lemon/preflow.h
author Alpar Juttner <alpar@cs.elte.hu>
Sat, 06 Mar 2010 14:35:12 +0000
changeset 877 141f9c0db4a3
parent 825 75e6020b19b1
child 895 f63fd24c0aea
child 942 2b6bffe0e7e8
permissions -rw-r--r--
Unify the sources (#339)
alpar@389
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@389
     2
 *
alpar@389
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@389
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
alpar@389
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@389
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@389
     8
 *
alpar@389
     9
 * Permission to use, modify and distribute this software is granted
alpar@389
    10
 * provided that this copyright notice appears in all copies. For
alpar@389
    11
 * precise terms see the accompanying LICENSE file.
alpar@389
    12
 *
alpar@389
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@389
    14
 * express or implied, and with no claim as to its suitability for any
alpar@389
    15
 * purpose.
alpar@389
    16
 *
alpar@389
    17
 */
alpar@389
    18
alpar@389
    19
#ifndef LEMON_PREFLOW_H
alpar@389
    20
#define LEMON_PREFLOW_H
alpar@389
    21
alpar@389
    22
#include <lemon/tolerance.h>
alpar@389
    23
#include <lemon/elevator.h>
alpar@389
    24
alpar@389
    25
/// \file
alpar@389
    26
/// \ingroup max_flow
alpar@389
    27
/// \brief Implementation of the preflow algorithm.
alpar@389
    28
alpar@389
    29
namespace lemon {
alpar@389
    30
alpar@389
    31
  /// \brief Default traits class of Preflow class.
alpar@389
    32
  ///
alpar@389
    33
  /// Default traits class of Preflow class.
kpeter@492
    34
  /// \tparam GR Digraph type.
kpeter@559
    35
  /// \tparam CAP Capacity map type.
kpeter@559
    36
  template <typename GR, typename CAP>
alpar@389
    37
  struct PreflowDefaultTraits {
alpar@389
    38
kpeter@393
    39
    /// \brief The type of the digraph the algorithm runs on.
kpeter@492
    40
    typedef GR Digraph;
alpar@389
    41
alpar@389
    42
    /// \brief The type of the map that stores the arc capacities.
alpar@389
    43
    ///
alpar@389
    44
    /// The type of the map that stores the arc capacities.
alpar@389
    45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
kpeter@559
    46
    typedef CAP CapacityMap;
alpar@389
    47
kpeter@393
    48
    /// \brief The type of the flow values.
kpeter@641
    49
    typedef typename CapacityMap::Value Value;
alpar@389
    50
kpeter@393
    51
    /// \brief The type of the map that stores the flow values.
alpar@389
    52
    ///
kpeter@393
    53
    /// The type of the map that stores the flow values.
alpar@389
    54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@713
    55
#ifdef DOXYGEN
kpeter@713
    56
    typedef GR::ArcMap<Value> FlowMap;
kpeter@713
    57
#else
kpeter@641
    58
    typedef typename Digraph::template ArcMap<Value> FlowMap;
kpeter@713
    59
#endif
alpar@389
    60
alpar@389
    61
    /// \brief Instantiates a FlowMap.
alpar@389
    62
    ///
alpar@389
    63
    /// This function instantiates a \ref FlowMap.
kpeter@610
    64
    /// \param digraph The digraph for which we would like to define
alpar@389
    65
    /// the flow map.
alpar@389
    66
    static FlowMap* createFlowMap(const Digraph& digraph) {
alpar@389
    67
      return new FlowMap(digraph);
alpar@389
    68
    }
alpar@389
    69
kpeter@393
    70
    /// \brief The elevator type used by Preflow algorithm.
alpar@389
    71
    ///
alpar@389
    72
    /// The elevator type used by Preflow algorithm.
alpar@389
    73
    ///
kpeter@713
    74
    /// \sa Elevator, LinkedElevator
kpeter@713
    75
#ifdef DOXYGEN
kpeter@713
    76
    typedef lemon::Elevator<GR, GR::Node> Elevator;
kpeter@713
    77
#else
kpeter@713
    78
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
kpeter@713
    79
#endif
alpar@389
    80
alpar@389
    81
    /// \brief Instantiates an Elevator.
alpar@389
    82
    ///
kpeter@393
    83
    /// This function instantiates an \ref Elevator.
kpeter@610
    84
    /// \param digraph The digraph for which we would like to define
alpar@389
    85
    /// the elevator.
alpar@389
    86
    /// \param max_level The maximum level of the elevator.
alpar@389
    87
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
alpar@389
    88
      return new Elevator(digraph, max_level);
alpar@389
    89
    }
alpar@389
    90
alpar@389
    91
    /// \brief The tolerance used by the algorithm
alpar@389
    92
    ///
alpar@389
    93
    /// The tolerance used by the algorithm to handle inexact computation.
kpeter@641
    94
    typedef lemon::Tolerance<Value> Tolerance;
alpar@389
    95
alpar@389
    96
  };
alpar@389
    97
alpar@389
    98
alpar@389
    99
  /// \ingroup max_flow
alpar@389
   100
  ///
kpeter@393
   101
  /// \brief %Preflow algorithm class.
alpar@389
   102
  ///
kpeter@393
   103
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
kpeter@559
   104
  /// \e push-relabel algorithm producing a \ref max_flow
kpeter@755
   105
  /// "flow of maximum value" in a digraph \ref clrs01algorithms,
kpeter@755
   106
  /// \ref amo93networkflows, \ref goldberg88newapproach.
kpeter@559
   107
  /// The preflow algorithms are the fastest known maximum
kpeter@689
   108
  /// flow algorithms. The current implementation uses a mixture of the
alpar@389
   109
  /// \e "highest label" and the \e "bound decrease" heuristics.
alpar@389
   110
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
alpar@389
   111
  ///
kpeter@393
   112
  /// The algorithm consists of two phases. After the first phase
kpeter@393
   113
  /// the maximum flow value and the minimum cut is obtained. The
kpeter@393
   114
  /// second phase constructs a feasible maximum flow on each arc.
alpar@389
   115
  ///
kpeter@823
   116
  /// \warning This implementation cannot handle infinite or very large
kpeter@823
   117
  /// capacities (e.g. the maximum value of \c CAP::Value).
kpeter@823
   118
  ///
kpeter@492
   119
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@559
   120
  /// \tparam CAP The type of the capacity map. The default map
kpeter@492
   121
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@825
   122
  /// \tparam TR The traits class that defines various types used by the
kpeter@825
   123
  /// algorithm. By default, it is \ref PreflowDefaultTraits
kpeter@825
   124
  /// "PreflowDefaultTraits<GR, CAP>".
kpeter@825
   125
  /// In most cases, this parameter should not be set directly,
kpeter@825
   126
  /// consider to use the named template parameters instead.
alpar@389
   127
#ifdef DOXYGEN
kpeter@559
   128
  template <typename GR, typename CAP, typename TR>
alpar@389
   129
#else
kpeter@492
   130
  template <typename GR,
kpeter@559
   131
            typename CAP = typename GR::template ArcMap<int>,
kpeter@559
   132
            typename TR = PreflowDefaultTraits<GR, CAP> >
alpar@389
   133
#endif
alpar@389
   134
  class Preflow {
alpar@389
   135
  public:
alpar@389
   136
kpeter@393
   137
    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
kpeter@492
   138
    typedef TR Traits;
kpeter@393
   139
    ///The type of the digraph the algorithm runs on.
alpar@389
   140
    typedef typename Traits::Digraph Digraph;
kpeter@393
   141
    ///The type of the capacity map.
alpar@389
   142
    typedef typename Traits::CapacityMap CapacityMap;
kpeter@393
   143
    ///The type of the flow values.
kpeter@641
   144
    typedef typename Traits::Value Value;
alpar@389
   145
kpeter@393
   146
    ///The type of the flow map.
alpar@389
   147
    typedef typename Traits::FlowMap FlowMap;
kpeter@393
   148
    ///The type of the elevator.
alpar@389
   149
    typedef typename Traits::Elevator Elevator;
kpeter@393
   150
    ///The type of the tolerance.
alpar@389
   151
    typedef typename Traits::Tolerance Tolerance;
alpar@389
   152
alpar@389
   153
  private:
alpar@389
   154
alpar@389
   155
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
alpar@389
   156
alpar@389
   157
    const Digraph& _graph;
alpar@389
   158
    const CapacityMap* _capacity;
alpar@389
   159
alpar@389
   160
    int _node_num;
alpar@389
   161
alpar@389
   162
    Node _source, _target;
alpar@389
   163
alpar@389
   164
    FlowMap* _flow;
alpar@389
   165
    bool _local_flow;
alpar@389
   166
alpar@389
   167
    Elevator* _level;
alpar@389
   168
    bool _local_level;
alpar@389
   169
kpeter@641
   170
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
alpar@389
   171
    ExcessMap* _excess;
alpar@389
   172
alpar@389
   173
    Tolerance _tolerance;
alpar@389
   174
alpar@389
   175
    bool _phase;
alpar@389
   176
alpar@389
   177
alpar@389
   178
    void createStructures() {
alpar@389
   179
      _node_num = countNodes(_graph);
alpar@389
   180
alpar@389
   181
      if (!_flow) {
alpar@389
   182
        _flow = Traits::createFlowMap(_graph);
alpar@389
   183
        _local_flow = true;
alpar@389
   184
      }
alpar@389
   185
      if (!_level) {
alpar@389
   186
        _level = Traits::createElevator(_graph, _node_num);
alpar@389
   187
        _local_level = true;
alpar@389
   188
      }
alpar@389
   189
      if (!_excess) {
alpar@389
   190
        _excess = new ExcessMap(_graph);
alpar@389
   191
      }
alpar@389
   192
    }
alpar@389
   193
alpar@389
   194
    void destroyStructures() {
alpar@389
   195
      if (_local_flow) {
alpar@389
   196
        delete _flow;
alpar@389
   197
      }
alpar@389
   198
      if (_local_level) {
alpar@389
   199
        delete _level;
alpar@389
   200
      }
alpar@389
   201
      if (_excess) {
alpar@389
   202
        delete _excess;
alpar@389
   203
      }
alpar@389
   204
    }
alpar@389
   205
alpar@389
   206
  public:
alpar@389
   207
alpar@389
   208
    typedef Preflow Create;
alpar@389
   209
kpeter@393
   210
    ///\name Named Template Parameters
alpar@389
   211
alpar@389
   212
    ///@{
alpar@389
   213
kpeter@559
   214
    template <typename T>
alpar@391
   215
    struct SetFlowMapTraits : public Traits {
kpeter@559
   216
      typedef T FlowMap;
alpar@389
   217
      static FlowMap *createFlowMap(const Digraph&) {
alpar@390
   218
        LEMON_ASSERT(false, "FlowMap is not initialized");
alpar@390
   219
        return 0; // ignore warnings
alpar@389
   220
      }
alpar@389
   221
    };
alpar@389
   222
alpar@389
   223
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@389
   224
    /// FlowMap type
alpar@389
   225
    ///
alpar@389
   226
    /// \ref named-templ-param "Named parameter" for setting FlowMap
kpeter@393
   227
    /// type.
kpeter@559
   228
    template <typename T>
alpar@391
   229
    struct SetFlowMap
kpeter@559
   230
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
alpar@389
   231
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   232
                      SetFlowMapTraits<T> > Create;
alpar@389
   233
    };
alpar@389
   234
kpeter@559
   235
    template <typename T>
alpar@391
   236
    struct SetElevatorTraits : public Traits {
kpeter@559
   237
      typedef T Elevator;
alpar@389
   238
      static Elevator *createElevator(const Digraph&, int) {
alpar@390
   239
        LEMON_ASSERT(false, "Elevator is not initialized");
alpar@390
   240
        return 0; // ignore warnings
alpar@389
   241
      }
alpar@389
   242
    };
alpar@389
   243
alpar@389
   244
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@389
   245
    /// Elevator type
alpar@389
   246
    ///
alpar@389
   247
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@393
   248
    /// type. If this named parameter is used, then an external
kpeter@393
   249
    /// elevator object must be passed to the algorithm using the
kpeter@393
   250
    /// \ref elevator(Elevator&) "elevator()" function before calling
kpeter@393
   251
    /// \ref run() or \ref init().
kpeter@393
   252
    /// \sa SetStandardElevator
kpeter@559
   253
    template <typename T>
alpar@391
   254
    struct SetElevator
kpeter@559
   255
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
alpar@389
   256
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   257
                      SetElevatorTraits<T> > Create;
alpar@389
   258
    };
alpar@389
   259
kpeter@559
   260
    template <typename T>
alpar@391
   261
    struct SetStandardElevatorTraits : public Traits {
kpeter@559
   262
      typedef T Elevator;
alpar@389
   263
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
alpar@389
   264
        return new Elevator(digraph, max_level);
alpar@389
   265
      }
alpar@389
   266
    };
alpar@389
   267
alpar@389
   268
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@393
   269
    /// Elevator type with automatic allocation
alpar@389
   270
    ///
alpar@389
   271
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@393
   272
    /// type with automatic allocation.
kpeter@393
   273
    /// The Elevator should have standard constructor interface to be
kpeter@393
   274
    /// able to automatically created by the algorithm (i.e. the
kpeter@393
   275
    /// digraph and the maximum level should be passed to it).
kpeter@786
   276
    /// However, an external elevator object could also be passed to the
kpeter@393
   277
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
kpeter@393
   278
    /// before calling \ref run() or \ref init().
kpeter@393
   279
    /// \sa SetElevator
kpeter@559
   280
    template <typename T>
alpar@391
   281
    struct SetStandardElevator
alpar@389
   282
      : public Preflow<Digraph, CapacityMap,
kpeter@559
   283
                       SetStandardElevatorTraits<T> > {
alpar@389
   284
      typedef Preflow<Digraph, CapacityMap,
kpeter@559
   285
                      SetStandardElevatorTraits<T> > Create;
alpar@389
   286
    };
alpar@389
   287
alpar@389
   288
    /// @}
alpar@389
   289
alpar@389
   290
  protected:
alpar@389
   291
alpar@389
   292
    Preflow() {}
alpar@389
   293
alpar@389
   294
  public:
alpar@389
   295
alpar@389
   296
alpar@389
   297
    /// \brief The constructor of the class.
alpar@389
   298
    ///
alpar@389
   299
    /// The constructor of the class.
alpar@389
   300
    /// \param digraph The digraph the algorithm runs on.
alpar@389
   301
    /// \param capacity The capacity of the arcs.
alpar@389
   302
    /// \param source The source node.
alpar@389
   303
    /// \param target The target node.
alpar@389
   304
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
kpeter@393
   305
            Node source, Node target)
alpar@389
   306
      : _graph(digraph), _capacity(&capacity),
alpar@389
   307
        _node_num(0), _source(source), _target(target),
alpar@389
   308
        _flow(0), _local_flow(false),
alpar@389
   309
        _level(0), _local_level(false),
alpar@389
   310
        _excess(0), _tolerance(), _phase() {}
alpar@389
   311
kpeter@393
   312
    /// \brief Destructor.
alpar@389
   313
    ///
alpar@389
   314
    /// Destructor.
alpar@389
   315
    ~Preflow() {
alpar@389
   316
      destroyStructures();
alpar@389
   317
    }
alpar@389
   318
alpar@389
   319
    /// \brief Sets the capacity map.
alpar@389
   320
    ///
alpar@389
   321
    /// Sets the capacity map.
kpeter@393
   322
    /// \return <tt>(*this)</tt>
alpar@389
   323
    Preflow& capacityMap(const CapacityMap& map) {
alpar@389
   324
      _capacity = &map;
alpar@389
   325
      return *this;
alpar@389
   326
    }
alpar@389
   327
alpar@389
   328
    /// \brief Sets the flow map.
alpar@389
   329
    ///
alpar@389
   330
    /// Sets the flow map.
kpeter@393
   331
    /// If you don't use this function before calling \ref run() or
kpeter@393
   332
    /// \ref init(), an instance will be allocated automatically.
kpeter@393
   333
    /// The destructor deallocates this automatically allocated map,
kpeter@393
   334
    /// of course.
kpeter@393
   335
    /// \return <tt>(*this)</tt>
alpar@389
   336
    Preflow& flowMap(FlowMap& map) {
alpar@389
   337
      if (_local_flow) {
alpar@389
   338
        delete _flow;
alpar@389
   339
        _local_flow = false;
alpar@389
   340
      }
alpar@389
   341
      _flow = &map;
alpar@389
   342
      return *this;
alpar@389
   343
    }
alpar@389
   344
kpeter@393
   345
    /// \brief Sets the source node.
alpar@389
   346
    ///
kpeter@393
   347
    /// Sets the source node.
kpeter@393
   348
    /// \return <tt>(*this)</tt>
kpeter@393
   349
    Preflow& source(const Node& node) {
kpeter@393
   350
      _source = node;
kpeter@393
   351
      return *this;
alpar@389
   352
    }
alpar@389
   353
kpeter@393
   354
    /// \brief Sets the target node.
alpar@389
   355
    ///
kpeter@393
   356
    /// Sets the target node.
kpeter@393
   357
    /// \return <tt>(*this)</tt>
kpeter@393
   358
    Preflow& target(const Node& node) {
kpeter@393
   359
      _target = node;
kpeter@393
   360
      return *this;
kpeter@393
   361
    }
kpeter@393
   362
kpeter@393
   363
    /// \brief Sets the elevator used by algorithm.
kpeter@393
   364
    ///
kpeter@393
   365
    /// Sets the elevator used by algorithm.
kpeter@393
   366
    /// If you don't use this function before calling \ref run() or
kpeter@393
   367
    /// \ref init(), an instance will be allocated automatically.
kpeter@393
   368
    /// The destructor deallocates this automatically allocated elevator,
kpeter@393
   369
    /// of course.
kpeter@393
   370
    /// \return <tt>(*this)</tt>
alpar@389
   371
    Preflow& elevator(Elevator& elevator) {
alpar@389
   372
      if (_local_level) {
alpar@389
   373
        delete _level;
alpar@389
   374
        _local_level = false;
alpar@389
   375
      }
alpar@389
   376
      _level = &elevator;
alpar@389
   377
      return *this;
alpar@389
   378
    }
alpar@389
   379
kpeter@393
   380
    /// \brief Returns a const reference to the elevator.
alpar@389
   381
    ///
kpeter@393
   382
    /// Returns a const reference to the elevator.
kpeter@393
   383
    ///
kpeter@393
   384
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   385
    /// using this function.
kpeter@420
   386
    const Elevator& elevator() const {
alpar@389
   387
      return *_level;
alpar@389
   388
    }
alpar@389
   389
kpeter@689
   390
    /// \brief Sets the tolerance used by the algorithm.
alpar@389
   391
    ///
kpeter@689
   392
    /// Sets the tolerance object used by the algorithm.
kpeter@689
   393
    /// \return <tt>(*this)</tt>
kpeter@688
   394
    Preflow& tolerance(const Tolerance& tolerance) {
alpar@389
   395
      _tolerance = tolerance;
alpar@389
   396
      return *this;
alpar@389
   397
    }
alpar@389
   398
kpeter@393
   399
    /// \brief Returns a const reference to the tolerance.
alpar@389
   400
    ///
kpeter@689
   401
    /// Returns a const reference to the tolerance object used by
kpeter@689
   402
    /// the algorithm.
alpar@389
   403
    const Tolerance& tolerance() const {
kpeter@688
   404
      return _tolerance;
alpar@389
   405
    }
alpar@389
   406
kpeter@393
   407
    /// \name Execution Control
kpeter@393
   408
    /// The simplest way to execute the preflow algorithm is to use
kpeter@393
   409
    /// \ref run() or \ref runMinCut().\n
kpeter@713
   410
    /// If you need better control on the initial solution or the execution,
kpeter@713
   411
    /// you have to call one of the \ref init() functions first, then
kpeter@393
   412
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
alpar@389
   413
alpar@389
   414
    ///@{
alpar@389
   415
alpar@389
   416
    /// \brief Initializes the internal data structures.
alpar@389
   417
    ///
kpeter@393
   418
    /// Initializes the internal data structures and sets the initial
kpeter@393
   419
    /// flow to zero on each arc.
alpar@389
   420
    void init() {
alpar@389
   421
      createStructures();
alpar@389
   422
alpar@389
   423
      _phase = true;
alpar@389
   424
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   425
        (*_excess)[n] = 0;
alpar@389
   426
      }
alpar@389
   427
alpar@389
   428
      for (ArcIt e(_graph); e != INVALID; ++e) {
alpar@389
   429
        _flow->set(e, 0);
alpar@389
   430
      }
alpar@389
   431
alpar@389
   432
      typename Digraph::template NodeMap<bool> reached(_graph, false);
alpar@389
   433
alpar@389
   434
      _level->initStart();
alpar@389
   435
      _level->initAddItem(_target);
alpar@389
   436
alpar@389
   437
      std::vector<Node> queue;
kpeter@581
   438
      reached[_source] = true;
alpar@389
   439
alpar@389
   440
      queue.push_back(_target);
kpeter@581
   441
      reached[_target] = true;
alpar@389
   442
      while (!queue.empty()) {
alpar@389
   443
        _level->initNewLevel();
alpar@389
   444
        std::vector<Node> nqueue;
alpar@389
   445
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   446
          Node n = queue[i];
alpar@389
   447
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   448
            Node u = _graph.source(e);
alpar@389
   449
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
kpeter@581
   450
              reached[u] = true;
alpar@389
   451
              _level->initAddItem(u);
alpar@389
   452
              nqueue.push_back(u);
alpar@389
   453
            }
alpar@389
   454
          }
alpar@389
   455
        }
alpar@389
   456
        queue.swap(nqueue);
alpar@389
   457
      }
alpar@389
   458
      _level->initFinish();
alpar@389
   459
alpar@389
   460
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
alpar@389
   461
        if (_tolerance.positive((*_capacity)[e])) {
alpar@389
   462
          Node u = _graph.target(e);
alpar@389
   463
          if ((*_level)[u] == _level->maxLevel()) continue;
alpar@389
   464
          _flow->set(e, (*_capacity)[e]);
kpeter@581
   465
          (*_excess)[u] += (*_capacity)[e];
alpar@389
   466
          if (u != _target && !_level->active(u)) {
alpar@389
   467
            _level->activate(u);
alpar@389
   468
          }
alpar@389
   469
        }
alpar@389
   470
      }
alpar@389
   471
    }
alpar@389
   472
kpeter@393
   473
    /// \brief Initializes the internal data structures using the
kpeter@393
   474
    /// given flow map.
alpar@389
   475
    ///
alpar@389
   476
    /// Initializes the internal data structures and sets the initial
alpar@389
   477
    /// flow to the given \c flowMap. The \c flowMap should contain a
kpeter@393
   478
    /// flow or at least a preflow, i.e. at each node excluding the
kpeter@393
   479
    /// source node the incoming flow should greater or equal to the
alpar@389
   480
    /// outgoing flow.
kpeter@393
   481
    /// \return \c false if the given \c flowMap is not a preflow.
alpar@389
   482
    template <typename FlowMap>
kpeter@392
   483
    bool init(const FlowMap& flowMap) {
alpar@389
   484
      createStructures();
alpar@389
   485
alpar@389
   486
      for (ArcIt e(_graph); e != INVALID; ++e) {
alpar@389
   487
        _flow->set(e, flowMap[e]);
alpar@389
   488
      }
alpar@389
   489
alpar@389
   490
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@641
   491
        Value excess = 0;
alpar@389
   492
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   493
          excess += (*_flow)[e];
alpar@389
   494
        }
alpar@389
   495
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   496
          excess -= (*_flow)[e];
alpar@389
   497
        }
alpar@389
   498
        if (excess < 0 && n != _source) return false;
kpeter@581
   499
        (*_excess)[n] = excess;
alpar@389
   500
      }
alpar@389
   501
alpar@389
   502
      typename Digraph::template NodeMap<bool> reached(_graph, false);
alpar@389
   503
alpar@389
   504
      _level->initStart();
alpar@389
   505
      _level->initAddItem(_target);
alpar@389
   506
alpar@389
   507
      std::vector<Node> queue;
kpeter@581
   508
      reached[_source] = true;
alpar@389
   509
alpar@389
   510
      queue.push_back(_target);
kpeter@581
   511
      reached[_target] = true;
alpar@389
   512
      while (!queue.empty()) {
alpar@389
   513
        _level->initNewLevel();
alpar@389
   514
        std::vector<Node> nqueue;
alpar@389
   515
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   516
          Node n = queue[i];
alpar@389
   517
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   518
            Node u = _graph.source(e);
alpar@389
   519
            if (!reached[u] &&
alpar@389
   520
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
kpeter@581
   521
              reached[u] = true;
alpar@389
   522
              _level->initAddItem(u);
alpar@389
   523
              nqueue.push_back(u);
alpar@389
   524
            }
alpar@389
   525
          }
alpar@389
   526
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   527
            Node v = _graph.target(e);
alpar@389
   528
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
kpeter@581
   529
              reached[v] = true;
alpar@389
   530
              _level->initAddItem(v);
alpar@389
   531
              nqueue.push_back(v);
alpar@389
   532
            }
alpar@389
   533
          }
alpar@389
   534
        }
alpar@389
   535
        queue.swap(nqueue);
alpar@389
   536
      }
alpar@389
   537
      _level->initFinish();
alpar@389
   538
alpar@389
   539
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
kpeter@641
   540
        Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   541
        if (_tolerance.positive(rem)) {
alpar@389
   542
          Node u = _graph.target(e);
alpar@389
   543
          if ((*_level)[u] == _level->maxLevel()) continue;
alpar@389
   544
          _flow->set(e, (*_capacity)[e]);
kpeter@581
   545
          (*_excess)[u] += rem;
alpar@389
   546
          if (u != _target && !_level->active(u)) {
alpar@389
   547
            _level->activate(u);
alpar@389
   548
          }
alpar@389
   549
        }
alpar@389
   550
      }
alpar@389
   551
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
kpeter@641
   552
        Value rem = (*_flow)[e];
alpar@389
   553
        if (_tolerance.positive(rem)) {
alpar@389
   554
          Node v = _graph.source(e);
alpar@389
   555
          if ((*_level)[v] == _level->maxLevel()) continue;
alpar@389
   556
          _flow->set(e, 0);
kpeter@581
   557
          (*_excess)[v] += rem;
alpar@389
   558
          if (v != _target && !_level->active(v)) {
alpar@389
   559
            _level->activate(v);
alpar@389
   560
          }
alpar@389
   561
        }
alpar@389
   562
      }
alpar@389
   563
      return true;
alpar@389
   564
    }
alpar@389
   565
alpar@389
   566
    /// \brief Starts the first phase of the preflow algorithm.
alpar@389
   567
    ///
alpar@389
   568
    /// The preflow algorithm consists of two phases, this method runs
alpar@389
   569
    /// the first phase. After the first phase the maximum flow value
alpar@389
   570
    /// and a minimum value cut can already be computed, although a
alpar@389
   571
    /// maximum flow is not yet obtained. So after calling this method
alpar@389
   572
    /// \ref flowValue() returns the value of a maximum flow and \ref
alpar@389
   573
    /// minCut() returns a minimum cut.
kpeter@393
   574
    /// \pre One of the \ref init() functions must be called before
kpeter@393
   575
    /// using this function.
alpar@389
   576
    void startFirstPhase() {
alpar@389
   577
      _phase = true;
alpar@389
   578
alpar@389
   579
      Node n = _level->highestActive();
alpar@389
   580
      int level = _level->highestActiveLevel();
alpar@389
   581
      while (n != INVALID) {
alpar@389
   582
        int num = _node_num;
alpar@389
   583
alpar@389
   584
        while (num > 0 && n != INVALID) {
kpeter@641
   585
          Value excess = (*_excess)[n];
alpar@389
   586
          int new_level = _level->maxLevel();
alpar@389
   587
alpar@389
   588
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   589
            Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   590
            if (!_tolerance.positive(rem)) continue;
alpar@389
   591
            Node v = _graph.target(e);
alpar@389
   592
            if ((*_level)[v] < level) {
alpar@389
   593
              if (!_level->active(v) && v != _target) {
alpar@389
   594
                _level->activate(v);
alpar@389
   595
              }
alpar@389
   596
              if (!_tolerance.less(rem, excess)) {
alpar@389
   597
                _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   598
                (*_excess)[v] += excess;
alpar@389
   599
                excess = 0;
alpar@389
   600
                goto no_more_push_1;
alpar@389
   601
              } else {
alpar@389
   602
                excess -= rem;
kpeter@581
   603
                (*_excess)[v] += rem;
alpar@389
   604
                _flow->set(e, (*_capacity)[e]);
alpar@389
   605
              }
alpar@389
   606
            } else if (new_level > (*_level)[v]) {
alpar@389
   607
              new_level = (*_level)[v];
alpar@389
   608
            }
alpar@389
   609
          }
alpar@389
   610
alpar@389
   611
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   612
            Value rem = (*_flow)[e];
alpar@389
   613
            if (!_tolerance.positive(rem)) continue;
alpar@389
   614
            Node v = _graph.source(e);
alpar@389
   615
            if ((*_level)[v] < level) {
alpar@389
   616
              if (!_level->active(v) && v != _target) {
alpar@389
   617
                _level->activate(v);
alpar@389
   618
              }
alpar@389
   619
              if (!_tolerance.less(rem, excess)) {
alpar@389
   620
                _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   621
                (*_excess)[v] += excess;
alpar@389
   622
                excess = 0;
alpar@389
   623
                goto no_more_push_1;
alpar@389
   624
              } else {
alpar@389
   625
                excess -= rem;
kpeter@581
   626
                (*_excess)[v] += rem;
alpar@389
   627
                _flow->set(e, 0);
alpar@389
   628
              }
alpar@389
   629
            } else if (new_level > (*_level)[v]) {
alpar@389
   630
              new_level = (*_level)[v];
alpar@389
   631
            }
alpar@389
   632
          }
alpar@389
   633
alpar@389
   634
        no_more_push_1:
alpar@389
   635
kpeter@581
   636
          (*_excess)[n] = excess;
alpar@389
   637
alpar@389
   638
          if (excess != 0) {
alpar@389
   639
            if (new_level + 1 < _level->maxLevel()) {
alpar@389
   640
              _level->liftHighestActive(new_level + 1);
alpar@389
   641
            } else {
alpar@389
   642
              _level->liftHighestActiveToTop();
alpar@389
   643
            }
alpar@389
   644
            if (_level->emptyLevel(level)) {
alpar@389
   645
              _level->liftToTop(level);
alpar@389
   646
            }
alpar@389
   647
          } else {
alpar@389
   648
            _level->deactivate(n);
alpar@389
   649
          }
alpar@389
   650
alpar@389
   651
          n = _level->highestActive();
alpar@389
   652
          level = _level->highestActiveLevel();
alpar@389
   653
          --num;
alpar@389
   654
        }
alpar@389
   655
alpar@389
   656
        num = _node_num * 20;
alpar@389
   657
        while (num > 0 && n != INVALID) {
kpeter@641
   658
          Value excess = (*_excess)[n];
alpar@389
   659
          int new_level = _level->maxLevel();
alpar@389
   660
alpar@389
   661
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   662
            Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   663
            if (!_tolerance.positive(rem)) continue;
alpar@389
   664
            Node v = _graph.target(e);
alpar@389
   665
            if ((*_level)[v] < level) {
alpar@389
   666
              if (!_level->active(v) && v != _target) {
alpar@389
   667
                _level->activate(v);
alpar@389
   668
              }
alpar@389
   669
              if (!_tolerance.less(rem, excess)) {
alpar@389
   670
                _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   671
                (*_excess)[v] += excess;
alpar@389
   672
                excess = 0;
alpar@389
   673
                goto no_more_push_2;
alpar@389
   674
              } else {
alpar@389
   675
                excess -= rem;
kpeter@581
   676
                (*_excess)[v] += rem;
alpar@389
   677
                _flow->set(e, (*_capacity)[e]);
alpar@389
   678
              }
alpar@389
   679
            } else if (new_level > (*_level)[v]) {
alpar@389
   680
              new_level = (*_level)[v];
alpar@389
   681
            }
alpar@389
   682
          }
alpar@389
   683
alpar@389
   684
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   685
            Value rem = (*_flow)[e];
alpar@389
   686
            if (!_tolerance.positive(rem)) continue;
alpar@389
   687
            Node v = _graph.source(e);
alpar@389
   688
            if ((*_level)[v] < level) {
alpar@389
   689
              if (!_level->active(v) && v != _target) {
alpar@389
   690
                _level->activate(v);
alpar@389
   691
              }
alpar@389
   692
              if (!_tolerance.less(rem, excess)) {
alpar@389
   693
                _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   694
                (*_excess)[v] += excess;
alpar@389
   695
                excess = 0;
alpar@389
   696
                goto no_more_push_2;
alpar@389
   697
              } else {
alpar@389
   698
                excess -= rem;
kpeter@581
   699
                (*_excess)[v] += rem;
alpar@389
   700
                _flow->set(e, 0);
alpar@389
   701
              }
alpar@389
   702
            } else if (new_level > (*_level)[v]) {
alpar@389
   703
              new_level = (*_level)[v];
alpar@389
   704
            }
alpar@389
   705
          }
alpar@389
   706
alpar@389
   707
        no_more_push_2:
alpar@389
   708
kpeter@581
   709
          (*_excess)[n] = excess;
alpar@389
   710
alpar@389
   711
          if (excess != 0) {
alpar@389
   712
            if (new_level + 1 < _level->maxLevel()) {
alpar@389
   713
              _level->liftActiveOn(level, new_level + 1);
alpar@389
   714
            } else {
alpar@389
   715
              _level->liftActiveToTop(level);
alpar@389
   716
            }
alpar@389
   717
            if (_level->emptyLevel(level)) {
alpar@389
   718
              _level->liftToTop(level);
alpar@389
   719
            }
alpar@389
   720
          } else {
alpar@389
   721
            _level->deactivate(n);
alpar@389
   722
          }
alpar@389
   723
alpar@389
   724
          while (level >= 0 && _level->activeFree(level)) {
alpar@389
   725
            --level;
alpar@389
   726
          }
alpar@389
   727
          if (level == -1) {
alpar@389
   728
            n = _level->highestActive();
alpar@389
   729
            level = _level->highestActiveLevel();
alpar@389
   730
          } else {
alpar@389
   731
            n = _level->activeOn(level);
alpar@389
   732
          }
alpar@389
   733
          --num;
alpar@389
   734
        }
alpar@389
   735
      }
alpar@389
   736
    }
alpar@389
   737
alpar@389
   738
    /// \brief Starts the second phase of the preflow algorithm.
alpar@389
   739
    ///
alpar@389
   740
    /// The preflow algorithm consists of two phases, this method runs
kpeter@393
   741
    /// the second phase. After calling one of the \ref init() functions
kpeter@393
   742
    /// and \ref startFirstPhase() and then \ref startSecondPhase(),
kpeter@393
   743
    /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
alpar@389
   744
    /// value of a maximum flow, \ref minCut() returns a minimum cut
kpeter@393
   745
    /// \pre One of the \ref init() functions and \ref startFirstPhase()
kpeter@393
   746
    /// must be called before using this function.
alpar@389
   747
    void startSecondPhase() {
alpar@389
   748
      _phase = false;
alpar@389
   749
alpar@389
   750
      typename Digraph::template NodeMap<bool> reached(_graph);
alpar@389
   751
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   752
        reached[n] = (*_level)[n] < _level->maxLevel();
alpar@389
   753
      }
alpar@389
   754
alpar@389
   755
      _level->initStart();
alpar@389
   756
      _level->initAddItem(_source);
alpar@389
   757
alpar@389
   758
      std::vector<Node> queue;
alpar@389
   759
      queue.push_back(_source);
kpeter@581
   760
      reached[_source] = true;
alpar@389
   761
alpar@389
   762
      while (!queue.empty()) {
alpar@389
   763
        _level->initNewLevel();
alpar@389
   764
        std::vector<Node> nqueue;
alpar@389
   765
        for (int i = 0; i < int(queue.size()); ++i) {
alpar@389
   766
          Node n = queue[i];
alpar@389
   767
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   768
            Node v = _graph.target(e);
alpar@389
   769
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
kpeter@581
   770
              reached[v] = true;
alpar@389
   771
              _level->initAddItem(v);
alpar@389
   772
              nqueue.push_back(v);
alpar@389
   773
            }
alpar@389
   774
          }
alpar@389
   775
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
alpar@389
   776
            Node u = _graph.source(e);
alpar@389
   777
            if (!reached[u] &&
alpar@389
   778
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
kpeter@581
   779
              reached[u] = true;
alpar@389
   780
              _level->initAddItem(u);
alpar@389
   781
              nqueue.push_back(u);
alpar@389
   782
            }
alpar@389
   783
          }
alpar@389
   784
        }
alpar@389
   785
        queue.swap(nqueue);
alpar@389
   786
      }
alpar@389
   787
      _level->initFinish();
alpar@389
   788
alpar@389
   789
      for (NodeIt n(_graph); n != INVALID; ++n) {
alpar@389
   790
        if (!reached[n]) {
alpar@389
   791
          _level->dirtyTopButOne(n);
alpar@389
   792
        } else if ((*_excess)[n] > 0 && _target != n) {
alpar@389
   793
          _level->activate(n);
alpar@389
   794
        }
alpar@389
   795
      }
alpar@389
   796
alpar@389
   797
      Node n;
alpar@389
   798
      while ((n = _level->highestActive()) != INVALID) {
kpeter@641
   799
        Value excess = (*_excess)[n];
alpar@389
   800
        int level = _level->highestActiveLevel();
alpar@389
   801
        int new_level = _level->maxLevel();
alpar@389
   802
alpar@389
   803
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   804
          Value rem = (*_capacity)[e] - (*_flow)[e];
alpar@389
   805
          if (!_tolerance.positive(rem)) continue;
alpar@389
   806
          Node v = _graph.target(e);
alpar@389
   807
          if ((*_level)[v] < level) {
alpar@389
   808
            if (!_level->active(v) && v != _source) {
alpar@389
   809
              _level->activate(v);
alpar@389
   810
            }
alpar@389
   811
            if (!_tolerance.less(rem, excess)) {
alpar@389
   812
              _flow->set(e, (*_flow)[e] + excess);
kpeter@581
   813
              (*_excess)[v] += excess;
alpar@389
   814
              excess = 0;
alpar@389
   815
              goto no_more_push;
alpar@389
   816
            } else {
alpar@389
   817
              excess -= rem;
kpeter@581
   818
              (*_excess)[v] += rem;
alpar@389
   819
              _flow->set(e, (*_capacity)[e]);
alpar@389
   820
            }
alpar@389
   821
          } else if (new_level > (*_level)[v]) {
alpar@389
   822
            new_level = (*_level)[v];
alpar@389
   823
          }
alpar@389
   824
        }
alpar@389
   825
alpar@389
   826
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
kpeter@641
   827
          Value rem = (*_flow)[e];
alpar@389
   828
          if (!_tolerance.positive(rem)) continue;
alpar@389
   829
          Node v = _graph.source(e);
alpar@389
   830
          if ((*_level)[v] < level) {
alpar@389
   831
            if (!_level->active(v) && v != _source) {
alpar@389
   832
              _level->activate(v);
alpar@389
   833
            }
alpar@389
   834
            if (!_tolerance.less(rem, excess)) {
alpar@389
   835
              _flow->set(e, (*_flow)[e] - excess);
kpeter@581
   836
              (*_excess)[v] += excess;
alpar@389
   837
              excess = 0;
alpar@389
   838
              goto no_more_push;
alpar@389
   839
            } else {
alpar@389
   840
              excess -= rem;
kpeter@581
   841
              (*_excess)[v] += rem;
alpar@389
   842
              _flow->set(e, 0);
alpar@389
   843
            }
alpar@389
   844
          } else if (new_level > (*_level)[v]) {
alpar@389
   845
            new_level = (*_level)[v];
alpar@389
   846
          }
alpar@389
   847
        }
alpar@389
   848
alpar@389
   849
      no_more_push:
alpar@389
   850
kpeter@581
   851
        (*_excess)[n] = excess;
alpar@389
   852
alpar@389
   853
        if (excess != 0) {
alpar@389
   854
          if (new_level + 1 < _level->maxLevel()) {
alpar@389
   855
            _level->liftHighestActive(new_level + 1);
alpar@389
   856
          } else {
alpar@389
   857
            // Calculation error
alpar@389
   858
            _level->liftHighestActiveToTop();
alpar@389
   859
          }
alpar@389
   860
          if (_level->emptyLevel(level)) {
alpar@389
   861
            // Calculation error
alpar@389
   862
            _level->liftToTop(level);
alpar@389
   863
          }
alpar@389
   864
        } else {
alpar@389
   865
          _level->deactivate(n);
alpar@389
   866
        }
alpar@389
   867
alpar@389
   868
      }
alpar@389
   869
    }
alpar@389
   870
alpar@389
   871
    /// \brief Runs the preflow algorithm.
alpar@389
   872
    ///
alpar@389
   873
    /// Runs the preflow algorithm.
alpar@389
   874
    /// \note pf.run() is just a shortcut of the following code.
alpar@389
   875
    /// \code
alpar@389
   876
    ///   pf.init();
alpar@389
   877
    ///   pf.startFirstPhase();
alpar@389
   878
    ///   pf.startSecondPhase();
alpar@389
   879
    /// \endcode
alpar@389
   880
    void run() {
alpar@389
   881
      init();
alpar@389
   882
      startFirstPhase();
alpar@389
   883
      startSecondPhase();
alpar@389
   884
    }
alpar@389
   885
alpar@389
   886
    /// \brief Runs the preflow algorithm to compute the minimum cut.
alpar@389
   887
    ///
alpar@389
   888
    /// Runs the preflow algorithm to compute the minimum cut.
alpar@389
   889
    /// \note pf.runMinCut() is just a shortcut of the following code.
alpar@389
   890
    /// \code
alpar@389
   891
    ///   pf.init();
alpar@389
   892
    ///   pf.startFirstPhase();
alpar@389
   893
    /// \endcode
alpar@389
   894
    void runMinCut() {
alpar@389
   895
      init();
alpar@389
   896
      startFirstPhase();
alpar@389
   897
    }
alpar@389
   898
alpar@389
   899
    /// @}
alpar@389
   900
alpar@389
   901
    /// \name Query Functions
kpeter@393
   902
    /// The results of the preflow algorithm can be obtained using these
alpar@389
   903
    /// functions.\n
kpeter@393
   904
    /// Either one of the \ref run() "run*()" functions or one of the
kpeter@393
   905
    /// \ref startFirstPhase() "start*()" functions should be called
kpeter@393
   906
    /// before using them.
alpar@389
   907
alpar@389
   908
    ///@{
alpar@389
   909
alpar@389
   910
    /// \brief Returns the value of the maximum flow.
alpar@389
   911
    ///
alpar@389
   912
    /// Returns the value of the maximum flow by returning the excess
kpeter@393
   913
    /// of the target node. This value equals to the value of
kpeter@393
   914
    /// the maximum flow already after the first phase of the algorithm.
kpeter@393
   915
    ///
kpeter@393
   916
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   917
    /// using this function.
kpeter@641
   918
    Value flowValue() const {
alpar@389
   919
      return (*_excess)[_target];
alpar@389
   920
    }
alpar@389
   921
kpeter@641
   922
    /// \brief Returns the flow value on the given arc.
alpar@389
   923
    ///
kpeter@641
   924
    /// Returns the flow value on the given arc. This method can
kpeter@393
   925
    /// be called after the second phase of the algorithm.
kpeter@393
   926
    ///
kpeter@393
   927
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   928
    /// using this function.
kpeter@641
   929
    Value flow(const Arc& arc) const {
kpeter@393
   930
      return (*_flow)[arc];
kpeter@393
   931
    }
kpeter@393
   932
kpeter@393
   933
    /// \brief Returns a const reference to the flow map.
kpeter@393
   934
    ///
kpeter@393
   935
    /// Returns a const reference to the arc map storing the found flow.
kpeter@393
   936
    /// This method can be called after the second phase of the algorithm.
kpeter@393
   937
    ///
kpeter@393
   938
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   939
    /// using this function.
kpeter@420
   940
    const FlowMap& flowMap() const {
kpeter@393
   941
      return *_flow;
kpeter@393
   942
    }
kpeter@393
   943
kpeter@393
   944
    /// \brief Returns \c true when the node is on the source side of the
kpeter@393
   945
    /// minimum cut.
kpeter@393
   946
    ///
kpeter@393
   947
    /// Returns true when the node is on the source side of the found
kpeter@393
   948
    /// minimum cut. This method can be called both after running \ref
alpar@389
   949
    /// startFirstPhase() and \ref startSecondPhase().
kpeter@393
   950
    ///
kpeter@393
   951
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   952
    /// using this function.
alpar@389
   953
    bool minCut(const Node& node) const {
alpar@389
   954
      return ((*_level)[node] == _level->maxLevel()) == _phase;
alpar@389
   955
    }
alpar@389
   956
kpeter@393
   957
    /// \brief Gives back a minimum value cut.
alpar@389
   958
    ///
kpeter@393
   959
    /// Sets \c cutMap to the characteristic vector of a minimum value
kpeter@393
   960
    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
kpeter@393
   961
    /// node map with \c bool (or convertible) value type.
kpeter@393
   962
    ///
kpeter@393
   963
    /// This method can be called both after running \ref startFirstPhase()
kpeter@393
   964
    /// and \ref startSecondPhase(). The result after the second phase
kpeter@393
   965
    /// could be slightly different if inexact computation is used.
kpeter@393
   966
    ///
kpeter@393
   967
    /// \note This function calls \ref minCut() for each node, so it runs in
kpeter@559
   968
    /// O(n) time.
kpeter@393
   969
    ///
kpeter@393
   970
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@393
   971
    /// using this function.
alpar@389
   972
    template <typename CutMap>
alpar@389
   973
    void minCutMap(CutMap& cutMap) const {
alpar@389
   974
      for (NodeIt n(_graph); n != INVALID; ++n) {
alpar@389
   975
        cutMap.set(n, minCut(n));
alpar@389
   976
      }
alpar@389
   977
    }
alpar@389
   978
alpar@389
   979
    /// @}
alpar@389
   980
  };
alpar@389
   981
}
alpar@389
   982
alpar@389
   983
#endif