by the heap.
   961     /// Usually it is \c Digraph::NodeMap<int>.
   962     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
   963     ///Instantiates a \ref HeapCrossRef.
   964 
   965     ///This function instantiates a \ref HeapCrossRef.
   966     /// \param g is the digraph, to which we would like to define the
   967     /// HeapCrossRef.
   968     /// \todo The digraph alone may be insufficient for the initialization
   969     static HeapCrossRef *createHeapCrossRef(const Digraph &g)
   970     {
   971       return new HeapCrossRef(g);
   972     }
   973 
   974     ///The heap type used by the Dijkstra algorithm.
   975 
   976     ///The heap type used by the Dijkstra algorithm.
   977     ///
   978     ///\sa BinHeap
   979     ///\sa Dijkstra
   980     typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
   981                     std::less<Value> > Heap;
   982 
   983     ///Instantiates a \ref Heap.
   984 
   985     ///This function instantiates a \ref Heap.
   986     /// \param r is the HeapCrossRef which is used.
   987     static Heap *createHeap(HeapCrossRef& r)
   988     {
   989       return new Heap(r);
   990     }
   991 
   992     ///\brief The type of the map that stores the predecessor
   993     ///arcs of the shortest paths.
   994     ///
   995     ///The type of the map that stores the predecessor
   996     ///arcs of the shortest paths.
   997     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   998     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
   999     ///Instantiates a \ref PredMap.
  1000 
  1001     ///This function instantiates a \ref PredMap.
  1002     ///\param g is the digraph, to which we would like to define the
  1003     ///\ref PredMap.
  1004     ///\todo The digraph alone may be insufficient to initialize
  1005     static PredMap *createPredMap(const Digraph &g)
  1006     {
  1007       return new PredMap(g);
  1008     }
  1009 
  1010     ///The type of the map that indicates which nodes are processed.
  1011 
  1012     ///The type of the map that indicates which nodes are processed.
  1013     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1014     ///By default it is a NullMap.
  1015     ///\todo If it is set to a real map,
  1016     ///Dijkstra::processed() should read this.
  1017     ///\todo named parameter to set this type, function to read and write.
  1018     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
  1019     ///Instantiates a \ref ProcessedMap.
  1020 
  1021     ///This function instantiates a \ref ProcessedMap.
  1022     ///\param g is the digraph, to which
  1023     ///we would like to define the \ref ProcessedMap.
  1024 #ifdef DOXYGEN
  1025     static ProcessedMap *createProcessedMap(const Digraph &g)
  1026 #else
  1027     static ProcessedMap *createProcessedMap(const Digraph &)
  1028 #endif
  1029     {
  1030       return new ProcessedMap();
  1031     }
  1032 
  1033     ///The type of the map that stores the distances of the nodes.
  1034 
  1035     ///The type of the map that stores the distances of the nodes.
  1036     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  1037     typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
  1038     ///Instantiates a \ref DistMap.
  1039 
  1040     ///This function instantiates a \ref DistMap.
  1041     ///\param g is the digraph, to which we would like to define
  1042     ///the \ref DistMap
  1043     static DistMap *createDistMap(const Digraph &g)
  1044     {
  1045       return new DistMap(g);
  1046     }
  1047 
  1048     ///The type of the shortest paths.
  1049 
  1050     ///The type of the shortest paths.
  1051     ///It must meet the \ref concepts::Path "Path" concept.
  1052     typedef lemon::Path<Digraph> Path;
  1053   };
  1054 
  1055   /// Default traits class used by \ref DijkstraWizard
  1056 
  1057   /// To make it easier to use Dijkstra algorithm
  1058   /// we have created a wizard class.
  1059   /// This \ref DijkstraWizard class needs default traits,
  1060   /// as well as the \ref Dijkstra class.
  1061   /// The \ref DijkstraWizardBase is a class to be the default traits of the
  1062   /// \ref DijkstraWizard class.
  1063   /// \todo More named parameters are required...
  1064   template<class GR,class LM>
  1065   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
  1066   {
  1067     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
  1068   protected:
  1069     //The type of the nodes in the digraph.
  1070     typedef typename Base::Digraph::Node Node;
  1071 
  1072     //Pointer to the digraph the algorithm runs on.
  1073     void *_g;
  1074     //Pointer to the length map.
  1075     void *_length;
  1076     //Pointer to the map of processed nodes.
  1077     void *_processed;
  1078     //Pointer to the map of predecessors arcs.
  1079     void *_pred;
  1080     //Pointer to the map of distances.
  1081     void *_dist;
  1082     //Pointer to the shortest path to the target node.
  1083     void *_path;
  1084     //Pointer to the distance of the target node.
  1085     void *_di;
  1086 
  1087   public:
  1088     /// Constructor.
  1089 
  1090     /// This constructor does not require parameters, therefore it initiates
  1091     /// all of the attributes to \c 0.
  1092     DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
  1093                            _dist(0), _path(0), _di(0) {}
  1094 
  1095     /// Constructor.
  1096 
  1097     /// This constructor requires two parameters,
  1098     /// others are initiated to \c 0.
  1099     /// \param g The digraph the algorithm runs on.
  1100     /// \param l The length map.
  1101     DijkstraWizardBase(const GR &g,const LM &l) :
  1102       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
  1103       _length(reinterpret_cast<void*>(const_cast<LM*>(&l))),
  1104       _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
  1105 
  1106   };
  1107 
  1108   /// Auxiliary class for the function-type interface of Dijkstra algorithm.
  1109 
  1110   /// This auxiliary class is created to implement the
  1111   /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
  1112   /// It does not have own \ref run() method, it uses the functions
  1113   /// and features of the plain \ref Dijkstra.
  1114   ///
  1115   /// This class should only be used through the \ref dijkstra() function,
  1116   /// which makes it easier to use the algorithm.
  1117   template<class TR>
  1118   class DijkstraWizard : public TR
  1119   {
  1120     typedef TR Base;
  1121 
  1122     ///The type of the digraph the algorithm runs on.
  1123     typedef typename TR::Digraph Digraph;
  1124 
  1125     typedef typename Digraph::Node Node;
  1126     typedef typename Digraph::NodeIt NodeIt;
  1127     typedef typename Digraph::Arc Arc;
  1128     typedef typename Digraph::OutArcIt OutArcIt;
  1129 
  1130     ///The type of the map that stores the arc lengths.
  1131     typedef typename TR::LengthMap LengthMap;
  1132     ///The type of the length of the arcs.
  1133     typedef typename LengthMap::Value Value;
  1134     ///\brief The type of the map that stores the predecessor
  1135     ///arcs of the shortest paths.
  1136     typedef typename TR::PredMap PredMap;
  1137     ///The type of the map that stores the distances of the nodes.
  1138     typedef typename TR::DistMap DistMap;
  1139     ///The type of the map that indicates which nodes are processed.
  1140     typedef typename TR::ProcessedMap ProcessedMap;
  1141     ///The type of the shortest paths
  1142     typedef typename TR::Path Path;
  1143     ///The heap type used by the dijkstra algorithm.
  1144     typedef typename TR::Heap Heap;
  1145 
  1146   public:
  1147 
  1148     /// Constructor.
  1149     DijkstraWizard() : TR() {}
  1150 
  1151     /// Constructor that requires parameters.
  1152 
  1153     /// Constructor that requires parameters.
  1154     /// These parameters will be the default values for the traits class.
  1155     /// \param g The digraph the algorithm runs on.
  1156     /// \param l The length map.
  1157     DijkstraWizard(const Digraph &g, const LengthMap &l) :
  1158       TR(g,l) {}
  1159 
  1160     ///Copy constructor
  1161     DijkstraWizard(const TR &b) : TR(b) {}
  1162 
  1163     ~DijkstraWizard() {}
  1164 
  1165     ///Runs Dijkstra algorithm from the given source node.
  1166 
  1167     ///This method runs %Dijkstra algorithm from the given source node
  1168     ///in order to compute the shortest path to each node.
  1169     void run(Node s)
  1170     {
  1171       if (s==INVALID) throw UninitializedParameter();
  1172       Dijkstra<Digraph,LengthMap,TR>
  1173         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
  1174              *reinterpret_cast<const LengthMap*>(Base::_length));
  1175       if (Base::_pred)
  1176         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1177       if (Base::_dist)
  1178         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1179       if (Base::_processed)
  1180         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  1181       dijk.run(s);
  1182     }
  1183 
  1184     ///Finds the shortest path between \c s and \c t.
  1185 
  1186     ///This method runs the %Dijkstra algorithm from node \c s
  1187     ///in order to compute the shortest path to node \c t
  1188     ///(it stops searching when \c t is processed).
  1189     ///
  1190     ///\return \c true if \c t is reachable form \c s.
  1191     bool run(Node s, Node t)
  1192     {
  1193       if (s==INVALID || t==INVALID) throw UninitializedParameter();
  1194       Dijkstra<Digraph,LengthMap,TR>
  1195         dijk(*reinterpret_cast<const Digraph*>(Base::_g),
  1196              *reinterpret_cast<const LengthMap*>(Base::_length));
  1197       if (Base::_pred)
  1198         dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1199       if (Base::_dist)
  1200         dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1201       if (Base::_processed)
  1202         dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  1203       dijk.run(s,t);
  1204       if (Base::_path)
  1205         *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
  1206       if (Base::_di)
  1207         *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
  1208       return dijk.reached(t);
  1209     }
  1210 
  1211     template<class T>
  1212     struct SetPredMapBase : public Base {
  1213       typedef T PredMap;
  1214       static PredMap *createPredMap(const Digraph &) { return 0; };
  1215       SetPredMapBase(const TR &b) : TR(b) {}
  1216     };
  1217     ///\brief \ref named-func-param "Named parameter"
  1218     ///for setting \ref PredMap object.
  1219     ///
  1220     ///\ref named-func-param "Named parameter"
  1221     ///for setting \ref PredMap object.
  1222     template<class T>
  1223     DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
  1224     {
  1225       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1226       return DijkstraWizard<SetPredMapBase<T> >(*this);
  1227     }
  1228 
  1229     template<class T>
  1230     struct SetDistMapBase : public Base {
  1231       typedef T DistMap;
  1232       static DistMap *createDistMap(const Digraph &) { return 0; };
  1233       SetDistMapBase(const TR &b) : TR(b) {}
  1234     };
  1235     ///\brief \ref named-func-param "Named parameter"
  1236     ///for setting \ref DistMap object.
  1237     ///
  1238     ///\ref named-func-param "Named parameter"
  1239     ///for setting \ref DistMap object.
  1240     template<class T>
  1241     DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
  1242     {
  1243       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1244       return DijkstraWizard<SetDistMapBase<T> >(*this);
  1245     }
  1246 
  1247     template<class T>
  1248     struct SetProcessedMapBase : public Base {
  1249       typedef T ProcessedMap;
  1250       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
  1251       SetProcessedMapBase(const TR &b) : TR(b) {}
  1252     };
  1253     ///\brief \ref named-func-param "Named parameter"
  1254     ///for setting \ref ProcessedMap object.
  1255     ///
  1256     /// \ref named-func-param "Named parameter"
  1257     ///for setting \ref ProcessedMap object.
  1258     template<class T>
  1259     DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
  1260     {
  1261       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
  1262       return DijkstraWizard<SetProcessedMapBase<T> >(*this);
  1263     }
  1264 
  1265     template<class T>
  1266     struct SetPathBase : public Base {
  1267       typedef T Path;
  1268       SetPathBase(const TR &b) : TR(b) {}
  1269     };
  1270     ///\brief \ref named-func-param "Named parameter"
  1271     ///for getting the shortest path to the target node.
  1272     ///
  1273     ///\ref named-func-param "Named parameter"
  1274     ///for getting the shortest path to the target node.
  1275     template<class T>
  1276     DijkstraWizard<SetPathBase<T> > path(const T &t)
  1277     {
  1278       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  1279       return DijkstraWizard<SetPathBase<T> >(*this);
  1280     }
  1281 
  1282     ///\brief \ref named-func-param "Named parameter"
  1283     ///for getting the distance of the target node.
  1284     ///
  1285     ///\ref named-func-param "Named parameter"
  1286     ///for getting the distance of the target node.
  1287     DijkstraWizard dist(const Value &d)
  1288     {
  1289       Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
  1290       return *this;
  1291     }
  1292 
  1293   };
  1294 
  1295   ///Function-type interface for Dijkstra algorithm.
  1296 
  1297   /// \ingroup shortest_path
  1298   ///Function-type interface for Dijkstra algorithm.
  1299   ///
  1300   ///This function also has several \ref named-func-param "named parameters",
  1301   ///they are declared as the members of class \ref DijkstraWizard.
  1302   ///The following examples show how to use these parameters.
  1303   ///\code
  1304   ///  // Compute shortest path from node s to each node
  1305   ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
  1306   ///
  1307   ///  // Compute shortest path from s to t
  1308   ///  bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
  1309   ///\endcode
  1310   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1311   ///to the end of the parameter list.
  1312   ///\sa DijkstraWizard
  1313   ///\sa Dijkstra
  1314   template<class GR, class LM>
  1315   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1316   dijkstra(const GR &digraph, const LM &length)
  1317   {
  1318     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length);
  1319   }
  1320 
  1321 } //END OF NAMESPACE LEMON
  1322 
  1323 #endif