lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 08 Apr 2014 16:54:29 +0200
changeset 1001 89e1877e335f
parent 964 7fdaa05a69a1
parent 979 6039b32a2351
child 985 b9887ae63df0
permissions -rw-r--r--
Clang compatibility fix in lgf-gen.cc (#480)
deba@220
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@220
     2
 *
deba@220
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@220
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
deba@220
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@220
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@220
     8
 *
deba@220
     9
 * Permission to use, modify and distribute this software is granted
deba@220
    10
 * provided that this copyright notice appears in all copies. For
deba@220
    11
 * precise terms see the accompanying LICENSE file.
deba@220
    12
 *
deba@220
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@220
    14
 * express or implied, and with no claim as to its suitability for any
deba@220
    15
 * purpose.
deba@220
    16
 *
deba@220
    17
 */
deba@220
    18
deba@220
    19
#ifndef LEMON_CORE_H
deba@220
    20
#define LEMON_CORE_H
deba@220
    21
deba@220
    22
#include <vector>
deba@220
    23
#include <algorithm>
deba@220
    24
ladanyi@501
    25
#include <lemon/config.h>
deba@220
    26
#include <lemon/bits/enable_if.h>
deba@220
    27
#include <lemon/bits/traits.h>
alpar@319
    28
#include <lemon/assert.h>
deba@220
    29
ladanyi@671
    30
// Disable the following warnings when compiling with MSVC:
ladanyi@671
    31
// C4250: 'class1' : inherits 'class2::member' via dominance
ladanyi@671
    32
// C4355: 'this' : used in base member initializer list
ladanyi@671
    33
// C4503: 'function' : decorated name length exceeded, name was truncated
ladanyi@671
    34
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
ladanyi@671
    35
// C4996: 'function': was declared deprecated
ladanyi@671
    36
#ifdef _MSC_VER
ladanyi@671
    37
#pragma warning( disable : 4250 4355 4503 4800 4996 )
ladanyi@671
    38
#endif
ladanyi@671
    39
alpar@975
    40
#ifdef __GNUC__
alpar@979
    41
#define GCC_VERSION (__GNUC__ * 10000                   \
alpar@979
    42
                     + __GNUC_MINOR__ * 100             \
alpar@979
    43
                     + __GNUC_PATCHLEVEL__)
alpar@979
    44
#endif
alpar@979
    45
alpar@979
    46
#if GCC_VERSION >= 40800
alpar@975
    47
// Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
alpar@975
    48
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
alpar@975
    49
#endif
alpar@975
    50
deba@220
    51
///\file
deba@220
    52
///\brief LEMON core utilities.
kpeter@229
    53
///
kpeter@229
    54
///This header file contains core utilities for LEMON.
deba@233
    55
///It is automatically included by all graph types, therefore it usually
kpeter@229
    56
///do not have to be included directly.
deba@220
    57
deba@220
    58
namespace lemon {
deba@220
    59
deba@220
    60
  /// \brief Dummy type to make it easier to create invalid iterators.
deba@220
    61
  ///
deba@220
    62
  /// Dummy type to make it easier to create invalid iterators.
deba@220
    63
  /// See \ref INVALID for the usage.
deba@220
    64
  struct Invalid {
deba@220
    65
  public:
deba@220
    66
    bool operator==(Invalid) { return true;  }
deba@220
    67
    bool operator!=(Invalid) { return false; }
deba@220
    68
    bool operator< (Invalid) { return false; }
deba@220
    69
  };
deba@220
    70
deba@220
    71
  /// \brief Invalid iterators.
deba@220
    72
  ///
deba@220
    73
  /// \ref Invalid is a global type that converts to each iterator
deba@220
    74
  /// in such a way that the value of the target iterator will be invalid.
deba@220
    75
#ifdef LEMON_ONLY_TEMPLATES
deba@220
    76
  const Invalid INVALID = Invalid();
deba@220
    77
#else
deba@220
    78
  extern const Invalid INVALID;
deba@220
    79
#endif
deba@220
    80
deba@220
    81
  /// \addtogroup gutils
deba@220
    82
  /// @{
deba@220
    83
kpeter@300
    84
  ///Create convenience typedefs for the digraph types and iterators
deba@220
    85
kpeter@282
    86
  ///This \c \#define creates convenient type definitions for the following
kpeter@282
    87
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
deba@220
    88
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
deba@220
    89
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
deba@220
    90
  ///
deba@220
    91
  ///\note If the graph type is a dependent type, ie. the graph type depend
deba@220
    92
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
deba@220
    93
  ///macro.
deba@220
    94
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
deba@220
    95
  typedef Digraph::Node Node;                                           \
deba@220
    96
  typedef Digraph::NodeIt NodeIt;                                       \
deba@220
    97
  typedef Digraph::Arc Arc;                                             \
deba@220
    98
  typedef Digraph::ArcIt ArcIt;                                         \
deba@220
    99
  typedef Digraph::InArcIt InArcIt;                                     \
deba@220
   100
  typedef Digraph::OutArcIt OutArcIt;                                   \
deba@220
   101
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
deba@220
   102
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
deba@220
   103
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
deba@220
   104
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
deba@220
   105
  typedef Digraph::ArcMap<int> IntArcMap;                               \
kpeter@300
   106
  typedef Digraph::ArcMap<double> DoubleArcMap
deba@220
   107
kpeter@300
   108
  ///Create convenience typedefs for the digraph types and iterators
deba@220
   109
deba@220
   110
  ///\see DIGRAPH_TYPEDEFS
deba@220
   111
  ///
deba@220
   112
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   113
  ///ie. the graph type depend on a template parameter.
deba@220
   114
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
deba@220
   115
  typedef typename Digraph::Node Node;                                  \
deba@220
   116
  typedef typename Digraph::NodeIt NodeIt;                              \
deba@220
   117
  typedef typename Digraph::Arc Arc;                                    \
deba@220
   118
  typedef typename Digraph::ArcIt ArcIt;                                \
deba@220
   119
  typedef typename Digraph::InArcIt InArcIt;                            \
deba@220
   120
  typedef typename Digraph::OutArcIt OutArcIt;                          \
deba@220
   121
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
deba@220
   122
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
deba@220
   123
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
deba@220
   124
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
deba@220
   125
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
kpeter@300
   126
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
deba@220
   127
kpeter@300
   128
  ///Create convenience typedefs for the graph types and iterators
deba@220
   129
kpeter@282
   130
  ///This \c \#define creates the same convenient type definitions as defined
deba@220
   131
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
deba@220
   132
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
deba@220
   133
  ///\c DoubleEdgeMap.
deba@220
   134
  ///
deba@220
   135
  ///\note If the graph type is a dependent type, ie. the graph type depend
kpeter@282
   136
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
deba@220
   137
  ///macro.
deba@220
   138
#define GRAPH_TYPEDEFS(Graph)                                           \
deba@220
   139
  DIGRAPH_TYPEDEFS(Graph);                                              \
deba@220
   140
  typedef Graph::Edge Edge;                                             \
deba@220
   141
  typedef Graph::EdgeIt EdgeIt;                                         \
deba@220
   142
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
deba@220
   143
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
deba@220
   144
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
kpeter@300
   145
  typedef Graph::EdgeMap<double> DoubleEdgeMap
deba@220
   146
kpeter@300
   147
  ///Create convenience typedefs for the graph types and iterators
deba@220
   148
deba@220
   149
  ///\see GRAPH_TYPEDEFS
deba@220
   150
  ///
deba@220
   151
  ///\note Use this macro, if the graph type is a dependent type,
deba@220
   152
  ///ie. the graph type depend on a template parameter.
deba@220
   153
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
deba@220
   154
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
deba@220
   155
  typedef typename Graph::Edge Edge;                                    \
deba@220
   156
  typedef typename Graph::EdgeIt EdgeIt;                                \
deba@220
   157
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
deba@220
   158
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
deba@220
   159
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
kpeter@300
   160
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
deba@220
   161
kpeter@282
   162
  /// \brief Function to count the items in a graph.
deba@220
   163
  ///
kpeter@282
   164
  /// This function counts the items (nodes, arcs etc.) in a graph.
kpeter@282
   165
  /// The complexity of the function is linear because
deba@220
   166
  /// it iterates on all of the items.
deba@220
   167
  template <typename Graph, typename Item>
deba@220
   168
  inline int countItems(const Graph& g) {
deba@220
   169
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@220
   170
    int num = 0;
deba@220
   171
    for (ItemIt it(g); it != INVALID; ++it) {
deba@220
   172
      ++num;
deba@220
   173
    }
deba@220
   174
    return num;
deba@220
   175
  }
deba@220
   176
deba@220
   177
  // Node counting:
deba@220
   178
deba@220
   179
  namespace _core_bits {
deba@220
   180
deba@220
   181
    template <typename Graph, typename Enable = void>
deba@220
   182
    struct CountNodesSelector {
deba@220
   183
      static int count(const Graph &g) {
deba@220
   184
        return countItems<Graph, typename Graph::Node>(g);
deba@220
   185
      }
deba@220
   186
    };
deba@220
   187
deba@220
   188
    template <typename Graph>
deba@220
   189
    struct CountNodesSelector<
deba@220
   190
      Graph, typename
deba@220
   191
      enable_if<typename Graph::NodeNumTag, void>::type>
deba@220
   192
    {
deba@220
   193
      static int count(const Graph &g) {
deba@220
   194
        return g.nodeNum();
deba@220
   195
      }
deba@220
   196
    };
deba@220
   197
  }
deba@220
   198
deba@220
   199
  /// \brief Function to count the nodes in the graph.
deba@220
   200
  ///
deba@220
   201
  /// This function counts the nodes in the graph.
kpeter@282
   202
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
kpeter@282
   203
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   204
  ///
kpeter@282
   205
  /// \note If the graph contains a \c nodeNum() member function and a
kpeter@282
   206
  /// \c NodeNumTag tag then this function calls directly the member
deba@220
   207
  /// function to query the cardinality of the node set.
deba@220
   208
  template <typename Graph>
deba@220
   209
  inline int countNodes(const Graph& g) {
deba@220
   210
    return _core_bits::CountNodesSelector<Graph>::count(g);
deba@220
   211
  }
deba@220
   212
deba@220
   213
  // Arc counting:
deba@220
   214
deba@220
   215
  namespace _core_bits {
deba@220
   216
deba@220
   217
    template <typename Graph, typename Enable = void>
deba@220
   218
    struct CountArcsSelector {
deba@220
   219
      static int count(const Graph &g) {
deba@220
   220
        return countItems<Graph, typename Graph::Arc>(g);
deba@220
   221
      }
deba@220
   222
    };
deba@220
   223
deba@220
   224
    template <typename Graph>
deba@220
   225
    struct CountArcsSelector<
deba@220
   226
      Graph,
deba@220
   227
      typename enable_if<typename Graph::ArcNumTag, void>::type>
deba@220
   228
    {
deba@220
   229
      static int count(const Graph &g) {
deba@220
   230
        return g.arcNum();
deba@220
   231
      }
deba@220
   232
    };
deba@220
   233
  }
deba@220
   234
deba@220
   235
  /// \brief Function to count the arcs in the graph.
deba@220
   236
  ///
deba@220
   237
  /// This function counts the arcs in the graph.
kpeter@282
   238
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   239
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   240
  ///
kpeter@282
   241
  /// \note If the graph contains a \c arcNum() member function and a
kpeter@282
   242
  /// \c ArcNumTag tag then this function calls directly the member
deba@220
   243
  /// function to query the cardinality of the arc set.
deba@220
   244
  template <typename Graph>
deba@220
   245
  inline int countArcs(const Graph& g) {
deba@220
   246
    return _core_bits::CountArcsSelector<Graph>::count(g);
deba@220
   247
  }
deba@220
   248
deba@220
   249
  // Edge counting:
kpeter@282
   250
deba@220
   251
  namespace _core_bits {
deba@220
   252
deba@220
   253
    template <typename Graph, typename Enable = void>
deba@220
   254
    struct CountEdgesSelector {
deba@220
   255
      static int count(const Graph &g) {
deba@220
   256
        return countItems<Graph, typename Graph::Edge>(g);
deba@220
   257
      }
deba@220
   258
    };
deba@220
   259
deba@220
   260
    template <typename Graph>
deba@220
   261
    struct CountEdgesSelector<
deba@220
   262
      Graph,
deba@220
   263
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
deba@220
   264
    {
deba@220
   265
      static int count(const Graph &g) {
deba@220
   266
        return g.edgeNum();
deba@220
   267
      }
deba@220
   268
    };
deba@220
   269
  }
deba@220
   270
deba@220
   271
  /// \brief Function to count the edges in the graph.
deba@220
   272
  ///
deba@220
   273
  /// This function counts the edges in the graph.
kpeter@282
   274
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
kpeter@282
   275
  /// graph structures it is specialized to run in <em>O</em>(1).
deba@220
   276
  ///
kpeter@282
   277
  /// \note If the graph contains a \c edgeNum() member function and a
kpeter@282
   278
  /// \c EdgeNumTag tag then this function calls directly the member
deba@220
   279
  /// function to query the cardinality of the edge set.
deba@220
   280
  template <typename Graph>
deba@220
   281
  inline int countEdges(const Graph& g) {
deba@220
   282
    return _core_bits::CountEdgesSelector<Graph>::count(g);
deba@220
   283
deba@220
   284
  }
deba@220
   285
deba@220
   286
deba@220
   287
  template <typename Graph, typename DegIt>
deba@220
   288
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
deba@220
   289
    int num = 0;
deba@220
   290
    for (DegIt it(_g, _n); it != INVALID; ++it) {
deba@220
   291
      ++num;
deba@220
   292
    }
deba@220
   293
    return num;
deba@220
   294
  }
deba@220
   295
deba@220
   296
  /// \brief Function to count the number of the out-arcs from node \c n.
deba@220
   297
  ///
deba@220
   298
  /// This function counts the number of the out-arcs from node \c n
kpeter@282
   299
  /// in the graph \c g.
deba@220
   300
  template <typename Graph>
kpeter@282
   301
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   302
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
deba@220
   303
  }
deba@220
   304
deba@220
   305
  /// \brief Function to count the number of the in-arcs to node \c n.
deba@220
   306
  ///
deba@220
   307
  /// This function counts the number of the in-arcs to node \c n
kpeter@282
   308
  /// in the graph \c g.
deba@220
   309
  template <typename Graph>
kpeter@282
   310
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   311
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
deba@220
   312
  }
deba@220
   313
deba@220
   314
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@220
   315
  ///
deba@220
   316
  /// This function counts the number of the inc-edges to node \c n
kpeter@282
   317
  /// in the undirected graph \c g.
deba@220
   318
  template <typename Graph>
kpeter@282
   319
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
kpeter@282
   320
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
deba@220
   321
  }
deba@220
   322
deba@220
   323
  namespace _core_bits {
deba@220
   324
deba@220
   325
    template <typename Digraph, typename Item, typename RefMap>
deba@220
   326
    class MapCopyBase {
deba@220
   327
    public:
deba@220
   328
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
deba@220
   329
deba@220
   330
      virtual ~MapCopyBase() {}
deba@220
   331
    };
deba@220
   332
deba@220
   333
    template <typename Digraph, typename Item, typename RefMap,
kpeter@282
   334
              typename FromMap, typename ToMap>
deba@220
   335
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   336
    public:
deba@220
   337
kpeter@282
   338
      MapCopy(const FromMap& map, ToMap& tmap)
kpeter@282
   339
        : _map(map), _tmap(tmap) {}
deba@220
   340
deba@220
   341
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   342
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   343
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   344
          _tmap.set(refMap[it], _map[it]);
deba@220
   345
        }
deba@220
   346
      }
deba@220
   347
deba@220
   348
    private:
kpeter@282
   349
      const FromMap& _map;
deba@220
   350
      ToMap& _tmap;
deba@220
   351
    };
deba@220
   352
deba@220
   353
    template <typename Digraph, typename Item, typename RefMap, typename It>
deba@220
   354
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   355
    public:
deba@220
   356
kpeter@282
   357
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
deba@220
   358
deba@220
   359
      virtual void copy(const Digraph&, const RefMap& refMap) {
deba@220
   360
        _it = refMap[_item];
deba@220
   361
      }
deba@220
   362
deba@220
   363
    private:
kpeter@282
   364
      Item _item;
deba@220
   365
      It& _it;
deba@220
   366
    };
deba@220
   367
deba@220
   368
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
deba@220
   369
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   370
    public:
deba@220
   371
deba@220
   372
      RefCopy(Ref& map) : _map(map) {}
deba@220
   373
deba@220
   374
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   375
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   376
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   377
          _map.set(it, refMap[it]);
deba@220
   378
        }
deba@220
   379
      }
deba@220
   380
deba@220
   381
    private:
deba@220
   382
      Ref& _map;
deba@220
   383
    };
deba@220
   384
deba@220
   385
    template <typename Digraph, typename Item, typename RefMap,
deba@220
   386
              typename CrossRef>
deba@220
   387
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
deba@220
   388
    public:
deba@220
   389
deba@220
   390
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
deba@220
   391
deba@220
   392
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
deba@220
   393
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
deba@220
   394
        for (ItemIt it(digraph); it != INVALID; ++it) {
deba@220
   395
          _cmap.set(refMap[it], it);
deba@220
   396
        }
deba@220
   397
      }
deba@220
   398
deba@220
   399
    private:
deba@220
   400
      CrossRef& _cmap;
deba@220
   401
    };
deba@220
   402
deba@220
   403
    template <typename Digraph, typename Enable = void>
deba@220
   404
    struct DigraphCopySelector {
deba@220
   405
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   406
      static void copy(const From& from, Digraph &to,
deba@220
   407
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
kpeter@893
   408
        to.clear();
deba@220
   409
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   410
          nodeRefMap[it] = to.addNode();
deba@220
   411
        }
deba@220
   412
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
deba@220
   413
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
deba@220
   414
                                    nodeRefMap[from.target(it)]);
deba@220
   415
        }
deba@220
   416
      }
deba@220
   417
    };
deba@220
   418
deba@220
   419
    template <typename Digraph>
deba@220
   420
    struct DigraphCopySelector<
deba@220
   421
      Digraph,
deba@220
   422
      typename enable_if<typename Digraph::BuildTag, void>::type>
deba@220
   423
    {
deba@220
   424
      template <typename From, typename NodeRefMap, typename ArcRefMap>
kpeter@282
   425
      static void copy(const From& from, Digraph &to,
deba@220
   426
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
deba@220
   427
        to.build(from, nodeRefMap, arcRefMap);
deba@220
   428
      }
deba@220
   429
    };
deba@220
   430
deba@220
   431
    template <typename Graph, typename Enable = void>
deba@220
   432
    struct GraphCopySelector {
deba@220
   433
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   434
      static void copy(const From& from, Graph &to,
deba@220
   435
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
kpeter@893
   436
        to.clear();
deba@220
   437
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
deba@220
   438
          nodeRefMap[it] = to.addNode();
deba@220
   439
        }
deba@220
   440
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
deba@220
   441
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
deba@220
   442
                                      nodeRefMap[from.v(it)]);
deba@220
   443
        }
deba@220
   444
      }
deba@220
   445
    };
deba@220
   446
deba@220
   447
    template <typename Graph>
deba@220
   448
    struct GraphCopySelector<
deba@220
   449
      Graph,
deba@220
   450
      typename enable_if<typename Graph::BuildTag, void>::type>
deba@220
   451
    {
deba@220
   452
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
kpeter@282
   453
      static void copy(const From& from, Graph &to,
deba@220
   454
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
deba@220
   455
        to.build(from, nodeRefMap, edgeRefMap);
deba@220
   456
      }
deba@220
   457
    };
deba@220
   458
deba@220
   459
  }
deba@220
   460
deba@220
   461
  /// \brief Class to copy a digraph.
deba@220
   462
  ///
deba@220
   463
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
kpeter@282
   464
  /// simplest way of using it is through the \c digraphCopy() function.
deba@220
   465
  ///
kpeter@282
   466
  /// This class not only make a copy of a digraph, but it can create
deba@220
   467
  /// references and cross references between the nodes and arcs of
kpeter@282
   468
  /// the two digraphs, and it can copy maps to use with the newly created
kpeter@282
   469
  /// digraph.
deba@220
   470
  ///
kpeter@282
   471
  /// To make a copy from a digraph, first an instance of DigraphCopy
kpeter@282
   472
  /// should be created, then the data belongs to the digraph should
deba@220
   473
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   474
  /// called.
deba@220
   475
  ///
kpeter@282
   476
  /// The next code copies a digraph with several data:
deba@220
   477
  ///\code
kpeter@282
   478
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   479
  ///  // Create references for the nodes
deba@220
   480
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   481
  ///  cg.nodeRef(nr);
kpeter@282
   482
  ///  // Create cross references (inverse) for the arcs
deba@220
   483
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
kpeter@282
   484
  ///  cg.arcCrossRef(acr);
kpeter@282
   485
  ///  // Copy an arc map
deba@220
   486
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
deba@220
   487
  ///  NewGraph::ArcMap<double> namap(new_graph);
kpeter@282
   488
  ///  cg.arcMap(oamap, namap);
kpeter@282
   489
  ///  // Copy a node
deba@220
   490
  ///  OrigGraph::Node on;
deba@220
   491
  ///  NewGraph::Node nn;
kpeter@282
   492
  ///  cg.node(on, nn);
kpeter@282
   493
  ///  // Execute copying
kpeter@282
   494
  ///  cg.run();
deba@220
   495
  ///\endcode
kpeter@282
   496
  template <typename From, typename To>
deba@220
   497
  class DigraphCopy {
deba@220
   498
  private:
deba@220
   499
deba@220
   500
    typedef typename From::Node Node;
deba@220
   501
    typedef typename From::NodeIt NodeIt;
deba@220
   502
    typedef typename From::Arc Arc;
deba@220
   503
    typedef typename From::ArcIt ArcIt;
deba@220
   504
deba@220
   505
    typedef typename To::Node TNode;
deba@220
   506
    typedef typename To::Arc TArc;
deba@220
   507
deba@220
   508
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   509
    typedef typename From::template ArcMap<TArc> ArcRefMap;
deba@220
   510
deba@220
   511
  public:
deba@220
   512
kpeter@282
   513
    /// \brief Constructor of DigraphCopy.
deba@220
   514
    ///
kpeter@282
   515
    /// Constructor of DigraphCopy for copying the content of the
kpeter@282
   516
    /// \c from digraph into the \c to digraph.
kpeter@282
   517
    DigraphCopy(const From& from, To& to)
deba@220
   518
      : _from(from), _to(to) {}
deba@220
   519
kpeter@282
   520
    /// \brief Destructor of DigraphCopy
deba@220
   521
    ///
kpeter@282
   522
    /// Destructor of DigraphCopy.
deba@220
   523
    ~DigraphCopy() {
deba@220
   524
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   525
        delete _node_maps[i];
deba@220
   526
      }
deba@220
   527
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   528
        delete _arc_maps[i];
deba@220
   529
      }
deba@220
   530
deba@220
   531
    }
deba@220
   532
kpeter@282
   533
    /// \brief Copy the node references into the given map.
deba@220
   534
    ///
kpeter@282
   535
    /// This function copies the node references into the given map.
kpeter@282
   536
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   537
    /// the source digraph, while the value type is the Node type of the
kpeter@282
   538
    /// destination digraph.
deba@220
   539
    template <typename NodeRef>
deba@220
   540
    DigraphCopy& nodeRef(NodeRef& map) {
deba@220
   541
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   542
                           NodeRefMap, NodeRef>(map));
deba@220
   543
      return *this;
deba@220
   544
    }
deba@220
   545
kpeter@282
   546
    /// \brief Copy the node cross references into the given map.
deba@220
   547
    ///
kpeter@282
   548
    /// This function copies the node cross references (reverse references)
kpeter@282
   549
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   550
    /// is the Node type of the destination digraph, while the value type is
kpeter@282
   551
    /// the Node type of the source digraph.
deba@220
   552
    template <typename NodeCrossRef>
deba@220
   553
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   554
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   555
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   556
      return *this;
deba@220
   557
    }
deba@220
   558
kpeter@282
   559
    /// \brief Make a copy of the given node map.
deba@220
   560
    ///
kpeter@282
   561
    /// This function makes a copy of the given node map for the newly
kpeter@282
   562
    /// created digraph.
kpeter@282
   563
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   564
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   565
    /// should be the Node type of the source digraph.
kpeter@282
   566
    template <typename FromMap, typename ToMap>
kpeter@282
   567
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   568
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   569
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   570
      return *this;
deba@220
   571
    }
deba@220
   572
deba@220
   573
    /// \brief Make a copy of the given node.
deba@220
   574
    ///
kpeter@282
   575
    /// This function makes a copy of the given node.
kpeter@282
   576
    DigraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   577
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   578
                           NodeRefMap, TNode>(node, tnode));
deba@220
   579
      return *this;
deba@220
   580
    }
deba@220
   581
kpeter@282
   582
    /// \brief Copy the arc references into the given map.
deba@220
   583
    ///
kpeter@282
   584
    /// This function copies the arc references into the given map.
kpeter@282
   585
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   586
    /// the source digraph, while the value type is the Arc type of the
kpeter@282
   587
    /// destination digraph.
deba@220
   588
    template <typename ArcRef>
deba@220
   589
    DigraphCopy& arcRef(ArcRef& map) {
deba@220
   590
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   591
                          ArcRefMap, ArcRef>(map));
deba@220
   592
      return *this;
deba@220
   593
    }
deba@220
   594
kpeter@282
   595
    /// \brief Copy the arc cross references into the given map.
deba@220
   596
    ///
kpeter@282
   597
    /// This function copies the arc cross references (reverse references)
kpeter@282
   598
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   599
    /// is the Arc type of the destination digraph, while the value type is
kpeter@282
   600
    /// the Arc type of the source digraph.
deba@220
   601
    template <typename ArcCrossRef>
deba@220
   602
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   603
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   604
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   605
      return *this;
deba@220
   606
    }
deba@220
   607
kpeter@282
   608
    /// \brief Make a copy of the given arc map.
deba@220
   609
    ///
kpeter@282
   610
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   611
    /// created digraph.
kpeter@282
   612
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   613
    /// destination digraph, and the key type of the original map \c map
kpeter@282
   614
    /// should be the Arc type of the source digraph.
kpeter@282
   615
    template <typename FromMap, typename ToMap>
kpeter@282
   616
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   617
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   618
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   619
      return *this;
deba@220
   620
    }
deba@220
   621
deba@220
   622
    /// \brief Make a copy of the given arc.
deba@220
   623
    ///
kpeter@282
   624
    /// This function makes a copy of the given arc.
kpeter@282
   625
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   626
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   627
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   628
      return *this;
deba@220
   629
    }
deba@220
   630
kpeter@282
   631
    /// \brief Execute copying.
deba@220
   632
    ///
kpeter@282
   633
    /// This function executes the copying of the digraph along with the
kpeter@282
   634
    /// copying of the assigned data.
deba@220
   635
    void run() {
deba@220
   636
      NodeRefMap nodeRefMap(_from);
deba@220
   637
      ArcRefMap arcRefMap(_from);
deba@220
   638
      _core_bits::DigraphCopySelector<To>::
kpeter@282
   639
        copy(_from, _to, nodeRefMap, arcRefMap);
deba@220
   640
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   641
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   642
      }
deba@220
   643
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   644
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   645
      }
deba@220
   646
    }
deba@220
   647
deba@220
   648
  protected:
deba@220
   649
deba@220
   650
    const From& _from;
deba@220
   651
    To& _to;
deba@220
   652
deba@220
   653
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   654
      _node_maps;
deba@220
   655
deba@220
   656
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   657
      _arc_maps;
deba@220
   658
deba@220
   659
  };
deba@220
   660
deba@220
   661
  /// \brief Copy a digraph to another digraph.
deba@220
   662
  ///
kpeter@282
   663
  /// This function copies a digraph to another digraph.
kpeter@282
   664
  /// The complete usage of it is detailed in the DigraphCopy class, but
kpeter@282
   665
  /// a short example shows a basic work:
deba@220
   666
  ///\code
kpeter@282
   667
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
deba@220
   668
  ///\endcode
deba@220
   669
  ///
deba@220
   670
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   671
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
kpeter@282
   672
  /// \c acr will contain the mapping from the arcs of the \c to digraph
deba@220
   673
  /// to the arcs of the \c from digraph.
deba@220
   674
  ///
deba@220
   675
  /// \see DigraphCopy
kpeter@282
   676
  template <typename From, typename To>
kpeter@282
   677
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
kpeter@282
   678
    return DigraphCopy<From, To>(from, to);
deba@220
   679
  }
deba@220
   680
deba@220
   681
  /// \brief Class to copy a graph.
deba@220
   682
  ///
deba@220
   683
  /// Class to copy a graph to another graph (duplicate a graph). The
kpeter@282
   684
  /// simplest way of using it is through the \c graphCopy() function.
deba@220
   685
  ///
kpeter@282
   686
  /// This class not only make a copy of a graph, but it can create
deba@220
   687
  /// references and cross references between the nodes, edges and arcs of
kpeter@282
   688
  /// the two graphs, and it can copy maps for using with the newly created
kpeter@282
   689
  /// graph.
deba@220
   690
  ///
deba@220
   691
  /// To make a copy from a graph, first an instance of GraphCopy
deba@220
   692
  /// should be created, then the data belongs to the graph should
deba@220
   693
  /// assigned to copy. In the end, the \c run() member should be
deba@220
   694
  /// called.
deba@220
   695
  ///
deba@220
   696
  /// The next code copies a graph with several data:
deba@220
   697
  ///\code
kpeter@282
   698
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
kpeter@282
   699
  ///  // Create references for the nodes
deba@220
   700
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
kpeter@282
   701
  ///  cg.nodeRef(nr);
kpeter@282
   702
  ///  // Create cross references (inverse) for the edges
kpeter@282
   703
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
kpeter@282
   704
  ///  cg.edgeCrossRef(ecr);
kpeter@282
   705
  ///  // Copy an edge map
kpeter@282
   706
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
kpeter@282
   707
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
kpeter@282
   708
  ///  cg.edgeMap(oemap, nemap);
kpeter@282
   709
  ///  // Copy a node
deba@220
   710
  ///  OrigGraph::Node on;
deba@220
   711
  ///  NewGraph::Node nn;
kpeter@282
   712
  ///  cg.node(on, nn);
kpeter@282
   713
  ///  // Execute copying
kpeter@282
   714
  ///  cg.run();
deba@220
   715
  ///\endcode
kpeter@282
   716
  template <typename From, typename To>
deba@220
   717
  class GraphCopy {
deba@220
   718
  private:
deba@220
   719
deba@220
   720
    typedef typename From::Node Node;
deba@220
   721
    typedef typename From::NodeIt NodeIt;
deba@220
   722
    typedef typename From::Arc Arc;
deba@220
   723
    typedef typename From::ArcIt ArcIt;
deba@220
   724
    typedef typename From::Edge Edge;
deba@220
   725
    typedef typename From::EdgeIt EdgeIt;
deba@220
   726
deba@220
   727
    typedef typename To::Node TNode;
deba@220
   728
    typedef typename To::Arc TArc;
deba@220
   729
    typedef typename To::Edge TEdge;
deba@220
   730
deba@220
   731
    typedef typename From::template NodeMap<TNode> NodeRefMap;
deba@220
   732
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
deba@220
   733
deba@220
   734
    struct ArcRefMap {
kpeter@282
   735
      ArcRefMap(const From& from, const To& to,
deba@220
   736
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
kpeter@282
   737
        : _from(from), _to(to),
deba@220
   738
          _edge_ref(edge_ref), _node_ref(node_ref) {}
deba@220
   739
deba@220
   740
      typedef typename From::Arc Key;
deba@220
   741
      typedef typename To::Arc Value;
deba@220
   742
deba@220
   743
      Value operator[](const Key& key) const {
deba@220
   744
        bool forward = _from.u(key) != _from.v(key) ?
deba@220
   745
          _node_ref[_from.source(key)] ==
deba@220
   746
          _to.source(_to.direct(_edge_ref[key], true)) :
deba@220
   747
          _from.direction(key);
deba@220
   748
        return _to.direct(_edge_ref[key], forward);
deba@220
   749
      }
deba@220
   750
kpeter@282
   751
      const From& _from;
deba@220
   752
      const To& _to;
deba@220
   753
      const EdgeRefMap& _edge_ref;
deba@220
   754
      const NodeRefMap& _node_ref;
deba@220
   755
    };
deba@220
   756
deba@220
   757
  public:
deba@220
   758
kpeter@282
   759
    /// \brief Constructor of GraphCopy.
deba@220
   760
    ///
kpeter@282
   761
    /// Constructor of GraphCopy for copying the content of the
kpeter@282
   762
    /// \c from graph into the \c to graph.
kpeter@282
   763
    GraphCopy(const From& from, To& to)
deba@220
   764
      : _from(from), _to(to) {}
deba@220
   765
kpeter@282
   766
    /// \brief Destructor of GraphCopy
deba@220
   767
    ///
kpeter@282
   768
    /// Destructor of GraphCopy.
deba@220
   769
    ~GraphCopy() {
deba@220
   770
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   771
        delete _node_maps[i];
deba@220
   772
      }
deba@220
   773
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   774
        delete _arc_maps[i];
deba@220
   775
      }
deba@220
   776
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   777
        delete _edge_maps[i];
deba@220
   778
      }
deba@220
   779
    }
deba@220
   780
kpeter@282
   781
    /// \brief Copy the node references into the given map.
deba@220
   782
    ///
kpeter@282
   783
    /// This function copies the node references into the given map.
kpeter@282
   784
    /// The parameter should be a map, whose key type is the Node type of
kpeter@282
   785
    /// the source graph, while the value type is the Node type of the
kpeter@282
   786
    /// destination graph.
deba@220
   787
    template <typename NodeRef>
deba@220
   788
    GraphCopy& nodeRef(NodeRef& map) {
deba@220
   789
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
deba@220
   790
                           NodeRefMap, NodeRef>(map));
deba@220
   791
      return *this;
deba@220
   792
    }
deba@220
   793
kpeter@282
   794
    /// \brief Copy the node cross references into the given map.
deba@220
   795
    ///
kpeter@282
   796
    /// This function copies the node cross references (reverse references)
kpeter@282
   797
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   798
    /// is the Node type of the destination graph, while the value type is
kpeter@282
   799
    /// the Node type of the source graph.
deba@220
   800
    template <typename NodeCrossRef>
deba@220
   801
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@220
   802
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
deba@220
   803
                           NodeRefMap, NodeCrossRef>(map));
deba@220
   804
      return *this;
deba@220
   805
    }
deba@220
   806
kpeter@282
   807
    /// \brief Make a copy of the given node map.
deba@220
   808
    ///
kpeter@282
   809
    /// This function makes a copy of the given node map for the newly
kpeter@282
   810
    /// created graph.
kpeter@282
   811
    /// The key type of the new map \c tmap should be the Node type of the
kpeter@282
   812
    /// destination graph, and the key type of the original map \c map
kpeter@282
   813
    /// should be the Node type of the source graph.
kpeter@282
   814
    template <typename FromMap, typename ToMap>
kpeter@282
   815
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
deba@220
   816
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
kpeter@282
   817
                           NodeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   818
      return *this;
deba@220
   819
    }
deba@220
   820
deba@220
   821
    /// \brief Make a copy of the given node.
deba@220
   822
    ///
kpeter@282
   823
    /// This function makes a copy of the given node.
kpeter@282
   824
    GraphCopy& node(const Node& node, TNode& tnode) {
deba@220
   825
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
kpeter@282
   826
                           NodeRefMap, TNode>(node, tnode));
deba@220
   827
      return *this;
deba@220
   828
    }
deba@220
   829
kpeter@282
   830
    /// \brief Copy the arc references into the given map.
deba@220
   831
    ///
kpeter@282
   832
    /// This function copies the arc references into the given map.
kpeter@282
   833
    /// The parameter should be a map, whose key type is the Arc type of
kpeter@282
   834
    /// the source graph, while the value type is the Arc type of the
kpeter@282
   835
    /// destination graph.
deba@220
   836
    template <typename ArcRef>
deba@220
   837
    GraphCopy& arcRef(ArcRef& map) {
deba@220
   838
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
deba@220
   839
                          ArcRefMap, ArcRef>(map));
deba@220
   840
      return *this;
deba@220
   841
    }
deba@220
   842
kpeter@282
   843
    /// \brief Copy the arc cross references into the given map.
deba@220
   844
    ///
kpeter@282
   845
    /// This function copies the arc cross references (reverse references)
kpeter@282
   846
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   847
    /// is the Arc type of the destination graph, while the value type is
kpeter@282
   848
    /// the Arc type of the source graph.
deba@220
   849
    template <typename ArcCrossRef>
deba@220
   850
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
deba@220
   851
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
deba@220
   852
                          ArcRefMap, ArcCrossRef>(map));
deba@220
   853
      return *this;
deba@220
   854
    }
deba@220
   855
kpeter@282
   856
    /// \brief Make a copy of the given arc map.
deba@220
   857
    ///
kpeter@282
   858
    /// This function makes a copy of the given arc map for the newly
kpeter@282
   859
    /// created graph.
kpeter@282
   860
    /// The key type of the new map \c tmap should be the Arc type of the
kpeter@282
   861
    /// destination graph, and the key type of the original map \c map
kpeter@282
   862
    /// should be the Arc type of the source graph.
kpeter@282
   863
    template <typename FromMap, typename ToMap>
kpeter@282
   864
    GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
deba@220
   865
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
kpeter@282
   866
                          ArcRefMap, FromMap, ToMap>(map, tmap));
deba@220
   867
      return *this;
deba@220
   868
    }
deba@220
   869
deba@220
   870
    /// \brief Make a copy of the given arc.
deba@220
   871
    ///
kpeter@282
   872
    /// This function makes a copy of the given arc.
kpeter@282
   873
    GraphCopy& arc(const Arc& arc, TArc& tarc) {
deba@220
   874
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
kpeter@282
   875
                          ArcRefMap, TArc>(arc, tarc));
deba@220
   876
      return *this;
deba@220
   877
    }
deba@220
   878
kpeter@282
   879
    /// \brief Copy the edge references into the given map.
deba@220
   880
    ///
kpeter@282
   881
    /// This function copies the edge references into the given map.
kpeter@282
   882
    /// The parameter should be a map, whose key type is the Edge type of
kpeter@282
   883
    /// the source graph, while the value type is the Edge type of the
kpeter@282
   884
    /// destination graph.
deba@220
   885
    template <typename EdgeRef>
deba@220
   886
    GraphCopy& edgeRef(EdgeRef& map) {
deba@220
   887
      _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
deba@220
   888
                           EdgeRefMap, EdgeRef>(map));
deba@220
   889
      return *this;
deba@220
   890
    }
deba@220
   891
kpeter@282
   892
    /// \brief Copy the edge cross references into the given map.
deba@220
   893
    ///
kpeter@282
   894
    /// This function copies the edge cross references (reverse references)
kpeter@282
   895
    /// into the given map. The parameter should be a map, whose key type
kpeter@282
   896
    /// is the Edge type of the destination graph, while the value type is
kpeter@282
   897
    /// the Edge type of the source graph.
deba@220
   898
    template <typename EdgeCrossRef>
deba@220
   899
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@220
   900
      _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
deba@220
   901
                           Edge, EdgeRefMap, EdgeCrossRef>(map));
deba@220
   902
      return *this;
deba@220
   903
    }
deba@220
   904
kpeter@282
   905
    /// \brief Make a copy of the given edge map.
deba@220
   906
    ///
kpeter@282
   907
    /// This function makes a copy of the given edge map for the newly
kpeter@282
   908
    /// created graph.
kpeter@282
   909
    /// The key type of the new map \c tmap should be the Edge type of the
kpeter@282
   910
    /// destination graph, and the key type of the original map \c map
kpeter@282
   911
    /// should be the Edge type of the source graph.
kpeter@282
   912
    template <typename FromMap, typename ToMap>
kpeter@282
   913
    GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
deba@220
   914
      _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
kpeter@282
   915
                           EdgeRefMap, FromMap, ToMap>(map, tmap));
deba@220
   916
      return *this;
deba@220
   917
    }
deba@220
   918
deba@220
   919
    /// \brief Make a copy of the given edge.
deba@220
   920
    ///
kpeter@282
   921
    /// This function makes a copy of the given edge.
kpeter@282
   922
    GraphCopy& edge(const Edge& edge, TEdge& tedge) {
deba@220
   923
      _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
kpeter@282
   924
                           EdgeRefMap, TEdge>(edge, tedge));
deba@220
   925
      return *this;
deba@220
   926
    }
deba@220
   927
kpeter@282
   928
    /// \brief Execute copying.
deba@220
   929
    ///
kpeter@282
   930
    /// This function executes the copying of the graph along with the
kpeter@282
   931
    /// copying of the assigned data.
deba@220
   932
    void run() {
deba@220
   933
      NodeRefMap nodeRefMap(_from);
deba@220
   934
      EdgeRefMap edgeRefMap(_from);
kpeter@282
   935
      ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
deba@220
   936
      _core_bits::GraphCopySelector<To>::
kpeter@282
   937
        copy(_from, _to, nodeRefMap, edgeRefMap);
deba@220
   938
      for (int i = 0; i < int(_node_maps.size()); ++i) {
deba@220
   939
        _node_maps[i]->copy(_from, nodeRefMap);
deba@220
   940
      }
deba@220
   941
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
deba@220
   942
        _edge_maps[i]->copy(_from, edgeRefMap);
deba@220
   943
      }
deba@220
   944
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
deba@220
   945
        _arc_maps[i]->copy(_from, arcRefMap);
deba@220
   946
      }
deba@220
   947
    }
deba@220
   948
deba@220
   949
  private:
deba@220
   950
deba@220
   951
    const From& _from;
deba@220
   952
    To& _to;
deba@220
   953
deba@220
   954
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
kpeter@282
   955
      _node_maps;
deba@220
   956
deba@220
   957
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
kpeter@282
   958
      _arc_maps;
deba@220
   959
deba@220
   960
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
kpeter@282
   961
      _edge_maps;
deba@220
   962
deba@220
   963
  };
deba@220
   964
deba@220
   965
  /// \brief Copy a graph to another graph.
deba@220
   966
  ///
kpeter@282
   967
  /// This function copies a graph to another graph.
kpeter@282
   968
  /// The complete usage of it is detailed in the GraphCopy class,
kpeter@282
   969
  /// but a short example shows a basic work:
deba@220
   970
  ///\code
kpeter@282
   971
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
deba@220
   972
  ///\endcode
deba@220
   973
  ///
deba@220
   974
  /// After the copy the \c nr map will contain the mapping from the
deba@220
   975
  /// nodes of the \c from graph to the nodes of the \c to graph and
kpeter@282
   976
  /// \c ecr will contain the mapping from the edges of the \c to graph
kpeter@282
   977
  /// to the edges of the \c from graph.
deba@220
   978
  ///
deba@220
   979
  /// \see GraphCopy
kpeter@282
   980
  template <typename From, typename To>
kpeter@282
   981
  GraphCopy<From, To>
kpeter@282
   982
  graphCopy(const From& from, To& to) {
kpeter@282
   983
    return GraphCopy<From, To>(from, to);
deba@220
   984
  }
deba@220
   985
deba@220
   986
  namespace _core_bits {
deba@220
   987
deba@220
   988
    template <typename Graph, typename Enable = void>
deba@220
   989
    struct FindArcSelector {
deba@220
   990
      typedef typename Graph::Node Node;
deba@220
   991
      typedef typename Graph::Arc Arc;
deba@220
   992
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
deba@220
   993
        if (e == INVALID) {
deba@220
   994
          g.firstOut(e, u);
deba@220
   995
        } else {
deba@220
   996
          g.nextOut(e);
deba@220
   997
        }
deba@220
   998
        while (e != INVALID && g.target(e) != v) {
deba@220
   999
          g.nextOut(e);
deba@220
  1000
        }
deba@220
  1001
        return e;
deba@220
  1002
      }
deba@220
  1003
    };
deba@220
  1004
deba@220
  1005
    template <typename Graph>
deba@220
  1006
    struct FindArcSelector<
deba@220
  1007
      Graph,
kpeter@282
  1008
      typename enable_if<typename Graph::FindArcTag, void>::type>
deba@220
  1009
    {
deba@220
  1010
      typedef typename Graph::Node Node;
deba@220
  1011
      typedef typename Graph::Arc Arc;
deba@220
  1012
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
deba@220
  1013
        return g.findArc(u, v, prev);
deba@220
  1014
      }
deba@220
  1015
    };
deba@220
  1016
  }
deba@220
  1017
kpeter@282
  1018
  /// \brief Find an arc between two nodes of a digraph.
deba@220
  1019
  ///
kpeter@282
  1020
  /// This function finds an arc from node \c u to node \c v in the
kpeter@282
  1021
  /// digraph \c g.
deba@220
  1022
  ///
deba@220
  1023
  /// If \c prev is \ref INVALID (this is the default value), then
deba@220
  1024
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
deba@220
  1025
  /// the next arc from \c u to \c v after \c prev.
deba@220
  1026
  /// \return The found arc or \ref INVALID if there is no such an arc.
deba@220
  1027
  ///
deba@220
  1028
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
deba@220
  1029
  ///\code
kpeter@282
  1030
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
deba@220
  1031
  ///   ...
deba@220
  1032
  /// }
deba@220
  1033
  ///\endcode
deba@220
  1034
  ///
kpeter@282
  1035
  /// \note \ref ConArcIt provides iterator interface for the same
kpeter@282
  1036
  /// functionality.
kpeter@282
  1037
  ///
deba@220
  1038
  ///\sa ConArcIt
kpeter@282
  1039
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
deba@220
  1040
  template <typename Graph>
deba@220
  1041
  inline typename Graph::Arc
deba@220
  1042
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1043
          typename Graph::Arc prev = INVALID) {
deba@220
  1044
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
deba@220
  1045
  }
deba@220
  1046
kpeter@282
  1047
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
deba@220
  1048
  ///
kpeter@282
  1049
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
kpeter@282
  1050
  /// a higher level interface for the \ref findArc() function. You can
deba@220
  1051
  /// use it the following way:
deba@220
  1052
  ///\code
deba@220
  1053
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@220
  1054
  ///   ...
deba@220
  1055
  /// }
deba@220
  1056
  ///\endcode
deba@220
  1057
  ///
deba@220
  1058
  ///\sa findArc()
kpeter@282
  1059
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
kpeter@559
  1060
  template <typename GR>
kpeter@559
  1061
  class ConArcIt : public GR::Arc {
kpeter@617
  1062
    typedef typename GR::Arc Parent;
kpeter@617
  1063
deba@220
  1064
  public:
deba@220
  1065
kpeter@617
  1066
    typedef typename GR::Arc Arc;
kpeter@617
  1067
    typedef typename GR::Node Node;
deba@220
  1068
deba@220
  1069
    /// \brief Constructor.
deba@220
  1070
    ///
kpeter@282
  1071
    /// Construct a new ConArcIt iterating on the arcs that
kpeter@282
  1072
    /// connects nodes \c u and \c v.
kpeter@617
  1073
    ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
deba@220
  1074
      Parent::operator=(findArc(_graph, u, v));
deba@220
  1075
    }
deba@220
  1076
deba@220
  1077
    /// \brief Constructor.
deba@220
  1078
    ///
kpeter@282
  1079
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
kpeter@617
  1080
    ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
deba@220
  1081
deba@220
  1082
    /// \brief Increment operator.
deba@220
  1083
    ///
deba@220
  1084
    /// It increments the iterator and gives back the next arc.
deba@220
  1085
    ConArcIt& operator++() {
deba@220
  1086
      Parent::operator=(findArc(_graph, _graph.source(*this),
deba@220
  1087
                                _graph.target(*this), *this));
deba@220
  1088
      return *this;
deba@220
  1089
    }
deba@220
  1090
  private:
kpeter@617
  1091
    const GR& _graph;
deba@220
  1092
  };
deba@220
  1093
deba@220
  1094
  namespace _core_bits {
deba@220
  1095
deba@220
  1096
    template <typename Graph, typename Enable = void>
deba@220
  1097
    struct FindEdgeSelector {
deba@220
  1098
      typedef typename Graph::Node Node;
deba@220
  1099
      typedef typename Graph::Edge Edge;
deba@220
  1100
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
deba@220
  1101
        bool b;
deba@220
  1102
        if (u != v) {
deba@220
  1103
          if (e == INVALID) {
deba@220
  1104
            g.firstInc(e, b, u);
deba@220
  1105
          } else {
deba@220
  1106
            b = g.u(e) == u;
deba@220
  1107
            g.nextInc(e, b);
deba@220
  1108
          }
deba@220
  1109
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
deba@220
  1110
            g.nextInc(e, b);
deba@220
  1111
          }
deba@220
  1112
        } else {
deba@220
  1113
          if (e == INVALID) {
deba@220
  1114
            g.firstInc(e, b, u);
deba@220
  1115
          } else {
deba@220
  1116
            b = true;
deba@220
  1117
            g.nextInc(e, b);
deba@220
  1118
          }
deba@220
  1119
          while (e != INVALID && (!b || g.v(e) != v)) {
deba@220
  1120
            g.nextInc(e, b);
deba@220
  1121
          }
deba@220
  1122
        }
deba@220
  1123
        return e;
deba@220
  1124
      }
deba@220
  1125
    };
deba@220
  1126
deba@220
  1127
    template <typename Graph>
deba@220
  1128
    struct FindEdgeSelector<
deba@220
  1129
      Graph,
deba@220
  1130
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
deba@220
  1131
    {
deba@220
  1132
      typedef typename Graph::Node Node;
deba@220
  1133
      typedef typename Graph::Edge Edge;
deba@220
  1134
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
deba@220
  1135
        return g.findEdge(u, v, prev);
deba@220
  1136
      }
deba@220
  1137
    };
deba@220
  1138
  }
deba@220
  1139
kpeter@282
  1140
  /// \brief Find an edge between two nodes of a graph.
deba@220
  1141
  ///
kpeter@282
  1142
  /// This function finds an edge from node \c u to node \c v in graph \c g.
kpeter@282
  1143
  /// If node \c u and node \c v is equal then each loop edge
deba@220
  1144
  /// will be enumerated once.
deba@220
  1145
  ///
deba@220
  1146
  /// If \c prev is \ref INVALID (this is the default value), then
kpeter@282
  1147
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
kpeter@282
  1148
  /// the next edge from \c u to \c v after \c prev.
kpeter@282
  1149
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@220
  1150
  ///
kpeter@282
  1151
  /// Thus you can iterate through each edge between \c u and \c v
kpeter@282
  1152
  /// as it follows.
deba@220
  1153
  ///\code
kpeter@282
  1154
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
deba@220
  1155
  ///   ...
deba@220
  1156
  /// }
deba@220
  1157
  ///\endcode
deba@220
  1158
  ///
kpeter@282
  1159
  /// \note \ref ConEdgeIt provides iterator interface for the same
kpeter@282
  1160
  /// functionality.
kpeter@282
  1161
  ///
deba@220
  1162
  ///\sa ConEdgeIt
deba@220
  1163
  template <typename Graph>
deba@220
  1164
  inline typename Graph::Edge
deba@220
  1165
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@220
  1166
            typename Graph::Edge p = INVALID) {
deba@220
  1167
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
deba@220
  1168
  }
deba@220
  1169
kpeter@282
  1170
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
deba@220
  1171
  ///
kpeter@282
  1172
  /// Iterator for iterating on parallel edges connecting the same nodes.
kpeter@282
  1173
  /// It is a higher level interface for the findEdge() function. You can
deba@220
  1174
  /// use it the following way:
deba@220
  1175
  ///\code
kpeter@282
  1176
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
deba@220
  1177
  ///   ...
deba@220
  1178
  /// }
deba@220
  1179
  ///\endcode
deba@220
  1180
  ///
deba@220
  1181
  ///\sa findEdge()
kpeter@559
  1182
  template <typename GR>
kpeter@559
  1183
  class ConEdgeIt : public GR::Edge {
kpeter@617
  1184
    typedef typename GR::Edge Parent;
kpeter@617
  1185
deba@220
  1186
  public:
deba@220
  1187
kpeter@617
  1188
    typedef typename GR::Edge Edge;
kpeter@617
  1189
    typedef typename GR::Node Node;
deba@220
  1190
deba@220
  1191
    /// \brief Constructor.
deba@220
  1192
    ///
kpeter@282
  1193
    /// Construct a new ConEdgeIt iterating on the edges that
kpeter@282
  1194
    /// connects nodes \c u and \c v.
kpeter@617
  1195
    ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
kpeter@429
  1196
      Parent::operator=(findEdge(_graph, _u, _v));
deba@220
  1197
    }
deba@220
  1198
deba@220
  1199
    /// \brief Constructor.
deba@220
  1200
    ///
kpeter@282
  1201
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
kpeter@617
  1202
    ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
deba@220
  1203
deba@220
  1204
    /// \brief Increment operator.
deba@220
  1205
    ///
deba@220
  1206
    /// It increments the iterator and gives back the next edge.
deba@220
  1207
    ConEdgeIt& operator++() {
kpeter@429
  1208
      Parent::operator=(findEdge(_graph, _u, _v, *this));
deba@220
  1209
      return *this;
deba@220
  1210
    }
deba@220
  1211
  private:
kpeter@617
  1212
    const GR& _graph;
kpeter@429
  1213
    Node _u, _v;
deba@220
  1214
  };
deba@220
  1215
deba@220
  1216
kpeter@282
  1217
  ///Dynamic arc look-up between given endpoints.
deba@220
  1218
deba@220
  1219
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1220
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
deba@220
  1221
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1222
  ///
deba@220
  1223
  ///It is possible to find \e all parallel arcs between two nodes with
deba@233
  1224
  ///the \c operator() member.
deba@220
  1225
  ///
kpeter@282
  1226
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
kpeter@282
  1227
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
deba@220
  1228
  ///
kpeter@282
  1229
  ///This class uses a self-adjusting binary search tree, the Splay tree
kpeter@282
  1230
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
kpeter@282
  1231
  ///time bound for arc look-ups. This class also guarantees the
deba@220
  1232
  ///optimal time bound in a constant factor for any distribution of
deba@220
  1233
  ///queries.
deba@220
  1234
  ///
kpeter@559
  1235
  ///\tparam GR The type of the underlying digraph.
deba@220
  1236
  ///
deba@220
  1237
  ///\sa ArcLookUp
deba@220
  1238
  ///\sa AllArcLookUp
kpeter@559
  1239
  template <typename GR>
deba@220
  1240
  class DynArcLookUp
kpeter@559
  1241
    : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
deba@220
  1242
  {
kpeter@559
  1243
    typedef typename ItemSetTraits<GR, typename GR::Arc>
deba@220
  1244
    ::ItemNotifier::ObserverBase Parent;
deba@220
  1245
kpeter@559
  1246
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@617
  1247
kpeter@617
  1248
  public:
kpeter@617
  1249
kpeter@617
  1250
    /// The Digraph type
kpeter@559
  1251
    typedef GR Digraph;
deba@220
  1252
deba@220
  1253
  protected:
deba@220
  1254
alpar@877
  1255
    class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
alpar@877
  1256
    {
kpeter@617
  1257
      typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
kpeter@617
  1258
deba@220
  1259
    public:
deba@220
  1260
kpeter@559
  1261
      AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
deba@220
  1262
deba@220
  1263
      virtual void add(const Node& node) {
deba@220
  1264
        Parent::add(node);
deba@220
  1265
        Parent::set(node, INVALID);
deba@220
  1266
      }
deba@220
  1267
deba@220
  1268
      virtual void add(const std::vector<Node>& nodes) {
deba@220
  1269
        Parent::add(nodes);
deba@220
  1270
        for (int i = 0; i < int(nodes.size()); ++i) {
deba@220
  1271
          Parent::set(nodes[i], INVALID);
deba@220
  1272
        }
deba@220
  1273
      }
deba@220
  1274
deba@220
  1275
      virtual void build() {
deba@220
  1276
        Parent::build();
deba@220
  1277
        Node it;
deba@220
  1278
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  1279
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  1280
          Parent::set(it, INVALID);
deba@220
  1281
        }
deba@220
  1282
      }
deba@220
  1283
    };
deba@220
  1284
deba@220
  1285
    class ArcLess {
deba@220
  1286
      const Digraph &g;
deba@220
  1287
    public:
deba@220
  1288
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1289
      bool operator()(Arc a,Arc b) const
deba@220
  1290
      {
deba@220
  1291
        return g.target(a)<g.target(b);
deba@220
  1292
      }
deba@220
  1293
    };
deba@220
  1294
alpar@877
  1295
  protected:
kpeter@617
  1296
kpeter@617
  1297
    const Digraph &_g;
kpeter@617
  1298
    AutoNodeMap _head;
kpeter@617
  1299
    typename Digraph::template ArcMap<Arc> _parent;
kpeter@617
  1300
    typename Digraph::template ArcMap<Arc> _left;
kpeter@617
  1301
    typename Digraph::template ArcMap<Arc> _right;
kpeter@617
  1302
deba@220
  1303
  public:
deba@220
  1304
deba@220
  1305
    ///Constructor
deba@220
  1306
deba@220
  1307
    ///Constructor.
deba@220
  1308
    ///
deba@220
  1309
    ///It builds up the search database.
deba@220
  1310
    DynArcLookUp(const Digraph &g)
deba@220
  1311
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
deba@220
  1312
    {
deba@220
  1313
      Parent::attach(_g.notifier(typename Digraph::Arc()));
deba@220
  1314
      refresh();
deba@220
  1315
    }
deba@220
  1316
deba@220
  1317
  protected:
deba@220
  1318
deba@220
  1319
    virtual void add(const Arc& arc) {
deba@220
  1320
      insert(arc);
deba@220
  1321
    }
deba@220
  1322
deba@220
  1323
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  1324
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1325
        insert(arcs[i]);
deba@220
  1326
      }
deba@220
  1327
    }
deba@220
  1328
deba@220
  1329
    virtual void erase(const Arc& arc) {
deba@220
  1330
      remove(arc);
deba@220
  1331
    }
deba@220
  1332
deba@220
  1333
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  1334
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  1335
        remove(arcs[i]);
deba@220
  1336
      }
deba@220
  1337
    }
deba@220
  1338
deba@220
  1339
    virtual void build() {
deba@220
  1340
      refresh();
deba@220
  1341
    }
deba@220
  1342
deba@220
  1343
    virtual void clear() {
deba@220
  1344
      for(NodeIt n(_g);n!=INVALID;++n) {
kpeter@581
  1345
        _head[n] = INVALID;
deba@220
  1346
      }
deba@220
  1347
    }
deba@220
  1348
deba@220
  1349
    void insert(Arc arc) {
deba@220
  1350
      Node s = _g.source(arc);
deba@220
  1351
      Node t = _g.target(arc);
kpeter@581
  1352
      _left[arc] = INVALID;
kpeter@581
  1353
      _right[arc] = INVALID;
deba@220
  1354
deba@220
  1355
      Arc e = _head[s];
deba@220
  1356
      if (e == INVALID) {
kpeter@581
  1357
        _head[s] = arc;
kpeter@581
  1358
        _parent[arc] = INVALID;
deba@220
  1359
        return;
deba@220
  1360
      }
deba@220
  1361
      while (true) {
deba@220
  1362
        if (t < _g.target(e)) {
deba@220
  1363
          if (_left[e] == INVALID) {
kpeter@581
  1364
            _left[e] = arc;
kpeter@581
  1365
            _parent[arc] = e;
deba@220
  1366
            splay(arc);
deba@220
  1367
            return;
deba@220
  1368
          } else {
deba@220
  1369
            e = _left[e];
deba@220
  1370
          }
deba@220
  1371
        } else {
deba@220
  1372
          if (_right[e] == INVALID) {
kpeter@581
  1373
            _right[e] = arc;
kpeter@581
  1374
            _parent[arc] = e;
deba@220
  1375
            splay(arc);
deba@220
  1376
            return;
deba@220
  1377
          } else {
deba@220
  1378
            e = _right[e];
deba@220
  1379
          }
deba@220
  1380
        }
deba@220
  1381
      }
deba@220
  1382
    }
deba@220
  1383
deba@220
  1384
    void remove(Arc arc) {
deba@220
  1385
      if (_left[arc] == INVALID) {
deba@220
  1386
        if (_right[arc] != INVALID) {
kpeter@581
  1387
          _parent[_right[arc]] = _parent[arc];
deba@220
  1388
        }
deba@220
  1389
        if (_parent[arc] != INVALID) {
deba@220
  1390
          if (_left[_parent[arc]] == arc) {
kpeter@581
  1391
            _left[_parent[arc]] = _right[arc];
deba@220
  1392
          } else {
kpeter@581
  1393
            _right[_parent[arc]] = _right[arc];
deba@220
  1394
          }
deba@220
  1395
        } else {
kpeter@581
  1396
          _head[_g.source(arc)] = _right[arc];
deba@220
  1397
        }
deba@220
  1398
      } else if (_right[arc] == INVALID) {
kpeter@581
  1399
        _parent[_left[arc]] = _parent[arc];
deba@220
  1400
        if (_parent[arc] != INVALID) {
deba@220
  1401
          if (_left[_parent[arc]] == arc) {
kpeter@581
  1402
            _left[_parent[arc]] = _left[arc];
deba@220
  1403
          } else {
kpeter@581
  1404
            _right[_parent[arc]] = _left[arc];
deba@220
  1405
          }
deba@220
  1406
        } else {
kpeter@581
  1407
          _head[_g.source(arc)] = _left[arc];
deba@220
  1408
        }
deba@220
  1409
      } else {
deba@220
  1410
        Arc e = _left[arc];
deba@220
  1411
        if (_right[e] != INVALID) {
deba@220
  1412
          e = _right[e];
deba@220
  1413
          while (_right[e] != INVALID) {
deba@220
  1414
            e = _right[e];
deba@220
  1415
          }
deba@220
  1416
          Arc s = _parent[e];
kpeter@581
  1417
          _right[_parent[e]] = _left[e];
deba@220
  1418
          if (_left[e] != INVALID) {
kpeter@581
  1419
            _parent[_left[e]] = _parent[e];
deba@220
  1420
          }
deba@220
  1421
kpeter@581
  1422
          _left[e] = _left[arc];
kpeter@581
  1423
          _parent[_left[arc]] = e;
kpeter@581
  1424
          _right[e] = _right[arc];
kpeter@581
  1425
          _parent[_right[arc]] = e;
deba@220
  1426
kpeter@581
  1427
          _parent[e] = _parent[arc];
deba@220
  1428
          if (_parent[arc] != INVALID) {
deba@220
  1429
            if (_left[_parent[arc]] == arc) {
kpeter@581
  1430
              _left[_parent[arc]] = e;
deba@220
  1431
            } else {
kpeter@581
  1432
              _right[_parent[arc]] = e;
deba@220
  1433
            }
deba@220
  1434
          }
deba@220
  1435
          splay(s);
deba@220
  1436
        } else {
kpeter@581
  1437
          _right[e] = _right[arc];
kpeter@581
  1438
          _parent[_right[arc]] = e;
kpeter@581
  1439
          _parent[e] = _parent[arc];
deba@220
  1440
deba@220
  1441
          if (_parent[arc] != INVALID) {
deba@220
  1442
            if (_left[_parent[arc]] == arc) {
kpeter@581
  1443
              _left[_parent[arc]] = e;
deba@220
  1444
            } else {
kpeter@581
  1445
              _right[_parent[arc]] = e;
deba@220
  1446
            }
deba@220
  1447
          } else {
kpeter@581
  1448
            _head[_g.source(arc)] = e;
deba@220
  1449
          }
deba@220
  1450
        }
deba@220
  1451
      }
deba@220
  1452
    }
deba@220
  1453
deba@220
  1454
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1455
    {
deba@220
  1456
      int m=(a+b)/2;
deba@220
  1457
      Arc me=v[m];
deba@220
  1458
      if (a < m) {
deba@220
  1459
        Arc left = refreshRec(v,a,m-1);
kpeter@581
  1460
        _left[me] = left;
kpeter@581
  1461
        _parent[left] = me;
deba@220
  1462
      } else {
kpeter@581
  1463
        _left[me] = INVALID;
deba@220
  1464
      }
deba@220
  1465
      if (m < b) {
deba@220
  1466
        Arc right = refreshRec(v,m+1,b);
kpeter@581
  1467
        _right[me] = right;
kpeter@581
  1468
        _parent[right] = me;
deba@220
  1469
      } else {
kpeter@581
  1470
        _right[me] = INVALID;
deba@220
  1471
      }
deba@220
  1472
      return me;
deba@220
  1473
    }
deba@220
  1474
deba@220
  1475
    void refresh() {
deba@220
  1476
      for(NodeIt n(_g);n!=INVALID;++n) {
deba@220
  1477
        std::vector<Arc> v;
deba@233
  1478
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
deba@233
  1479
        if (!v.empty()) {
deba@220
  1480
          std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1481
          Arc head = refreshRec(v,0,v.size()-1);
kpeter@581
  1482
          _head[n] = head;
kpeter@581
  1483
          _parent[head] = INVALID;
deba@220
  1484
        }
kpeter@581
  1485
        else _head[n] = INVALID;
deba@220
  1486
      }
deba@220
  1487
    }
deba@220
  1488
deba@220
  1489
    void zig(Arc v) {
deba@220
  1490
      Arc w = _parent[v];
kpeter@581
  1491
      _parent[v] = _parent[w];
kpeter@581
  1492
      _parent[w] = v;
kpeter@581
  1493
      _left[w] = _right[v];
kpeter@581
  1494
      _right[v] = w;
deba@220
  1495
      if (_parent[v] != INVALID) {
deba@220
  1496
        if (_right[_parent[v]] == w) {
kpeter@581
  1497
          _right[_parent[v]] = v;
deba@220
  1498
        } else {
kpeter@581
  1499
          _left[_parent[v]] = v;
deba@220
  1500
        }
deba@220
  1501
      }
deba@220
  1502
      if (_left[w] != INVALID){
kpeter@581
  1503
        _parent[_left[w]] = w;
deba@220
  1504
      }
deba@220
  1505
    }
deba@220
  1506
deba@220
  1507
    void zag(Arc v) {
deba@220
  1508
      Arc w = _parent[v];
kpeter@581
  1509
      _parent[v] = _parent[w];
kpeter@581
  1510
      _parent[w] = v;
kpeter@581
  1511
      _right[w] = _left[v];
kpeter@581
  1512
      _left[v] = w;
deba@220
  1513
      if (_parent[v] != INVALID){
deba@220
  1514
        if (_left[_parent[v]] == w) {
kpeter@581
  1515
          _left[_parent[v]] = v;
deba@220
  1516
        } else {
kpeter@581
  1517
          _right[_parent[v]] = v;
deba@220
  1518
        }
deba@220
  1519
      }
deba@220
  1520
      if (_right[w] != INVALID){
kpeter@581
  1521
        _parent[_right[w]] = w;
deba@220
  1522
      }
deba@220
  1523
    }
deba@220
  1524
deba@220
  1525
    void splay(Arc v) {
deba@220
  1526
      while (_parent[v] != INVALID) {
deba@220
  1527
        if (v == _left[_parent[v]]) {
deba@220
  1528
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1529
            zig(v);
deba@220
  1530
          } else {
deba@220
  1531
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1532
              zig(_parent[v]);
deba@220
  1533
              zig(v);
deba@220
  1534
            } else {
deba@220
  1535
              zig(v);
deba@220
  1536
              zag(v);
deba@220
  1537
            }
deba@220
  1538
          }
deba@220
  1539
        } else {
deba@220
  1540
          if (_parent[_parent[v]] == INVALID) {
deba@220
  1541
            zag(v);
deba@220
  1542
          } else {
deba@220
  1543
            if (_parent[v] == _left[_parent[_parent[v]]]) {
deba@220
  1544
              zag(v);
deba@220
  1545
              zig(v);
deba@220
  1546
            } else {
deba@220
  1547
              zag(_parent[v]);
deba@220
  1548
              zag(v);
deba@220
  1549
            }
deba@220
  1550
          }
deba@220
  1551
        }
deba@220
  1552
      }
deba@220
  1553
      _head[_g.source(v)] = v;
deba@220
  1554
    }
deba@220
  1555
deba@220
  1556
deba@220
  1557
  public:
deba@220
  1558
deba@220
  1559
    ///Find an arc between two nodes.
deba@220
  1560
deba@233
  1561
    ///Find an arc between two nodes.
kpeter@282
  1562
    ///\param s The source node.
kpeter@282
  1563
    ///\param t The target node.
deba@233
  1564
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
deba@233
  1565
    ///not given, the operator finds the first appropriate arc.
deba@233
  1566
    ///\return An arc from \c s to \c t after \c p or
deba@233
  1567
    ///\ref INVALID if there is no more.
deba@233
  1568
    ///
deba@233
  1569
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@233
  1570
    ///following way.
deba@233
  1571
    ///\code
deba@233
  1572
    ///DynArcLookUp<ListDigraph> ae(g);
deba@233
  1573
    ///...
kpeter@282
  1574
    ///int n = 0;
kpeter@282
  1575
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
deba@233
  1576
    ///\endcode
deba@233
  1577
    ///
kpeter@282
  1578
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
deba@233
  1579
    ///amortized time, specifically, the time complexity of the lookups
deba@233
  1580
    ///is equal to the optimal search tree implementation for the
deba@233
  1581
    ///current query distribution in a constant factor.
deba@233
  1582
    ///
deba@233
  1583
    ///\note This is a dynamic data structure, therefore the data
kpeter@282
  1584
    ///structure is updated after each graph alteration. Thus although
kpeter@282
  1585
    ///this data structure is theoretically faster than \ref ArcLookUp
kpeter@313
  1586
    ///and \ref AllArcLookUp, it often provides worse performance than
deba@233
  1587
    ///them.
deba@233
  1588
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
deba@233
  1589
      if (p == INVALID) {
deba@233
  1590
        Arc a = _head[s];
deba@233
  1591
        if (a == INVALID) return INVALID;
deba@233
  1592
        Arc r = INVALID;
deba@233
  1593
        while (true) {
deba@233
  1594
          if (_g.target(a) < t) {
deba@233
  1595
            if (_right[a] == INVALID) {
deba@233
  1596
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1597
              return r;
deba@233
  1598
            } else {
deba@233
  1599
              a = _right[a];
deba@233
  1600
            }
deba@233
  1601
          } else {
deba@233
  1602
            if (_g.target(a) == t) {
deba@233
  1603
              r = a;
deba@233
  1604
            }
deba@233
  1605
            if (_left[a] == INVALID) {
deba@233
  1606
              const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1607
              return r;
deba@233
  1608
            } else {
deba@233
  1609
              a = _left[a];
deba@233
  1610
            }
deba@233
  1611
          }
deba@233
  1612
        }
deba@233
  1613
      } else {
deba@233
  1614
        Arc a = p;
deba@233
  1615
        if (_right[a] != INVALID) {
deba@233
  1616
          a = _right[a];
deba@233
  1617
          while (_left[a] != INVALID) {
deba@233
  1618
            a = _left[a];
deba@233
  1619
          }
deba@220
  1620
          const_cast<DynArcLookUp&>(*this).splay(a);
deba@233
  1621
        } else {
deba@233
  1622
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
deba@233
  1623
            a = _parent[a];
deba@233
  1624
          }
deba@233
  1625
          if (_parent[a] == INVALID) {
deba@220
  1626
            return INVALID;
deba@220
  1627
          } else {
deba@233
  1628
            a = _parent[a];
deba@220
  1629
            const_cast<DynArcLookUp&>(*this).splay(a);
deba@220
  1630
          }
deba@220
  1631
        }
deba@233
  1632
        if (_g.target(a) == t) return a;
deba@233
  1633
        else return INVALID;
deba@220
  1634
      }
deba@220
  1635
    }
deba@220
  1636
deba@220
  1637
  };
deba@220
  1638
kpeter@282
  1639
  ///Fast arc look-up between given endpoints.
deba@220
  1640
deba@220
  1641
  ///Using this class, you can find an arc in a digraph from a given
kpeter@282
  1642
  ///source to a given target in time <em>O</em>(log<em>d</em>),
deba@220
  1643
  ///where <em>d</em> is the out-degree of the source node.
deba@220
  1644
  ///
deba@220
  1645
  ///It is not possible to find \e all parallel arcs between two nodes.
deba@220
  1646
  ///Use \ref AllArcLookUp for this purpose.
deba@220
  1647
  ///
kpeter@282
  1648
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1649
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1650
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1651
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1652
  ///
kpeter@559
  1653
  ///\tparam GR The type of the underlying digraph.
deba@220
  1654
  ///
deba@220
  1655
  ///\sa DynArcLookUp
deba@220
  1656
  ///\sa AllArcLookUp
kpeter@559
  1657
  template<class GR>
deba@220
  1658
  class ArcLookUp
deba@220
  1659
  {
kpeter@617
  1660
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@617
  1661
deba@220
  1662
  public:
kpeter@617
  1663
kpeter@617
  1664
    /// The Digraph type
kpeter@559
  1665
    typedef GR Digraph;
deba@220
  1666
deba@220
  1667
  protected:
deba@220
  1668
    const Digraph &_g;
deba@220
  1669
    typename Digraph::template NodeMap<Arc> _head;
deba@220
  1670
    typename Digraph::template ArcMap<Arc> _left;
deba@220
  1671
    typename Digraph::template ArcMap<Arc> _right;
deba@220
  1672
deba@220
  1673
    class ArcLess {
deba@220
  1674
      const Digraph &g;
deba@220
  1675
    public:
deba@220
  1676
      ArcLess(const Digraph &_g) : g(_g) {}
deba@220
  1677
      bool operator()(Arc a,Arc b) const
deba@220
  1678
      {
deba@220
  1679
        return g.target(a)<g.target(b);
deba@220
  1680
      }
deba@220
  1681
    };
deba@220
  1682
deba@220
  1683
  public:
deba@220
  1684
deba@220
  1685
    ///Constructor
deba@220
  1686
deba@220
  1687
    ///Constructor.
deba@220
  1688
    ///
deba@220
  1689
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1690
    ///changes.
deba@220
  1691
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
deba@220
  1692
deba@220
  1693
  private:
deba@220
  1694
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
deba@220
  1695
    {
deba@220
  1696
      int m=(a+b)/2;
deba@220
  1697
      Arc me=v[m];
deba@220
  1698
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
deba@220
  1699
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
deba@220
  1700
      return me;
deba@220
  1701
    }
deba@220
  1702
  public:
kpeter@282
  1703
    ///Refresh the search data structure at a node.
deba@220
  1704
deba@220
  1705
    ///Build up the search database of node \c n.
deba@220
  1706
    ///
kpeter@282
  1707
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
kpeter@282
  1708
    ///is the number of the outgoing arcs of \c n.
deba@220
  1709
    void refresh(Node n)
deba@220
  1710
    {
deba@220
  1711
      std::vector<Arc> v;
deba@220
  1712
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
deba@220
  1713
      if(v.size()) {
deba@220
  1714
        std::sort(v.begin(),v.end(),ArcLess(_g));
deba@220
  1715
        _head[n]=refreshRec(v,0,v.size()-1);
deba@220
  1716
      }
deba@220
  1717
      else _head[n]=INVALID;
deba@220
  1718
    }
deba@220
  1719
    ///Refresh the full data structure.
deba@220
  1720
deba@220
  1721
    ///Build up the full search database. In fact, it simply calls
deba@220
  1722
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1723
    ///
kpeter@282
  1724
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1725
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1726
    ///out-degree of the digraph.
deba@220
  1727
    void refresh()
deba@220
  1728
    {
deba@220
  1729
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
deba@220
  1730
    }
deba@220
  1731
deba@220
  1732
    ///Find an arc between two nodes.
deba@220
  1733
kpeter@313
  1734
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
kpeter@313
  1735
    ///where <em>d</em> is the number of outgoing arcs of \c s.
kpeter@282
  1736
    ///\param s The source node.
kpeter@282
  1737
    ///\param t The target node.
deba@220
  1738
    ///\return An arc from \c s to \c t if there exists,
deba@220
  1739
    ///\ref INVALID otherwise.
deba@220
  1740
    ///
deba@220
  1741
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1742
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1743
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1744
    Arc operator()(Node s, Node t) const
deba@220
  1745
    {
deba@220
  1746
      Arc e;
deba@220
  1747
      for(e=_head[s];
deba@220
  1748
          e!=INVALID&&_g.target(e)!=t;
deba@220
  1749
          e = t < _g.target(e)?_left[e]:_right[e]) ;
deba@220
  1750
      return e;
deba@220
  1751
    }
deba@220
  1752
deba@220
  1753
  };
deba@220
  1754
kpeter@282
  1755
  ///Fast look-up of all arcs between given endpoints.
deba@220
  1756
deba@220
  1757
  ///This class is the same as \ref ArcLookUp, with the addition
kpeter@282
  1758
  ///that it makes it possible to find all parallel arcs between given
kpeter@282
  1759
  ///endpoints.
deba@220
  1760
  ///
kpeter@282
  1761
  ///\warning This class is static, so you should call refresh() (or at
kpeter@282
  1762
  ///least refresh(Node)) to refresh this data structure whenever the
kpeter@282
  1763
  ///digraph changes. This is a time consuming (superlinearly proportional
kpeter@282
  1764
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
deba@220
  1765
  ///
kpeter@559
  1766
  ///\tparam GR The type of the underlying digraph.
deba@220
  1767
  ///
deba@220
  1768
  ///\sa DynArcLookUp
deba@220
  1769
  ///\sa ArcLookUp
kpeter@559
  1770
  template<class GR>
kpeter@559
  1771
  class AllArcLookUp : public ArcLookUp<GR>
deba@220
  1772
  {
kpeter@559
  1773
    using ArcLookUp<GR>::_g;
kpeter@559
  1774
    using ArcLookUp<GR>::_right;
kpeter@559
  1775
    using ArcLookUp<GR>::_left;
kpeter@559
  1776
    using ArcLookUp<GR>::_head;
deba@220
  1777
kpeter@559
  1778
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
deba@220
  1779
kpeter@617
  1780
    typename GR::template ArcMap<Arc> _next;
deba@220
  1781
deba@220
  1782
    Arc refreshNext(Arc head,Arc next=INVALID)
deba@220
  1783
    {
deba@220
  1784
      if(head==INVALID) return next;
deba@220
  1785
      else {
deba@220
  1786
        next=refreshNext(_right[head],next);
deba@220
  1787
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
deba@220
  1788
          ? next : INVALID;
deba@220
  1789
        return refreshNext(_left[head],head);
deba@220
  1790
      }
deba@220
  1791
    }
deba@220
  1792
deba@220
  1793
    void refreshNext()
deba@220
  1794
    {
deba@220
  1795
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
deba@220
  1796
    }
deba@220
  1797
deba@220
  1798
  public:
kpeter@617
  1799
kpeter@617
  1800
    /// The Digraph type
kpeter@617
  1801
    typedef GR Digraph;
kpeter@617
  1802
deba@220
  1803
    ///Constructor
deba@220
  1804
deba@220
  1805
    ///Constructor.
deba@220
  1806
    ///
deba@220
  1807
    ///It builds up the search database, which remains valid until the digraph
deba@220
  1808
    ///changes.
kpeter@559
  1809
    AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
deba@220
  1810
deba@220
  1811
    ///Refresh the data structure at a node.
deba@220
  1812
deba@220
  1813
    ///Build up the search database of node \c n.
deba@220
  1814
    ///
kpeter@282
  1815
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
deba@220
  1816
    ///the number of the outgoing arcs of \c n.
deba@220
  1817
    void refresh(Node n)
deba@220
  1818
    {
kpeter@559
  1819
      ArcLookUp<GR>::refresh(n);
deba@220
  1820
      refreshNext(_head[n]);
deba@220
  1821
    }
deba@220
  1822
deba@220
  1823
    ///Refresh the full data structure.
deba@220
  1824
deba@220
  1825
    ///Build up the full search database. In fact, it simply calls
deba@220
  1826
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
deba@220
  1827
    ///
kpeter@282
  1828
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
kpeter@282
  1829
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
deba@220
  1830
    ///out-degree of the digraph.
deba@220
  1831
    void refresh()
deba@220
  1832
    {
deba@220
  1833
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
deba@220
  1834
    }
deba@220
  1835
deba@220
  1836
    ///Find an arc between two nodes.
deba@220
  1837
deba@220
  1838
    ///Find an arc between two nodes.
kpeter@282
  1839
    ///\param s The source node.
kpeter@282
  1840
    ///\param t The target node.
deba@220
  1841
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
deba@220
  1842
    ///not given, the operator finds the first appropriate arc.
deba@220
  1843
    ///\return An arc from \c s to \c t after \c prev or
deba@220
  1844
    ///\ref INVALID if there is no more.
deba@220
  1845
    ///
deba@220
  1846
    ///For example, you can count the number of arcs from \c u to \c v in the
deba@220
  1847
    ///following way.
deba@220
  1848
    ///\code
deba@220
  1849
    ///AllArcLookUp<ListDigraph> ae(g);
deba@220
  1850
    ///...
kpeter@282
  1851
    ///int n = 0;
kpeter@282
  1852
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
deba@220
  1853
    ///\endcode
deba@220
  1854
    ///
kpeter@313
  1855
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
kpeter@313
  1856
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
deba@220
  1857
    ///consecutive arcs are found in constant time.
deba@220
  1858
    ///
deba@220
  1859
    ///\warning If you change the digraph, refresh() must be called before using
deba@220
  1860
    ///this operator. If you change the outgoing arcs of
kpeter@282
  1861
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
deba@220
  1862
    ///
alpar@959
  1863
    Arc operator()(Node s, Node t, Arc prev=INVALID) const
deba@220
  1864
    {
alpar@959
  1865
      if(prev==INVALID)
alpar@959
  1866
        {
alpar@959
  1867
          Arc f=INVALID;
alpar@959
  1868
          Arc e;
alpar@959
  1869
          for(e=_head[s];
alpar@959
  1870
              e!=INVALID&&_g.target(e)!=t;
alpar@959
  1871
              e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@959
  1872
          while(e!=INVALID)
alpar@959
  1873
            if(_g.target(e)==t)
alpar@959
  1874
              {
alpar@959
  1875
                f = e;
alpar@959
  1876
                e = _left[e];
alpar@959
  1877
              }
alpar@959
  1878
            else e = _right[e];
alpar@959
  1879
          return f;
alpar@959
  1880
        }
alpar@959
  1881
      else return _next[prev];
deba@220
  1882
    }
deba@220
  1883
deba@220
  1884
  };
deba@220
  1885
deba@220
  1886
  /// @}
deba@220
  1887
deba@220
  1888
} //namespace lemon
deba@220
  1889
deba@220
  1890
#endif