author Alpar Juttner Mon, 17 Mar 2008 19:21:27 +0000 changeset 93 f857981306ea parent 91 e28fc773f3c0 parent 92 5d4decd1b870 child 94 a4688e4138ec
Merge
     1.1 --- a/lemon/random.h	Mon Mar 17 18:31:52 2008 +0000
1.2 +++ b/lemon/random.h	Mon Mar 17 19:21:27 2008 +0000
1.3 @@ -803,6 +803,29 @@
1.4        return exponential(gamma(k,1.0/x_min));
1.5      }
1.6
1.7 +    /// Poisson distribution
1.8 +
1.9 +    /// This function generates a Poisson distribution random number with
1.10 +    /// parameter \c lambda.
1.11 +    ///
1.12 +    /// The probability mass function of this distribusion is
1.13 +    /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
1.14 +    /// \note The algorithm is taken from the book of Donald E. Knuth titled
1.15 +    /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
1.16 +    /// return value.
1.17 +
1.18 +    int poisson(double lambda)
1.19 +    {
1.20 +      const double l = std::exp(-lambda);
1.21 +      int k=0;
1.22 +      double p = 1.0;
1.23 +      do {
1.24 +	k++;
1.25 +	p*=real<double>();
1.26 +      } while (p>=l);
1.27 +      return k-1;
1.28 +    }
1.29 +
1.30      ///@}
1.31
1.32      ///\name Two dimensional distributions

     2.1 --- a/test/random_test.cc	Mon Mar 17 18:31:52 2008 +0000
2.2 +++ b/test/random_test.cc	Mon Mar 17 19:21:27 2008 +0000
2.3 @@ -33,4 +33,5 @@
2.4    a=lemon::rnd.gamma(4);
2.5    //Does gamma work with integer k?
2.6    a=lemon::rnd.gamma(4.0,0);
2.7 +  a=lemon::rnd.poisson(.5);
2.8  }