alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*- deba@57: * alpar@209: * This file is a part of LEMON, a generic C++ optimization library. deba@57: * alpar@107: * Copyright (C) 2003-2008 deba@57: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@57: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@57: * deba@57: * Permission to use, modify and distribute this software is granted deba@57: * provided that this copyright notice appears in all copies. For deba@57: * precise terms see the accompanying LICENSE file. deba@57: * deba@57: * This software is provided "AS IS" with no warranty of any kind, deba@57: * express or implied, and with no claim as to its suitability for any deba@57: * purpose. deba@57: * deba@57: */ deba@57: deba@57: #ifndef LEMON_BITS_ARRAY_MAP_H deba@57: #define LEMON_BITS_ARRAY_MAP_H deba@57: deba@57: #include deba@57: deba@57: #include deba@57: #include deba@57: #include deba@57: #include deba@57: kpeter@318: // \ingroup graphbits kpeter@318: // \file kpeter@318: // \brief Graph map based on the array storage. deba@57: deba@57: namespace lemon { deba@57: kpeter@318: // \ingroup graphbits kpeter@318: // kpeter@318: // \brief Graph map based on the array storage. kpeter@318: // kpeter@318: // The ArrayMap template class is graph map structure what kpeter@318: // automatically updates the map when a key is added to or erased from kpeter@318: // the map. This map uses the allocators to implement kpeter@318: // the container functionality. kpeter@318: // kpeter@318: // The template parameters are the Graph the current Item type and kpeter@318: // the Value type of the map. deba@57: template alpar@209: class ArrayMap deba@57: : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { deba@57: public: kpeter@318: // The graph type of the maps. deba@57: typedef _Graph Graph; kpeter@318: // The item type of the map. deba@57: typedef _Item Item; kpeter@318: // The reference map tag. deba@57: typedef True ReferenceMapTag; deba@57: kpeter@318: // The key type of the maps. deba@57: typedef _Item Key; kpeter@318: // The value type of the map. deba@57: typedef _Value Value; deba@57: kpeter@318: // The const reference type of the map. deba@57: typedef const _Value& ConstReference; kpeter@318: // The reference type of the map. deba@57: typedef _Value& Reference; deba@57: kpeter@318: // The notifier type. deba@57: typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; deba@57: kpeter@318: // The MapBase of the Map which imlements the core regisitry function. deba@57: typedef typename Notifier::ObserverBase Parent; alpar@209: deba@57: private: deba@57: typedef std::allocator Allocator; deba@57: deba@57: public: deba@57: kpeter@318: // \brief Graph initialized map constructor. kpeter@318: // kpeter@318: // Graph initialized map constructor. deba@57: explicit ArrayMap(const Graph& graph) { deba@57: Parent::attach(graph.notifier(Item())); deba@57: allocate_memory(); deba@57: Notifier* nf = Parent::notifier(); deba@57: Item it; deba@57: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it);; alpar@209: allocator.construct(&(values[id]), Value()); alpar@209: } deba@57: } deba@57: kpeter@318: // \brief Constructor to use default value to initialize the map. kpeter@318: // kpeter@318: // It constructs a map and initialize all of the the map. deba@57: ArrayMap(const Graph& graph, const Value& value) { deba@57: Parent::attach(graph.notifier(Item())); deba@57: allocate_memory(); deba@57: Notifier* nf = Parent::notifier(); deba@57: Item it; deba@57: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it);; alpar@209: allocator.construct(&(values[id]), value); alpar@209: } deba@57: } deba@57: kpeter@263: private: kpeter@318: // \brief Constructor to copy a map of the same map type. kpeter@318: // kpeter@318: // Constructor to copy a map of the same map type. deba@57: ArrayMap(const ArrayMap& copy) : Parent() { deba@57: if (copy.attached()) { alpar@209: attach(*copy.notifier()); deba@57: } deba@57: capacity = copy.capacity; deba@57: if (capacity == 0) return; deba@57: values = allocator.allocate(capacity); deba@57: Notifier* nf = Parent::notifier(); deba@57: Item it; deba@57: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it);; alpar@209: allocator.construct(&(values[id]), copy.values[id]); deba@57: } deba@57: } deba@57: kpeter@318: // \brief Assign operator. kpeter@318: // kpeter@318: // This operator assigns for each item in the map the kpeter@318: // value mapped to the same item in the copied map. kpeter@318: // The parameter map should be indiced with the same kpeter@318: // itemset because this assign operator does not change kpeter@318: // the container of the map. deba@57: ArrayMap& operator=(const ArrayMap& cmap) { deba@57: return operator=(cmap); deba@57: } deba@57: deba@57: kpeter@318: // \brief Template assign operator. kpeter@318: // kpeter@318: // The given parameter should be conform to the ReadMap kpeter@318: // concecpt and could be indiced by the current item set of kpeter@318: // the NodeMap. In this case the value for each item kpeter@318: // is assigned by the value of the given ReadMap. deba@57: template deba@57: ArrayMap& operator=(const CMap& cmap) { deba@57: checkConcept, CMap>(); deba@57: const typename Parent::Notifier* nf = Parent::notifier(); deba@57: Item it; deba@57: for (nf->first(it); it != INVALID; nf->next(it)) { deba@57: set(it, cmap[it]); deba@57: } deba@57: return *this; deba@57: } deba@57: kpeter@263: public: kpeter@318: // \brief The destructor of the map. kpeter@318: // kpeter@318: // The destructor of the map. alpar@209: virtual ~ArrayMap() { deba@57: if (attached()) { alpar@209: clear(); alpar@209: detach(); deba@57: } deba@57: } alpar@209: deba@57: protected: deba@57: deba@57: using Parent::attach; deba@57: using Parent::detach; deba@57: using Parent::attached; deba@57: deba@57: public: deba@57: kpeter@318: // \brief The subscript operator. kpeter@318: // kpeter@318: // The subscript operator. The map can be subscripted by the kpeter@318: // actual keys of the graph. deba@57: Value& operator[](const Key& key) { deba@57: int id = Parent::notifier()->id(key); deba@57: return values[id]; alpar@209: } alpar@209: kpeter@318: // \brief The const subscript operator. kpeter@318: // kpeter@318: // The const subscript operator. The map can be subscripted by the kpeter@318: // actual keys of the graph. deba@57: const Value& operator[](const Key& key) const { deba@57: int id = Parent::notifier()->id(key); deba@57: return values[id]; deba@57: } deba@57: kpeter@318: // \brief Setter function of the map. kpeter@318: // kpeter@318: // Setter function of the map. Equivalent with map[key] = val. kpeter@318: // This is a compatibility feature with the not dereferable maps. deba@57: void set(const Key& key, const Value& val) { deba@57: (*this)[key] = val; deba@57: } deba@57: deba@57: protected: deba@57: kpeter@318: // \brief Adds a new key to the map. kpeter@318: // kpeter@318: // It adds a new key to the map. It called by the observer notifier kpeter@318: // and it overrides the add() member function of the observer base. deba@57: virtual void add(const Key& key) { deba@57: Notifier* nf = Parent::notifier(); deba@57: int id = nf->id(key); deba@57: if (id >= capacity) { alpar@209: int new_capacity = (capacity == 0 ? 1 : capacity); alpar@209: while (new_capacity <= id) { alpar@209: new_capacity <<= 1; alpar@209: } alpar@209: Value* new_values = allocator.allocate(new_capacity); alpar@209: Item it; alpar@209: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int jd = nf->id(it);; alpar@209: if (id != jd) { alpar@209: allocator.construct(&(new_values[jd]), values[jd]); alpar@209: allocator.destroy(&(values[jd])); alpar@209: } alpar@209: } alpar@209: if (capacity != 0) allocator.deallocate(values, capacity); alpar@209: values = new_values; alpar@209: capacity = new_capacity; deba@57: } deba@57: allocator.construct(&(values[id]), Value()); deba@57: } deba@57: kpeter@318: // \brief Adds more new keys to the map. kpeter@318: // kpeter@318: // It adds more new keys to the map. It called by the observer notifier kpeter@318: // and it overrides the add() member function of the observer base. deba@57: virtual void add(const std::vector& keys) { deba@57: Notifier* nf = Parent::notifier(); deba@57: int max_id = -1; deba@57: for (int i = 0; i < int(keys.size()); ++i) { alpar@209: int id = nf->id(keys[i]); alpar@209: if (id > max_id) { alpar@209: max_id = id; alpar@209: } deba@57: } deba@57: if (max_id >= capacity) { alpar@209: int new_capacity = (capacity == 0 ? 1 : capacity); alpar@209: while (new_capacity <= max_id) { alpar@209: new_capacity <<= 1; alpar@209: } alpar@209: Value* new_values = allocator.allocate(new_capacity); alpar@209: Item it; alpar@209: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it); alpar@209: bool found = false; alpar@209: for (int i = 0; i < int(keys.size()); ++i) { alpar@209: int jd = nf->id(keys[i]); alpar@209: if (id == jd) { alpar@209: found = true; alpar@209: break; alpar@209: } alpar@209: } alpar@209: if (found) continue; alpar@209: allocator.construct(&(new_values[id]), values[id]); alpar@209: allocator.destroy(&(values[id])); alpar@209: } alpar@209: if (capacity != 0) allocator.deallocate(values, capacity); alpar@209: values = new_values; alpar@209: capacity = new_capacity; deba@57: } deba@57: for (int i = 0; i < int(keys.size()); ++i) { alpar@209: int id = nf->id(keys[i]); alpar@209: allocator.construct(&(values[id]), Value()); deba@57: } deba@57: } alpar@209: kpeter@318: // \brief Erase a key from the map. kpeter@318: // kpeter@318: // Erase a key from the map. It called by the observer notifier kpeter@318: // and it overrides the erase() member function of the observer base. deba@57: virtual void erase(const Key& key) { deba@57: int id = Parent::notifier()->id(key); deba@57: allocator.destroy(&(values[id])); deba@57: } deba@57: kpeter@318: // \brief Erase more keys from the map. kpeter@318: // kpeter@318: // Erase more keys from the map. It called by the observer notifier kpeter@318: // and it overrides the erase() member function of the observer base. deba@57: virtual void erase(const std::vector& keys) { deba@57: for (int i = 0; i < int(keys.size()); ++i) { alpar@209: int id = Parent::notifier()->id(keys[i]); alpar@209: allocator.destroy(&(values[id])); deba@57: } deba@57: } deba@57: kpeter@318: // \brief Buildes the map. kpeter@318: // kpeter@318: // It buildes the map. It called by the observer notifier kpeter@318: // and it overrides the build() member function of the observer base. deba@57: virtual void build() { deba@57: Notifier* nf = Parent::notifier(); deba@57: allocate_memory(); deba@57: Item it; deba@57: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it);; alpar@209: allocator.construct(&(values[id]), Value()); alpar@209: } deba@57: } deba@57: kpeter@318: // \brief Clear the map. kpeter@318: // kpeter@318: // It erase all items from the map. It called by the observer notifier kpeter@318: // and it overrides the clear() member function of the observer base. alpar@209: virtual void clear() { deba@57: Notifier* nf = Parent::notifier(); deba@57: if (capacity != 0) { alpar@209: Item it; alpar@209: for (nf->first(it); it != INVALID; nf->next(it)) { alpar@209: int id = nf->id(it); alpar@209: allocator.destroy(&(values[id])); alpar@209: } alpar@209: allocator.deallocate(values, capacity); alpar@209: capacity = 0; deba@57: } deba@57: } deba@57: deba@57: private: alpar@209: deba@57: void allocate_memory() { deba@57: int max_id = Parent::notifier()->maxId(); deba@57: if (max_id == -1) { alpar@209: capacity = 0; alpar@209: values = 0; alpar@209: return; deba@57: } deba@57: capacity = 1; deba@57: while (capacity <= max_id) { alpar@209: capacity <<= 1; deba@57: } alpar@209: values = allocator.allocate(capacity); alpar@209: } deba@57: deba@57: int capacity; deba@57: Value* values; deba@57: Allocator allocator; deba@57: alpar@209: }; deba@57: deba@57: } deba@57: alpar@209: #endif